1
|
Shariati K, Bedar M, Huang KX, Moghadam S, Mirzaie S, LaGuardia JS, Chen W, Kang Y, Ren X, Lee JC. Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration. ADVANCED THERAPEUTICS 2025; 8:2400296. [PMID: 39867107 PMCID: PMC11756815 DOI: 10.1002/adtp.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/28/2025]
Abstract
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue. Among bone biomaterial strategies, many have investigated the use of different material cues to direct the development and activity of osteoblasts. However, less attention has been given to exploring features that similarly target osteoclast formation and activity, with even fewer strategies demonstrating or integrating biomaterial-directed modulation of osteoblast-osteoclast coupling. This review aims to describe various biomaterial cues demonstrated to influence osteoclastogenesis and osteoclast function, emphasizing those that enhance a material construct's ability to achieve bone healing and regeneration. Additionally discussed are approaches that influence the communication between osteoclasts and osteoblasts, particularly in a manner that takes advantage of their coupling. Deepening our understanding of how biomaterial cues may dictate osteoclast differentiation, function, and influence on the microenvironment may enable the realization of bone-replacement interventions with enhanced integrative and regenerative capacities.
Collapse
Affiliation(s)
- Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Sarah Mirzaie
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112690. [DOI: 10.1016/j.msec.2022.112690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
|
3
|
Weng W, Zanetti F, Bovard D, Braun B, Ehnert S, Uynuk-Ool T, Histing T, Hoeng J, Nussler AK, Aspera-Werz RH. A simple method for decellularizing a cell-derived matrix for bone cell cultivation and differentiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:124. [PMID: 34524552 PMCID: PMC8443471 DOI: 10.1007/s10856-021-06601-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/29/2021] [Indexed: 05/02/2023]
Abstract
The extracellular matrix regulates cell survival, proliferation, and differentiation. In vitro two-dimensional cell experiments are typically performed on a plastic plate or a substrate of a single extracellular matrix constituent such as collagen or calcium phosphate. As these approaches do not include extracellular matrix proteins or growth factors, they fail to mimic a complex cell microenvironment. The cell-derived matrix is an alternative platform for better representing the in vivo microenvironment in vitro. Standard decellularization of a cell-derived matrix is achieved by combining chemical and physical methods. In this study, we compared the decellularization efficacy of several methods: ammonium hydroxide, sodium dodecyl sulfate (SDS), or Triton X-100 with cold or heat treatment on a matrix of Saos-2 cells. We found that the protocols containing SDS were cytotoxic during recellularization. Heat treatment at 47 °C was not cytotoxic, removed cellular constituents, inactivated alkaline phosphatase activity, and maintained the levels of calcium deposition. Subsequently, we investigated the differentiation efficiency of a direct bone coculture system in the established decellularized Saos-2 matrix, an inorganic matrix of calcium phosphate, and a plastic plate as a control. We found that the decellularized Saos-2 cell matrix obtained by heat treatment at 47 °C enhanced osteoclast differentiation and matrix mineralization better than the inorganic matrix and the control. This simple and low-cost method allows us to create a Saos-2 decellularized matrix that can be used as an in vivo-like support for the growth and differentiation of bone cells.
Collapse
Affiliation(s)
- Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Bianca Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Tatiana Uynuk-Ool
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Shen K, Zhang X, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y, Lai M. Microstructured titanium functionalized by naringin inserted multilayers for promoting osteogenesis and inhibiting osteoclastogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1865-1881. [PMID: 34233132 DOI: 10.1080/09205063.2021.1949098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Osteoporosis is the most common cause of fractures in middle-aged and elderly people. Fracture repair can be difficult due to the decreased bone volume in osteoporosis patients and implants are often required. In this study, a slow-release system for microstructured titanium (Micro-Ti) was designed to promote osteogenesis and inhibit osteoclastogenesis. Firstly, Micro-Ti was prepared on titanium surfaces by dual acid etching. Micro-Ti was covered with naringin (NA), chitosan (CHI) and gelatin (GEL) multilayers through layer by layer technique, which is denoted as LBL (NA) coated-Ti. Osteoblasts (ME3T3-E1) and macrophages (RAW 264.7) were cultured on untreated and treated titanium surfaces in vitro. Osteoblasts grown on LBL (NA) coated-Ti showed higher alkaline phosphatase (ALP) and mineralization, consistent with qRT-PCR analysis of osteoblast genes including runt-related transcription factor 2 (Runx2), ALP, collagen I (Col I), osteocalcin (OCN), osteopontin (OPN), and osteoprotegerin (OPG). In contrast, acid tartarate-resistant phosphatase activity and the expression of osteoclastic differentiation related genes comprising of cathepsin K (CTSK), nuclear factor of activated T cells (NFAT), tartrate resistant acid phosphatase (TRAP) and V-ATPase (VATP) in osteoclasts were significantly reduced on LBL (NA) coated-Ti surfaces compared with other groups. These results indicate that microstructured titanium functionalized by naringin inserted multilayers enhanced the differentiation of osteoblasts and inhibited osteoclast formation. The proposed approach in this research provides a novel way to modify titanium-based implants for fracture repair in osteoporosis patients.
Collapse
Affiliation(s)
- Ke Shen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaojing Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qiang Tang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xingtang Fang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chunlei Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhaojing Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
de Melo Pereira D, Schumacher M, Habibovic P. Cobalt-containing calcium phosphate induces resorption of biomineralized collagen by human osteoclasts. Biomater Res 2021; 25:6. [PMID: 33743840 PMCID: PMC7981861 DOI: 10.1186/s40824-021-00209-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Biomineralized collagen, consisting of fibrillar type-I collagen with embedded hydroxyapatite mineral, is a bone-mimicking material with potential application as a bone graft substitute. Despite the chemical and structural similarity with bone extracellular matrix, no evidence exists so far that biomineralized collagen can be resorbed by osteoclasts. The aim of the current study was to induce resorption of biomineralized collagen by osteoclasts by a two-fold modification: increasing the calcium phosphate content and introducing cobalt ions (Co2+), which have been previously shown to stimulate resorptive activity of osteoclasts. METHODS To this end, we produced biomineralized collagen membranes and coated them with a cobalt-containing calcium phosphate (CoCaP). Human osteoclasts, derived from CD14+ monocytes from peripheral blood, were differentiated directly on the membranes. Upon fluorescent staining of nuclei, F-actin and tartrate-resistant alkaline phosphatase, the cells were analyzed by laser confocal microscopy. Their resorption capacity was assessed by scanning electron microscopy (SEM), as well as indirectly quantified by measuring the release of calcium ions into cell culture medium. RESULTS The CoCaP coating increased the mineral content of the membranes by 4 wt.% and their elastic modulus from 1 to 10 MPa. The coated membranes showed a sustained Co2+ release in water of about 7 nM per 2 days. In contrast to uncoated membranes, on CoCaP-coated biomineralized collagen membranes, osteoclasts sporadically formed actin rings, and induced formation of resorption lacunae, as observed by SEM and confirmed by increase in Ca2+ concentration in cell culture medium. The effect of the CoCaP layer on osteoclast function is thought to be mainly caused by the increase of membrane stiffness, although the effect of Co2+, which was released in very low amounts, cannot be fully excluded. CONCLUSIONS This work shows the potential of this relatively simple approach to induce osteoclast resorption of biomineralized collagen, although the extent of osteoclast resorption was limited, and the method needs further optimization. Moreover, the coating method is suitable for incorporating bioactive ions of interest into biomineralized collagen, which is typically not possible using the common biomineralization methods, such as polymer-induced liquid precursor method.
Collapse
Affiliation(s)
- Daniel de Melo Pereira
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Matthias Schumacher
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
6
|
Fouad-Elhady EA, Aglan HA, Hassan RE, Ahmed HH, Sabry GM. Modulation of bone turnover aberration: A target for management of primary osteoporosis in experimental rat model. Heliyon 2020; 6:e03341. [PMID: 32072048 PMCID: PMC7011045 DOI: 10.1016/j.heliyon.2020.e03341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a skeletal degenerative disease characterised by abnormal bone turnover with scant bone formation and overabundant bone resorption. The present approach was intended to address the potency of nanohydroxyapatite (nHA), chitosan/hydroxyapatite nanocomposites (nCh/HA) and silver/hydroxyapatite nanoparticles (nAg/HA) to modulate bone turnover deviation in primary osteoporosis induced in the experimental model. Characterisation techniques such as TEM, zeta-potential, FT-IR and XRD were used to assess the morphology, the physical as well as the chemical features of the prepared nanostructures. The in vivo experiment was conducted on forty-eight adult female rats, randomised into 6 groups (8 rats/group), (1) gonad-intact, (2) osteoporotic group, (3) osteoporotic + nHA, (4) osteoporotic + nCh/HA, (5) osteoporotic + nAg/HA and (6) osteoporotic + alendronate (ALN). After three months of treatment, serum sclerostin (SOST), bone alkaline phosphatase (BALP) and bone sialoprotein (BSP) levels were quantified using ELISA. Femur bone receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and cathepsin K (CtsK) mRNA levels were evaluated by quantitative RT-PCR. Moreover, alizarin red S staining was applied to determine the mineralisation intensity of femur bone. Findings in the present study indicated that treatment with nHA, nCh/HA or nAg/HA leads to significant repression of serum SOST, BALP and BSP levels parallel to a significant down-regulation of RANKL and CtsK gene expression levels. On the other side, significant enhancement in the calcification intensity of femur bone has been noticed. The outcomes of this experimental setting ascertained the potentiality of nHA, nCh/HA and nAg/HA as promising nanomaterials in attenuating the excessive bone turnover in the primary osteoporotic rat model. The mechanisms behind the efficacy of the investigated nanostructures involved the obstacle of serum and tissue indices of bone resorption besides the strengthening of bone mineralisation.
Collapse
Affiliation(s)
- Enas A Fouad-Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Gilane M Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Xu W, Chen X, Wang Y, Fan B, Guo K, Yang C, Yu S, Pang Y, Zhang S. Chitooligosaccharide inhibits RANKL-induced osteoclastogenesis and ligation-induced periodontitis by suppressing MAPK/ c-fos/NFATC1 signaling. J Cell Physiol 2019; 235:3022-3032. [PMID: 31541460 DOI: 10.1002/jcp.29207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Considering the high rate of osteoclast-related diseases worldwide, research targeting osteoclast formation/function is crucial. In vitro, we demonstrated that chitooligosaccharide (CS) dramatically inhibited osteoclastogenesis as well as osteoclast function dose-dependently. CS suppressed osteoclast-specific genes expression during osteoclastogenesis. Furthermore, we found that CS attenuated receptor activator of nuclear factor kappa B ligand (RANKL)-mediated mitogen-activated protein kinase (MAPK) pathway involving p38, erk1/2, and jnk, leading to the reduced expression of c-fos and nuclear factor of activated T cells c1 (NFATc1) during osteoclast differentiation. In vivo, we found CS protected rats from periodontitis-induced alveolar bone loss by micro-computerized tomography and histological analysis. Overall, CS inhibited RANKL-induced osteoclastogenesis and ligature-induced rat periodontitis model, probably by suppressing the MAPK/c-fos/NFATc1 signaling pathway. Therefore, CS may be a safe and promising treatment for osteoclast-related diseases.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinwei Chen
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yexin Wang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baoting Fan
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke Guo
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chi Yang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shiqi Yu
- Shanghai Ninth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Rd, 200011, Shanghai, People's Republic of China
| | - Yichuan Pang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shanyong Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Nambiar RB, Sellamuthu PS, Perumal AB, Sadiku ER, Adeyeye OA. The Use of Chitosan in Food Packaging Applications. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2019. [DOI: 10.1007/978-981-13-8063-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Karimi S, Salahinejad E, Sharifi E, Nourian A, Tayebi L. Bioperformance of chitosan/fluoride-doped diopside nanocomposite coatings deposited on medical stainless steel. Carbohydr Polym 2018; 202:600-610. [PMID: 30287041 DOI: 10.1016/j.carbpol.2018.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022]
Abstract
This work focuses on the structure, bioactivity, corrosion, and biocompatibility characteristics of chitosan-matrix composites reinforced with various amounts of fluoride-doped diopside nanoparticles (at 20, 40, 60, and 80 wt%) deposited on stainless steel 316 L. Bioactivity studies reveal that the presence of the nanoparticles in the coatings induces apatite-forming ability to the surfaces. Based on electrochemical impedance spectroscopy and polarization experiments, the in vitro corrosion resistance of the substrate was enhanced by increasing the level of the nanoparticles in the coating. The sample containing 60% of the nanoparticles presented the highest osteoblast-like MG63 cell viability, in comparison to the other prepared and even control samples. Also, the cell attachment on the surfaces was improved with increasing the amount of the nanoparticles in the coatings. It is eventually concluded that the application of chitosan/fluoride-doped diopside nanocomposite coatings improves the bioperformance of metallic implants.
Collapse
Affiliation(s)
- S Karimi
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - E Salahinejad
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - E Sharifi
- Department of Tissue Engineering and Biomaterials, School of Science and Advanced Technologies In Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - A Nourian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - L Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
10
|
Bai BL, Xie ZJ, Weng SJ, Wu ZY, Li H, Tao ZS, Boodhun V, Yan DY, Shen ZJ, Tang JH, Yang L. Chitosan oligosaccharide promotes osteoclast formation by stimulating the activation of MAPK and AKT signaling pathways. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1207-1218. [PMID: 29502489 DOI: 10.1080/09205063.2018.1448336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bing-Li Bai
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhong-Jie Xie
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - She-Ji Weng
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zong-Yi Wu
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hang Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, WuHu, China
| | - Viraj Boodhun
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - De-Yi Yan
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Jian Shen
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Hao Tang
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Yang
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Modulation of Osteoclast Interactions with Orthopaedic Biomaterials. J Funct Biomater 2018; 9:jfb9010018. [PMID: 29495358 PMCID: PMC5872104 DOI: 10.3390/jfb9010018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
Biomaterial integration in bone depends on bone remodelling at the bone-implant interface. Optimal balance of bone resorption by osteoclasts and bone deposition by osteoblasts is crucial for successful implantation, especially in orthopaedic surgery. Most studies examined osteoblast differentiation on biomaterials, yet few research has been conducted to explore the effect of different orthopaedic implants on osteoclast development. This review covers, in detail, the biology of osteoclasts, in vitro models of osteoclasts, and modulation of osteoclast activity by different implant surfaces, bio-ceramics, and polymers. Studies show that surface topography influence osteoclastogenesis. For instance, metal implants with rough surfaces enhanced osteoclast activity, while smooth surfaces resulted in poor osteoclast differentiation. In addition, surface modification of implants with anti-osteoporotic drug further decreased osteoclast activity. In bioceramics, osteoclast development depended on different chemical compositions. Strontium-incorporated bioceramics decreased osteoclast development, whereas higher concentrations of silica enhanced osteoclast activity. Differences between natural and synthetic polymers also modulated osteoclastogenesis. Physiochemical properties of implants affect osteoclast activity. Hence, understanding osteoclast biology and its response to the natural microarchitecture of bone are indispensable to design suitable implant interfaces and scaffolds, which will stimulate osteoclasts in ways similar to that of native bone.
Collapse
|
12
|
Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features. INT J POLYM SCI 2017. [DOI: 10.1155/2017/8410750] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genipin (GN) is a natural molecule extracted from the fruit of Gardenia jasminoides Ellis according to modern microbiological processes. Genipin is considered as a favorable cross-linking agent due to its low cytotoxicity compared to widely used cross-linkers; it cross-links compounds with primary amine groups such as proteins, collagen, and chitosan. Chitosan is a biocompatible polymer that is currently studied in bone tissue engineering for its capacity to promote growth and mineral-rich matrix deposition by osteoblasts in culture. In this work, two genipin cross-linked chitosan scaffolds for bone repair and regeneration were prepared with different GN concentrations, and their chemical, physical, and biological properties were explored. Scanning electron microscopy and mechanical tests revealed that nonremarkable changes in morphology, porosity, and mechanical strength of scaffolds are induced by increasing the cross-linking degree. Also, the degradation rate was shown to decrease while increasing the cross-linking degree, with the high cross-linking density of the scaffold disabling the hydrolysis activity. Finally, basic biocompatibility was investigated in vitro, by evaluating proliferation of two human-derived cell lines, namely, the MG63 (human immortalized osteosarcoma) and the hMSCs (human mesenchymal stem cells), as suitable cell models for bone tissue engineering applications of biomaterials.
Collapse
|
13
|
Meng D, Dong L, Wen Y, Xie Q. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:266-72. [DOI: 10.1016/j.msec.2014.11.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/30/2014] [Accepted: 11/05/2014] [Indexed: 02/08/2023]
|
14
|
Bernhardt A, Schumacher M, Gelinsky M. Formation of osteoclasts on calcium phosphate bone cements and polystyrene depends on monocyte isolation conditions. Tissue Eng Part C Methods 2014; 21:160-70. [PMID: 24919531 DOI: 10.1089/ten.tec.2014.0187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Peripheral blood mononuclear cells (PBMC) are an attractive source for the generation of osteoclasts in vitro, which is an important prerequisite for the examination of resorption and remodeling of biomaterials. In this study, different preparation methods are used to obtain cell populations with a rising content of CD14(+) monocytes. We wanted to address the question whether there is a correlation between content of CD14(+) cells in the preparation and functionality of formed osteoclasts. MATERIALS AND METHODS PBMC obtained by density gradient centrifugation with and without further purification by plastic adherence or immunomagnetic separation of CD14(+) cells were seeded on both cell culture polystyrene and a calcium phosphate bone cement (CPC) and cultivated under stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B ligand (RANKL). Cell cultures were characterized by histological and fluorescent staining of multinucleated cells that were positive for tartrate-resistant acid phosphatase (TRAP) activity and the presence of actin rings, respectively. Furthermore, activities of osteoclast marker enzymes TRAP and carbonic anhydrase II (CA II) were quantified. For osteoclasts cultured on CPC, resorption pits were visualized using scanning electron microscopy (SEM). RESULTS Monocytes of all preparations were successfully differentiated into multinucleated osteoclasts showing TRAP and CA II activity on both cell culture plastic and CPC. Preparations involving an additional plastic adherence step exhibited only a minor increase of TRAP and CA II activity in the second week of cultivation. Furthermore, the number of resorption pits on CPC was reduced in these cultures compared with immunomagnetically enriched monocytes and preparations without additional plastic adherence steps. Optimal results with regard to yield, number of multinucleated osteoclasts, activity of TRAP and CA II, and resorption of CPC were obtained by simple density gradient centrifugation. CONCLUSION All examined monocyte preparation protocols were suitable for the generation of osteoclasts on both polystyrene and CPC. Highly purified monocytes are not mandatory to obtain functional osteoclasts for investigation of biomaterial resorption.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Dresden, Germany
| | | | | |
Collapse
|
15
|
Chitosan-based bioglass composite for bone tissue healing : Oxidative stress status and antiosteoporotic performance in a ovariectomized rat model. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0072-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Maria SM, Prukner C, Sheikh Z, Mueller F, Barralet JE, Komarova SV. Reproducible quantification of osteoclastic activity: characterization of a biomimetic calcium phosphate assay. J Biomed Mater Res B Appl Biomater 2013; 102:903-12. [PMID: 24259122 DOI: 10.1002/jbm.b.33071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/31/2013] [Accepted: 10/13/2013] [Indexed: 11/12/2022]
Abstract
Osteoclasts are responsible for bone and joint destruction in rheumatoid arthritis, periodontitis, and osteoporosis. Animal tusk slice assays are standard for evaluating the effect of therapeutics on these cells. However, in addition to batch-to-batch variability inherent to animal tusks, their use is clearly not sustainable. Our objective was to develop and characterize a biomimetic calcium phosphate assay based on the use of phase pure hydroxyapatite coated as a thin film on the surface of culture plates, to facilitate the reproducible quantification of osteoclast resorptive activity. Osteoclasts were formed from RAW 264.7 mouse monocyte cell line using a pro-resorptive cytokine RANKL (50 ng/mL). No change in substrate appearance was noted after culture with media without cells, or undifferentiated monocytes. Only in the presence of osteoclasts localized areas of calcium phosphate dissolution were observed. The total area resorbed positively correlated with the osteoclast numbers (R(2) = 0.99). The resorbed area was significantly increased by the addition of RANKL, and decreased after application of known inhibitors of osteoclast resorptive activity, calcitonin (10 μM), or alendronate (100 μM). Thus, calcium phosphate coated substrates allow reliable monitoring of osteoclast resorptive activity and offer an alternative to animal tusk slice assays.
Collapse
Affiliation(s)
- Salwa M Maria
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Torres A, Santos S, Oliveira M, Barbosa M. Fibrinogen promotes resorption of chitosan by human osteoclasts. Acta Biomater 2013; 9:6553-62. [PMID: 23376128 DOI: 10.1016/j.actbio.2013.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
The osteoconductive and osteoinductive properties of materials intended for bone regeneration have been extensively tested, but the resorbability of these materials is often overlooked. Osteoclasts are responsible for bone resorption and play a crucial role in bone remodeling, which is essential for complete regeneration of bone tissue following injury. In this study we compare, for the first time, the ability of unmodified and fibrinogen (Fg)-modified chitosan (Ch) substrates to support the formation of multinucleated osteoclasts, and the potential of these cells to resorb the two substrates in vitro. Osteoclasts were differentiated from primary human peripheral blood monocytes directly on the substrates being investigated. Our results showed similar cell adhesion to unmodified and Fg-modified Ch substrates. Although the number of multinucleated osteoclasts on both Ch substrates increased throughout the culture period, by 21 days of culture significantly more highly multinucleated osteoclasts (>10 nuclei per cell) were observed on Fg-modified Ch, when compared to Ch alone. In addition, cells were tartrate-resistant acid phosphatase positive and secreted significantly more enzyme on Ch-based substrates than in control conditions. Unmodified and Fg-modified Ch resorption was investigated by fluorescence microscopy and confirmed by electron microscopy. Quantification of results obtained by fluorescence microscopy shows that Fg modification led to significantly higher substrate resorption by 17 days of culture. Our results show that osteoclasts, beyond resorbing mineralized substrates, successfully resorb a polymeric substrate (Ch), with Fg accelerating this process. Thus, in bone tissue regeneration strategies employing polymeric biomaterials, resorption may depend not only on macrophages, but also on osteoclasts.
Collapse
|
18
|
Verron E, Bouler J, Guicheux J. Controlling the biological function of calcium phosphate bone substitutes with drugs. Acta Biomater 2012; 8:3541-51. [PMID: 22729019 DOI: 10.1016/j.actbio.2012.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023]
Abstract
There is a growing interest in bone tissue engineering for bone repair after traumatic, surgical or pathological injury, such as osteolytic tumor or osteoporosis. In this regard, calcium phosphate (CaP) bone substitutes have been used extensively as bone-targeting drug-delivery systems. This localized approach improves the osteogenic potential of bone substitutes by delivering bone growth factors, thus extending their biofunctionality to any pathological context, including infection, irradiation, tumor and osteoporosis. This review briefly describes the physical and chemical processes implicated in the preparation of drug-delivering CaPs. It also describes the impact of these processes on the intrinsic properties of CaPs, especially in terms of the drug-release profile. In addition, this review focuses on the potential influence of drugs on the resorption rate of CaPs. Interestingly, by modulating the resorption parameters of CaP biomaterials, it should be possible to control the release of bone-stimulating ions, such as inorganic phosphate, in the vicinity of bone cells. Finally, recent in vitro and in vivo evaluations are extensively reported.
Collapse
|
19
|
Perez RA, Kim HW, Ginebra MP. Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng 2012; 3:2041731412439555. [PMID: 22511991 PMCID: PMC3324842 DOI: 10.1177/2041731412439555] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The vast majority of materials used in bone tissue engineering and regenerative medicine are based on calcium phosphates due to their similarity with the mineral phase of natural bone. Among them, calcium phosphate cements, which are composed of a powder and a liquid that are mixed to obtain a moldable paste, are widely used. These calcium phosphate cement pastes can be injected using minimally invasive surgery and adapt to the shape of the defect, resulting in an entangled network of calcium phosphate crystals. Adding an organic phase to the calcium phosphate cement formulation is a very powerful strategy to enhance some of the properties of these materials. Adding some water-soluble biocompatible polymers in the calcium phosphate cement liquid or powder phase improves physicochemical and mechanical properties, such as injectability, cohesion, and toughness. Moreover, adding specific polymers can enhance the biological response and the resorption rate of the material. The goal of this study is to overview the most relevant advances in this field, focusing on the different types of polymers that have been used to enhance specific calcium phosphate cement properties.
Collapse
Affiliation(s)
- Roman A Perez
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, South Korea
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
20
|
Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface. Antimicrob Agents Chemother 2010; 55:860-6. [PMID: 21135178 DOI: 10.1128/aac.01005-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous study (Z. X. Peng et al., Carbohydr. Polym. 81:275-283, 2010) demonstrated that water-soluble quaternary ammonium salts, which are produced by the reaction of chitosan with glycidyl trimethylammonium chloride, provide chitosan derivatives with enhanced antibacterial ability. Because biofilm formation is believed to comprise the key step in the development of orthopedic implant-related infections, we further evaluated the efficacy of hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with different degrees of substitution (DS; referred to as HACC 6%, 18%, and 44%) in preventing biofilm formation on a titanium surface. We used a tissue culture plate method to quantify the biomass of Staphylococcus epidermidis and Staphylococcus aureus biofilms and found that HACC, especially HACC 18% and 44%, significantly inhibited biofilm formation compared to the untreated control, even at concentrations far below their MICs (P < 0.05). Scanning electron microscopy showed that inhibition of biofilm formation on titanium increased dramatically with increased DS and HACC concentrations. Confocal laser scanning microscopy indicated that growth of a preexisting biofilm on titanium was inhibited by concentrations of HACC 18% and 44% below their minimum biofilm eradication concentrations. We also demonstrated that HACC inhibited the expression of icaA, which mediates the production of extracellular polysaccharides, both in new biofilms and in preexisting biofilms on titanium. Our results indicate that HACC may serve as a new antibacterial agent to inhibit biofilm formation and prevent orthopedic implant-related infections.
Collapse
|