1
|
Colloidal properties of self-assembled cationic hyperbranched-polyethyleneimine covered poly lactide-co-glycolide nanoparticles: Exploring modified release and cell delivery of methotrexate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
2
|
Yan R, Liu X, Xiong J, Feng Q, Xu J, Wang H, Xiao K. pH-Responsive hyperbranched polypeptides based on Schiff bases as drug carriers for reducing toxicity of chemotherapy. RSC Adv 2020; 10:13889-13899. [PMID: 35492972 PMCID: PMC9051653 DOI: 10.1039/d0ra01241f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023] Open
Abstract
Polymeric micelles have great potential in drug delivery systems because of their multifunctional adjustability, excellent stability, and biocompatibility. To further increase the drug loading efficiency and controlled release ability, a pH-responsive hyperbranched copolymer methoxy poly(ethylene glycol)-b-polyethyleneimine-poly(Nε-Cbz-l-lysine) (MPEG-PEI-PBLL) was synthesized successfully. MPEG-PEI-NH2 was synthesized to initiate the ring-opening polymerization of benzyloxycarbonyl substituted lysine N-carboxyanhydride (Z-lys NCA). The introduction of Schiff bases in the polymer make it possible to respond to the variation of pH values, which cleaved at pH 5.0 while stable at pH 7.4. As the polymer was amphiphilic, MPEG-PEI-PBLL could self-assemble into micelles. Owing to the introduction of PEI, which make the copolymer hyperbranched, the pH-responsive micelles could efficiently encapsulate theranostic agents, such as doxorubicin (DOX) for chemotherapy and NIRF dye DiD for in vivo near-infrared (NIR) imaging. The drug delivery system prolonged the drug circulation time in blood and allowed the drug accumulate effectively at the tumor site. Following the guidance, the DOX was applied in chemotherapy to achieve cancer therapeutic efficiency. All the results demonstrate that the polymer micelles have great potential for cancer theranostics.
Collapse
Affiliation(s)
- Rui Yan
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Xinyi Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 China
| | - Junjie Xiong
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 China
| | - Qiyi Feng
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 China
| | - Junhuai Xu
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 China
| |
Collapse
|
3
|
Synthesis, characterization, and morphology study of coco peat-grafted-poly(acrylic acid)/NPK slow release fertilizer hydrogel. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1952-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Engin AB, Engin A. Nanoantibiotics: A Novel Rational Approach to Antibiotic Resistant Infections. Curr Drug Metab 2019; 20:720-741. [DOI: 10.2174/1389200220666190806142835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023]
Abstract
Background:The main drawbacks for using conventional antimicrobial agents are the development of multiple drug resistance due to the use of high concentrations of antibiotics for extended periods. This vicious cycle often generates complications of persistent infections, and intolerable antibiotic toxicity. The problem is that while all new discovered antimicrobials are effective and promising, they remain as only short-term solutions to the overall challenge of drug-resistant bacteria.Objective:Recently, nanoantibiotics (nAbts) have been of tremendous interest in overcoming the drug resistance developed by several pathogenic microorganisms against most of the commonly used antibiotics. Compared with free antibiotic at the same concentration, drug delivered via a nanoparticle carrier has a much more prominent inhibitory effect on bacterial growth, and drug toxicity, along with prolonged drug release. Additionally, multiple drugs or antimicrobials can be packaged within the same smart polymer which can be designed with stimuli-responsive linkers. These stimuli-responsive nAbts open up the possibility of creating multipurpose and targeted antimicrobials. Biofilm formation still remains the leading cause of conventional antibiotic treatment failure. In contrast to conventional antibiotics nAbts easily penetrate into the biofilm, and selectively target biofilm matrix constituents through the introduction of bacteria specific ligands. In this context, various nanoparticles can be stabilized and functionalized with conventional antibiotics. These composites have a largely enhanced bactericidal efficiency compared to the free antibiotic.Conclusion:Nanoparticle-based carriers deliver antibiotics with better biofilm penetration and lower toxicity, thus combating bacterial resistance. However, the successful adaptation of nanoformulations to clinical practice involves a detailed assessment of their safety profiles and potential immunotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Li J, Chen L, Yan L, Gu Z, Chen Z, Zhang A, Zhao F. A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C 82(OH) 22. Molecules 2019; 24:molecules24132387. [PMID: 31252662 PMCID: PMC6650816 DOI: 10.3390/molecules24132387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Cancer remains a major threat to human health worldwide. Cytotoxicity has imposed restrictions on the conventional cytotoxic drug-based chemotherapy. The rapidly-developing nanomedicine has shown great promise in revolutionizing chemotherapy with improved efficiency and reduced toxicity. Gd@C82(OH)22, a novel endohedral metallofullerenol, was first reported by our research group to suppress tumor growth and metastasis efficiently without obvious toxicity. Gd@C82(OH)22 imprisons tumors by facilitating the formation of surrounding fibrous layers which is different from chemotherapeutics that poison tumor cells. In this review, the authors first reported the antineoplastic activity of metallofullerenol Gd@C82(OH)22 followed by further discussions on its new anti-cancer molecular mechanism—tumor encaging. On this basis, the unparalleled advantages of nanomedicine in the future drug design are discussed. The unique interaction modes of Gd@C82(OH)22 with specific targeted biomolecules may shed light on a new avenue for drug design. Depending on the surface characteristics of target biomolecules, nanomedicine, just like a transformable and dynamic key, can self-assemble into suitable shapes to match several locks for the thermodynamic stability, suggesting the target-tailoring ability of nanomedicine.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Linlin Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhaofang Chen
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
6
|
Guo S, Liu G, Frazer DM, Liu T, You L, Xu J, Wang Y, Anderson GJ, Nie G. Polymeric Nanoparticles Enhance the Ability of Deferoxamine To Deplete Hepatic and Systemic Iron. NANO LETTERS 2018; 18:5782-5790. [PMID: 30085676 DOI: 10.1021/acs.nanolett.8b02428] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chelators are commonly used to remove excess iron in iron-loading disorders. Deferoxamine (DFO) is an effective and safe iron chelator but an onerous parenteral administration regimen limits its routine use. To develop more effective methods for delivering iron chelators, we examined whether amphiphilic copolymer nanoparticles (NPs) could deliver DFO more efficiently. Physical characterization showed a uniform and stable preparation of DFO nanoparticles (DFO-NPs) with an average diameter of 105.3 nm. In macrophage (RAW264.7) and hepatoma (HepG2) cell lines, DFO-NPs proved more effective at depleting iron than free DFO. In wild-type mice previously loaded with iron dextran, as well as Hbb th3 /+ and Hfe -/- mice, which are predisposed to iron loading, DFO-NPs (40 mg/kg DFO; alternate days; 4 weeks) reduced hepatic iron levels by 71, 46, and 37%, respectively, whereas the equivalent values for free DFO were 53, 7, and 15%. Staining for tissue iron and urinary iron excretion confirmed these findings. Pharmacokinetic analysis showed that NP-encapsulated DFO had a much longer elimination half-life than free DFO (48.63 ± 28.80 vs 1.46 ± 0.59 h), and that DFO-NPs could be readily taken up by tissues and in particular by hepatic Kupffer cells. In vitro, DFO-NPs were less toxic to several cell lines than free DFO, and in vivo they did not elicit any specific inflammatory responses or histological changes. Our results suggest that using a nanoformulation of DFO is a valuable strategy for improving its efficiency as an iron chelator and that this could broaden its clinical use for the treatment of human iron overload disorders.
Collapse
Affiliation(s)
- Shanshan Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
- Iron Metabolism Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Queensland 4006 , Australia
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Gang Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
| | - David M Frazer
- Iron Metabolism Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Queensland 4006 , Australia
| | - Tianqing Liu
- Iron Metabolism Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Queensland 4006 , Australia
| | - Linhao You
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
| | - Jiaqi Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yongwei Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Gregory J Anderson
- Iron Metabolism Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Queensland 4006 , Australia
| | - Guangjun Nie
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
7
|
Tang H, Zhang J, Tang J, Shen Y, Guo W, Zhou M, Wang R, Jiang N, Gan Z, Yu Q. Tumor Specific and Renal Excretable Star-like Triblock Polymer–Doxorubicin Conjugates for Safe and Efficient Anticancer Therapy. Biomacromolecules 2018; 19:2849-2862. [DOI: 10.1021/acs.biomac.8b00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Jiajing Zhang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Chinese Ministry of Health, Beijing 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fu S, Yang G, Wang J, Wang X, Cheng X, Zha Q, Tang R. pH-sensitive poly(ortho ester urethanes) copolymers with controlled degradation kinetic: Synthesis, characterization, and in vitro evaluation as drug carriers. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Li Q, Cai T, Huang Y, Xia X, Cole SPC, Cai Y. A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs. NANOMATERIALS 2017; 7:nano7060122. [PMID: 28554993 PMCID: PMC5485769 DOI: 10.3390/nano7060122] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 01/17/2023]
Abstract
Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid–polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core–shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs’, PNPs’, and PLNs’ structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system.
Collapse
Affiliation(s)
- Qianwen Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, China.
| | - Yinghong Huang
- GuangzhouGuoyu Pharmaceutical Technology Co., Ltd., Guangzhou 510632, China.
| | - Xi Xia
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
- Cancer Research Institute of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Dos Santos-Silva AM, de Caland LB, de S L Oliveira ALC, de Araújo-Júnior RF, Fernandes-Pedrosa MF, Cornélio AM, da Silva-Júnior AA. Designing structural features of novel benznidazole-loaded cationic nanoparticles for inducing slow drug release and improvement of biological efficacy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:978-987. [PMID: 28576075 DOI: 10.1016/j.msec.2017.04.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/10/2017] [Indexed: 01/05/2023]
Abstract
Several polymers have been investigated for producing cationic nanocarriers due to their ability to cross biological barriers. Polycations such as copolymers of polymethylmethacrylate are highlighted due to their biocompatibility and low toxicity. The purpose of this study was to produce small and narrow-sized cationic nanoparticles able to overcome cell membranes and improve the biological activity of benznidazole (BNZ) in normal and cancer cells. The effect of composition and procedure parameters of the used emulsification-solvent evaporation method were controlled for this purpose. The experimental approach included particle size, polydispersity index, zeta potential, atomic force microscopy (AFM), attenuated total reflectance Fourier transforms infrared spectroscopy (ATR- FTIR), drug loading efficiency, and physical stability assays. Spherical and stable (over six weeks) sub 150nm cationic nanoparticles were optimized, with the encapsulation efficiency >80%. The used drug/copolymer ratio modulated the slow drug release, which was adjusted by the parabolic diffusion mathematical model. In addition, the ability of the cationic nanoparticles improve the BNZ uptake in the normal kidney cells (HEK 293) and the human colorectal cancer cells (HT 29) demonstrate that this novel BNZ-loaded cationic has great potential as a chemotherapeutic application of benznidazole.
Collapse
Affiliation(s)
- Alaine M Dos Santos-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Lilia B de Caland
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | | | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Alianda Maira Cornélio
- Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, - RN, Brazil
| | - Arnóbio A da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
11
|
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98:748-776. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Arooj Kanwal
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
12
|
Merlot AM, Sahni S, Lane DJR, Fordham AM, Pantarat N, Hibbs DE, Richardson V, Doddareddy MR, Ong JA, Huang MLH, Richardson DR, Kalinowski DS. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget 2016; 6:10374-98. [PMID: 25848850 PMCID: PMC4496362 DOI: 10.18632/oncotarget.3606] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022] Open
Abstract
Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) demonstrates potent anti-cancer activity. We previously demonstrated that 14C-Dp44mT enters and targets cells through a carrier/receptor-mediated uptake process. Despite structural similarity, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and pyridoxal isonicotinoyl hydrazone (PIH) enter cells via passive diffusion. Considering albumin alters the uptake of many drugs, we examined the effect of human serum albumin (HSA) on the cellular uptake of Dp44mT, Bp4eT and PIH. Chelator-HSA binding studies demonstrated the following order of relative affinity: Bp4eT≈PIH>Dp44mT. Interestingly, HSA decreased Bp4eT and PIH uptake, potentially due to its high affinity for the ligands. In contrast, HSA markedly stimulated Dp44mT uptake by cells, with two saturable uptake mechanisms identified. The first mechanism saturated at 5-10 μM (Bmax:1.20±0.04 × 107 molecules/cell; Kd:33±3 μM) and was consistent with a previously identified Dp44mT receptor/carrier. The second mechanism was of lower affinity, but higher capacity (Bmax:2.90±0.12 × 107 molecules/cell; Kd:65±6 μM), becoming saturated at 100 μM and was only evident in the presence of HSA. This second saturable Dp44mT uptake process was inhibited by excess HSA and had characteristics suggesting it was mediated by a specific binding site. Significantly, the HSA-mediated increase in the targeting of Dp44mT to cancer cells potentiated apoptosis and could be important for enhancing efficacy.
Collapse
Affiliation(s)
- Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ashleigh M Fordham
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Namfon Pantarat
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - David E Hibbs
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | | | - Jennifer A Ong
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Michael L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Pegylated folate and peptide-decorated graphene oxide nanovehicle for in vivo targeted delivery of anticancer drugs and therapeutic self-monitoring. Biosens Bioelectron 2016; 80:519-524. [PMID: 26890827 DOI: 10.1016/j.bios.2016.02.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 01/15/2023]
Abstract
This work reports a graphene oxide-based nanovehicle with conjugation of pegylated folate for targeted delivery of anticancer drugs and fluorescein-labeled peptide for therapeutic self-monitoring in vitro and in vivo. The nanovehicle could absorb hydrophobic and aromatic drug molecules with high loading capacity and efficiency of more than 1.7 mg mg(-1) and 90%, respectively. MTT and flow cytometric assays demonstrated that the drug-loaded nanovehicle could specifically transport and release the drugs into the folate receptor high-expressed cancer cells, which ensured a high therapeutic efficiency to cancer cells and prevented the injury to normal cells. Moreover, confocal fluorescence imaging confirmed that the drug-induced cancer cell death could be visualized with the light-up fluorescence of fluorescein activated by caspase-3. The targeted delivery of drug and self-evaluation of therapeutic efficacy were further successfully realized by living imaging in tumor-bearing mice, which broaden the applications of this theranostic system in vivo and may offer new opportunities for precise cancer treatment.
Collapse
|
14
|
Fischer B, Kryeziu K, Kallus S, Heffeter P, Berger W, Kowol CR, Keppler BK. Nanoformulations of anticancer thiosemicarbazones to reduce methemoglobin formation and improve anticancer activity. RSC Adv 2016. [DOI: 10.1039/c6ra07659a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Triapine and two derivatives were encapsulated into polymeric nanoparticles as well as liposomes. The most stable formulation showed strongly reduced methemoglobin formation and improved anticancer activity.
Collapse
Affiliation(s)
- Britta Fischer
- Institute of Inorganic Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - Kushtrim Kryeziu
- Institute of Cancer Research and Comprehensive Cancer Center
- Medical University Vienna
- 1090 Vienna
- Austria
| | - Sebastian Kallus
- Institute of Inorganic Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center
- Medical University Vienna
- 1090 Vienna
- Austria
- Research Platform “Translational Cancer Therapy Research”
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center
- Medical University Vienna
- 1090 Vienna
- Austria
- Research Platform “Translational Cancer Therapy Research”
| | - Christian R. Kowol
- Institute of Inorganic Chemistry
- University of Vienna
- 1090 Vienna
- Austria
- Research Platform “Translational Cancer Therapy Research”
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry
- University of Vienna
- 1090 Vienna
- Austria
- Research Platform “Translational Cancer Therapy Research”
| |
Collapse
|
15
|
Dumoga S, Dey N, Kaur A, Singh S, Mishra AK, Kakkar D. Novel biotin-functionalized lipidic nanocarriers for encapsulating BpT and Bp4eT iron chelators: evaluation of potential anti-tumour efficacy by in vitro, in vivo and pharmacokinetic studies in A549 mice models. RSC Adv 2016. [DOI: 10.1039/c6ra03079c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This work proposes a novel strategy for delivery of iron chelators to the tumour cells which is exemplified in A549 mice models by using lipidic nanocarriers and introducing biotin based targeting.
Collapse
Affiliation(s)
- Shweta Dumoga
- Institute of Nuclear Medicine and Allied Sciences
- Timarpur
- Delhi-110054
- Department of Chemistry
- University of Delhi
| | - Namit Dey
- Institute of Nuclear Medicine and Allied Sciences
- Timarpur
- Delhi-110054
| | - Anivind Kaur
- Institute of Nuclear Medicine and Allied Sciences
- Timarpur
- Delhi-110054
| | | | - Anil K. Mishra
- Institute of Nuclear Medicine and Allied Sciences
- Timarpur
- Delhi-110054
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences
- Timarpur
- Delhi-110054
| |
Collapse
|
16
|
Tondwal R, Singh M. Effect of increasing alkyl chain of 1st tier dendrimers on binding and release activities of methotrexate drug: An in vitro study. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Potůčková E, Roh J, Macháček M, Sahni S, Stariat J, Šesták V, Jansová H, Hašková P, Jirkovská A, Vávrová K, Kovaříková P, Kalinowski DS, Richardson DR, Šimůnek T. In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites. PLoS One 2015; 10:e0139929. [PMID: 26460540 PMCID: PMC4604124 DOI: 10.1371/journal.pone.0139929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/19/2015] [Indexed: 12/01/2022] Open
Abstract
Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma), non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts) and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1) promote the redox cycling of iron; (2) bind and mobilize iron from labile intracellular pools; and (3) prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents.
Collapse
Affiliation(s)
- Eliška Potůčková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Miloslav Macháček
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Bosch Institute and Department of Pathology, University of Sydney, Sydney, Australia
| | - Ján Stariat
- Department of Pharmaceutical Chemistry and Drug Analysis, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Vít Šesták
- Department of Pharmaceutical Chemistry and Drug Analysis, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Hana Jansová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Pavlína Hašková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Anna Jirkovská
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Petra Kovaříková
- Department of Pharmaceutical Chemistry and Drug Analysis, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Danuta S. Kalinowski
- Molecular Pharmacology and Pathology Program, Bosch Institute and Department of Pathology, University of Sydney, Sydney, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, Bosch Institute and Department of Pathology, University of Sydney, Sydney, Australia
- * E-mail: (TS); (DRR)
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
- * E-mail: (TS); (DRR)
| |
Collapse
|
18
|
Kakkar D, Dumoga S, Kumar R, Chuttani K, Mishra AK. PEGylated solid lipid nanoparticles: design, methotrexate loading and biological evaluation in animal models. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00104h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of pegylated SLNs for efficient entrapment and delivery of methotrexate at tumour sites in order to overcome its bioavailability and blood retention issues.
Collapse
Affiliation(s)
- Dipti Kakkar
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Shweta Dumoga
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Rohit Kumar
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Krishna Chuttani
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- India
| |
Collapse
|
19
|
Zhao L, Li H, Shi Y, Wang G, Liu L, Su C, Su R. Nanoparticles inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery via cell surface-related GRP78. Int J Nanomedicine 2014; 10:245-56. [PMID: 25565817 PMCID: PMC4283987 DOI: 10.2147/ijn.s74868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nanoparticles (NPs) which target specific agents could effectively recognize the target cells and increase the stability of chemical agents by encapsulation. As such, NPs have been widely used in cancer treatment research. Recently, over 90% of treatment failure cases in patients with metastatic cancer were attributed to resistance to chemotherapy. Surface-exposed glucose-regulated protein of 78 kDa (GRP78) is expressed highly on many tumor cell surfaces in many human cancers and is related to the regulation of invasion and metastasis. Herein, we report that NPs conjugated with antibody against GRP78 (mAb GRP78-NPs) inhibit the adhesion, invasion, and metastasis of hepatocellular carcinoma (HCC) and promote drug delivery of 5-fluorouracil into GRP78 high-expressed human hepatocellular carcinoma cells. Our new findings suggest that mAb GRP78-NPs could enhance drug accumulation by effectively transporting NPs into cell surface GRP78-overexpressed human hepatocellular carcinoma cells and then inhibit cell proliferation and viability and induce cell apoptosis by regulating caspase-3. In brief, mAb GRP78-NPs effectively inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery.
Collapse
Affiliation(s)
- Liang Zhao
- School of Pharmacy, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Hongdan Li
- Central Laboratory of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Yijie Shi
- School of Pharmacy, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Guan Wang
- Central Laboratory of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Liwei Liu
- School of Pharmacy, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Chang Su
- School of Veterinary Medicine, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Rongjian Su
- Central Laboratory of Liaoning Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
20
|
Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials 2014; 35:4185-94. [DOI: 10.1016/j.biomaterials.2014.01.044] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/20/2014] [Indexed: 01/30/2023]
|
21
|
Wei K, Peng X, Zou F. Folate-decorated PEG–PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery. Int J Pharm 2014; 464:225-33. [DOI: 10.1016/j.ijpharm.2013.12.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 02/07/2023]
|
22
|
Han Q, Jiang Y, Jin C, Cheng S, Wang X, Wang X, Wang B. Hyperbranched polyester nanorods with pyrrolo[2,1-a]isoquinoline end groups for fluorescent recognition of Fe3+. Polym Chem 2014. [DOI: 10.1039/c4py00787e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel hyperbranched polyester nanorods HBPE-CICA6 and HBPE-CICA2 were obtained and used to establish a highly sensitive fluorescent sensor for Fe3+ ions.
Collapse
Affiliation(s)
- Qiaorong Han
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, China
| | - Yuliang Jiang
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, China
| | - Can Jin
- Jiangsu Provincial Key Laboratory of Biomass Energy and Materials
- National Engineering Laboratory for Biomass Chemical Utilization
- Institute of Chemical Industry of Forest Products
- CAF
- Nanjing 210042, China
| | - Shanshan Cheng
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, China
| | - Xiaoxia Wang
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, China
| | - Xiangyu Wang
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, China
| | - Bingxiang Wang
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, China
| |
Collapse
|
23
|
Dramou P, Zuo P, He H, Pham-Huy LA, Zou W, Xiao D, Pham-Huy C. Development of novel amphiphilic magnetic molecularly imprinted polymers compatible with biological fluids for solid phase extraction and physicochemical behavior study. J Chromatogr A 2013; 1317:110-20. [DOI: 10.1016/j.chroma.2013.07.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 11/26/2022]
|
24
|
Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy. Sci Rep 2013; 3:3036. [PMID: 24154493 PMCID: PMC3807111 DOI: 10.1038/srep03036] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/24/2013] [Indexed: 11/08/2022] Open
Abstract
Multifunctional nanoparticles as theranostic tools hold great potential for its unique and efficient way to visualize the process of disease treatment. However, the toxicity of conventional fluorescent labels and difficulty of functionalization limit their widespread use. Recently, a number of amino-rich polymers have demonstrated high luminescent fluorescence but rarely showed potential for in vivo imaging due to their blue fluorescence. Here, a general route has been found to construct polymer-based multifunctional nanoparticles for combined imaging and drug delivering. The weak fluorescent polyethyleneimine (PEI) has been conjugated with hydrophobic polylactide as the amphiphilic PEI for construction of nanoparticles which showed bright and multicolor fluorescence with high drug loading capacity. The paclitaxel-loaded nanoparticles showed significant therapy effect in contrast to the free paclitaxel. Meanwhile, fluorescence imaging of the nanoparticles showed accumulation around tumor. These results demonstrate a new type of polymer-based multifunctional nanoparticles for imaging-guided drug delivery.
Collapse
|
25
|
Istratov VV, Tarasyuk VT, Vasnev VA, Borisova NA. Branched surface-active polylactides. POLYMER SCIENCE SERIES B 2013. [DOI: 10.1134/s1560090413040039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials 2013; 34:3523-33. [DOI: 10.1016/j.biomaterials.2013.01.083] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/24/2013] [Indexed: 12/31/2022]
|
27
|
Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 2013; 46:622-31. [PMID: 22891796 DOI: 10.1021/ar300031y] [Citation(s) in RCA: 517] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although a growing number of innovations have emerged in the fields of nanobiotechnology and nanomedicine, new engineered nanomaterials (ENMs) with novel physicochemical properties are posing novel challenges to understand the full spectrum of interactions at the nano-bio interface. Because these could include potentially hazardous interactions, researchers need a comprehensive understanding of toxicological properties of nanomaterials and their safer design. In depth research is needed to understand how nanomaterial properties influence bioavailability, transport, fate, cellular uptake, and catalysis of injurious biological responses. Toxicity of ENMs differ with their size and surface properties, and those connections hold true across a spectrum of in vitro to in vivo nano-bio interfaces. In addition, the in vitro results provide a basis for modeling the biokinetics and in vivo behavior of ENMs. Nonetheless, we must use caution in interpreting in vitro toxicity results too literally because of dosimetry differences between in vitro and in vivo systems as well the increased complexity of an in vivo environment. In this Account, we describe the impact of ENM physicochemical properties on cellular bioprocessing based on the research performed in our groups. Organic, inorganic, and hybrid ENMs can be produced in various sizes, shapes and surface modifications and a range of tunable compositions that can be dynamically modified under different biological and environmental conditions. Accordingly, we cover how ENM chemical properties such as hydrophobicity and hydrophilicity, material composition, surface functionalization and charge, dispersal state, and adsorption of proteins on the surface determine ENM cellular uptake, intracellular biotransformation, and bioelimination versus bioaccumulation. We review how physical properties such as size, aspect ratio, and surface area of ENMs influence the interactions of these materials with biological systems, thereby affecting their hazard potential. We discuss our actual experimental findings and show how these properties can be tuned to control the uptake, biotransformation, fate, and hazard of ENMs. This Account provides specific information about ENM biological behavior and safety issues. This research also assists the development of safer nanotherapeutics and guides the design of new materials that can execute novel functions at the nano-bio interface.
Collapse
Affiliation(s)
- Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Huan Meng
- Division of NanoMedicine, David Geffen School of Medicine, UC Center for the Environmental Impact of Nanotechnology, UCLA Center for Nano Biology and Predictive toxicology, California Nanosystem Institute, University of California, Los Angeles, California 90095, United States
| | - Tian Xia
- Division of NanoMedicine, David Geffen School of Medicine, UC Center for the Environmental Impact of Nanotechnology, UCLA Center for Nano Biology and Predictive toxicology, California Nanosystem Institute, University of California, Los Angeles, California 90095, United States
| | - Andre Nel
- Division of NanoMedicine, David Geffen School of Medicine, UC Center for the Environmental Impact of Nanotechnology, UCLA Center for Nano Biology and Predictive toxicology, California Nanosystem Institute, University of California, Los Angeles, California 90095, United States
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
28
|
Tian X, Zhu M, Nie G. How can nanotechnology help membrane vesicle-based cancer immunotherapy development? Hum Vaccin Immunother 2012; 9:222-5. [PMID: 23108359 DOI: 10.4161/hv.22130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Exosomes are nanosized vesicles originating from endosomal compartments and secreted by most living cells. In the past decade, exosomes have emerged as potent tools for cancer immunotherapy due to their important roles in modulation of immune responses, and promising results have been achieved in exosome-based immunotherapy. The recent rapid progress of nanotechnology, especially on tailored design of nanocarriers for drug delivery based on both passive and active targeting strategies, sheds light on re-engineering native membrane vesicles for enhanced immune regulation and therapy. Applications of nanotechnology toolkits might provide new opportunity not only for value-added therapeutic or diagnostic strategies based on exosomes in cancer immunotherapy, but also new insights for biogenesis and biological relevance of membrane vesicles. This commentary focuses on the recent development and limitations of using exosomes in cancer immunotherapy and our perspectives on how nanomaterials with potential immune regulatory effects could be introduced into exosome-based immunotherapy.
Collapse
Affiliation(s)
- Xin Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, PR China
| | | | | |
Collapse
|
29
|
Ding GB, Liu HY, Lv YY, Liu XF, Guo Y, Sun CK, Xu L. Enhanced In Vitro Antitumor Efficacy and Strong Anti-Cell-Migration Activity of a Hydroxycamptothecin-Encapsulated Magnetic Nanovehicle. Chemistry 2012; 18:14037-46. [DOI: 10.1002/chem.201200765] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/07/2012] [Indexed: 12/13/2022]
|
30
|
Construction of amphiphilic copolymer nanoparticles based on hyperbranched Poly (Amine-Ester) and 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphoethanolamine as drug carriers for cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:945-54. [DOI: 10.1016/j.nano.2011.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 11/22/2022]
|
31
|
Xu Q, Liu Y, Su S, Li W, Chen C, Wu Y. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles. Biomaterials 2011; 33:1627-39. [PMID: 22118775 DOI: 10.1016/j.biomaterials.2011.11.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 11/05/2011] [Indexed: 12/13/2022]
Abstract
Targeted delivery strategies are becoming increasingly important. Herein, a novel hyperbranched amphiphilic poly[(amine-ester)-co-(D,L-lactide)]/1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer (HPAE-co-PLA/DPPE) with RGD peptide (cRGDfK) and transferrin (Tf) on the periphery was synthesized and used to prepare paclitaxel-loaded nanoparticles (NPs) for dual-targeting chemotherapy. These NPs show satisfactory size distribution, high encapsulated efficiency and a pH-dependent release profile. The intrinsic fluorescence of the hyperbranched copolymer renders the detection and tracking of NPs in vitro and in vivo conveniently. In vitro cytotoxicity studies proved that the presence of cRGDfK enhanced the cytotoxic efficiency by 10 folds in α(ν)β(3) integrin over-expressed human umbilical vein endothelial cells, while Tf improved cytotoxicity by 2 folds in Tf receptor over-expressed human cervical carcinoma cells. The drug-loaded NPs can be efficiently transported into the vascular endothelial cells and the target tumor cells. These results indicate that the cRGDfK and Tf decorated HPAE-co-PLA/DPPE could deliver chemotherapies specifically inside the cell via receptor-mediated endocytosis with greater efficacy. Therefore, such a fluorescent nanocarrier prepared from non-cytotoxic and biodegradable polymers is promising for drug delivery in tumor therapy.
Collapse
Affiliation(s)
- Qing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | | | | | | | | | | |
Collapse
|
32
|
Nanaki SG, Pantopoulos K, Bikiaris DN. Synthesis of biocompatible poly(ɛ-caprolactone)- block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles. Int J Nanomedicine 2011; 6:2981-95. [PMID: 22162656 PMCID: PMC3230566 DOI: 10.2147/ijn.s26568] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers.
Collapse
Affiliation(s)
- Stavroula G Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | | |
Collapse
|
33
|
Zhou Q, Guo X, Chen T, Zhang Z, Shao S, Luo C, Li J, Zhou S. Target-Specific Cellular Uptake of Folate-Decorated Biodegradable Polymer Micelles. J Phys Chem B 2011; 115:12662-70. [DOI: 10.1021/jp207951e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qi Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, and ‡School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, and ‡School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Tao Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, and ‡School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Zhao Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, and ‡School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Shijun Shao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, and ‡School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Chao Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, and ‡School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jinrong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, and ‡School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, and ‡School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
34
|
Debrassi A, Bürger C, Rodrigues CA, Nedelko N, Ślawska-Waniewska A, Dłużewski P, Sobczak K, Greneche JM. Synthesis, characterization and in vitro drug release of magnetic N-benzyl-O-carboxymethylchitosan nanoparticles loaded with indomethacin. Acta Biomater 2011; 7:3078-85. [PMID: 21601660 DOI: 10.1016/j.actbio.2011.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/20/2011] [Accepted: 05/04/2011] [Indexed: 01/10/2023]
Abstract
Magnetic N-benzyl-O-carboxymethylchitosan nanoparticles were synthesized through incorporation and in situ methods and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and magnetization measurements. Indomethacin was incorporated into the nanoparticles via the solvent evaporation method. The indomethacin-loaded magnetic nanoparticles were characterized by the same techniques, and also by transmission electron microscopy. The nanoparticles containing the polymer showed a drug loading efficiency of between 60.8% and 74.8%, and the magnetic properties were not significantly affected by incorporation of the drug. The in vitro drug release study was carried out in simulated body fluid, pH 7.4 at 37°C. The profiles showed an initial fast release, which became slower as time progressed. The percentage of drug released after 5 h was between 60% and 90%, and the best fitting mathematical model for drug release was the Korsmeyer-Peppas model, indicating a Fickian diffusion mechanism.
Collapse
Affiliation(s)
- Aline Debrassi
- NIQFAR CCS, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, Chen H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 2011; 32:8281-90. [PMID: 21807411 DOI: 10.1016/j.biomaterials.2011.07.032] [Citation(s) in RCA: 467] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/11/2011] [Indexed: 01/19/2023]
Abstract
The use of single chemotherapeutic drug has shown some limitations in anti-tumor treatment, such as development of drug resistance, high toxicity and limited regime of clinical uses. The combination of two or more therapeutic drugs is feasible means to overcome the limitations. Co-delivery strategy has been proposed to minimize the amount of each drug and to achieve the synergistic effect for cancer therapies. Attempts have been made to deliver chemotherapeutic drugs simultaneously using drug carriers, such as micelles, liposomes, and inorganic nanoparticles (NPs). Here we reported core-shell NPs that were doubly emulsified from an amphiphilic copolymer methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA). These NPs offered advantages over other nanocarriers, as they were easy to fabricate by improved double emulsion method, biocompatible, and showed high loading efficacy. More importantly, these NPs could co-deliver hydrophilic doxorubicin (DOX) and hydrophobic paclitaxel (TAX). The drug-loaded NPs possessed a better polydispersity, indicating that they are more readily subject to controlled size distribution. Studies on drug release and cellular uptake of the co-delivery system demonstrated that both drugs were effectively taken up by the cells and released simultaneously. Furthermore, the co-delivery nanocarrier suppressed tumor cells growth more efficiently than the delivery of either DOX or TAX at the same concentrations, indicating a synergistic effect. Moreover, the NPs loading drugs with a DOX/TAX concentration ratio of 2:1 showed the highest anti-tumor activity to three different types of tumor cells. This nanocarrier might have important potential in clinical implications for co-delivery of multiple anti-tumor drugs with different properties.
Collapse
Affiliation(s)
- Hai Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1322-37. [PMID: 21520409 DOI: 10.1002/smll.201100001] [Citation(s) in RCA: 803] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/15/2011] [Indexed: 05/20/2023]
Abstract
The interactions of nanoparticles with the soft surfaces of biological systems like cells play key roles in executing their biomedical functions and in toxicity. The discovery or design of new biomedical functions, or the prediction of the toxicological consequences of nanoparticles in vivo, first require knowledge of the interplay processes of the nanoparticles with the target cells. This article focusses on the cellular uptake, location and translocation, and any biological consequences, such as cytotoxicity, of the most widely studied and used nanoparticles, such as carbon-based nanoparticles, metallic nanoparticles, and quantum dots. The relevance of the size and shape, composition, charge, and surface chemistry of the nanoparticles in cells is considered. The intracellular uptake pathways of the nanoparticles and the cellular responses, with potential signaling pathways activated by nanoparticle interactions, are also discussed.
Collapse
Affiliation(s)
- Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
37
|
Lin IC, Liang M, Liu TY, Ziora ZM, Monteiro MJ, Toth I. Interaction of Densely Polymer-Coated Gold Nanoparticles with Epithelial Caco-2 Monolayers. Biomacromolecules 2011; 12:1339-48. [DOI: 10.1021/bm200116z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- I-Chun Lin
- School of Chemistry and Molecular Bioscience, ‡School of Pharmacy, and §Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Mingtao Liang
- School of Chemistry and Molecular Bioscience, ‡School of Pharmacy, and §Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Tzu-Yu Liu
- School of Chemistry and Molecular Bioscience, ‡School of Pharmacy, and §Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Zyta M. Ziora
- School of Chemistry and Molecular Bioscience, ‡School of Pharmacy, and §Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Michael J. Monteiro
- School of Chemistry and Molecular Bioscience, ‡School of Pharmacy, and §Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, ‡School of Pharmacy, and §Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|