1
|
Du J, Liu X, Yarema KJ, Jia X. Glycoengineering human neural stem cells (hNSCs) for adhesion improvement using a novel thiol-modified N-acetylmannosamine (ManNAc) analog. BIOMATERIALS ADVANCES 2022; 134:112675. [PMID: 35599100 PMCID: PMC9300770 DOI: 10.1016/j.msec.2022.112675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
This study sets the stage for the therapeutic use of Ac5ManNTProp, an N-acetylmannosamine (ManNAc) analog that installs thiol-modified sialoglycans onto the surfaces of human neural stem cells (hNSC). First, we compared hNSC adhesion to the extracellular matrix (ECM) proteins laminin, fibronectin, and collagen and found preferential adhesion and concomitant changes to cell morphology and cell spreading for Ac5ManNTProp-treated cells to laminin, compared to fibronectin where there was a modest response, and collagen where there was no observable increase. PCR array transcript analysis identified several classes of cell adhesion molecules that responded to combined Ac5ManNTProp treatment and hNSC adhesion to laminin. Of these, we focused on integrin α6β1 expression, which was most strongly upregulated in analog-treated cells incubated on laminin. We also characterized downstream responses including vinculin display as well as the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-related kinase (ERK). In these experiments, Ac5ManNTProp more strongly induced all tested biological endpoints compared to Ac5ManNTGc, showing that the single methylene unit that structurally separates the two analogs finely tunes biological responses. Together, the concerted modulation of multiple pro-regenerative activities through Ac5ManNTProp treatment, in concert with crosstalk with ECM components, lays a foundation for using our metabolic glycoengineering approach to treat neurological disorders by favorably modulating endpoints that contribute to the viability of transplanted NSCs.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205,Translational Cell and Tissue Engineering Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Jo SB, Park CY, Kang HK, Jung SY, Min BM. The laminin-211-derived PPFEGCIWN motif accelerates wound reepithelialization and increases phospho-FAK-Tyr397 and Rac1-GTP levels in a rat excisional wound splinting model. J Tissue Eng Regen Med 2020; 14:1100-1112. [PMID: 32592615 DOI: 10.1002/term.3084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022]
Abstract
We previously reported that the PPFEGCIWN motif (Ln2-LG3-P2-DN3), residues 2678-2686 of the human laminin α2 chain, promotes cell attachment of normal human epidermal keratinocytes (NHEKs) and dermal fibroblasts (NHDFs); however, its in vivo effects on cutaneous wound healing have not yet been examined. In this study, we sought to determine whether Ln2-LG3-P2-DN3 could promote full-thickness cutaneous wound healing by accelerating wound reepithelialization and wound closure in vivo. Ln2-LG3-P2-DN3 had significantly higher cell attachment and spreading activities than vehicle or scrambled peptide control in both NHEKs and NHDFs in vitro. The wound area was significantly smaller in rats treated with Ln2-LG3-P2-DN3 than in those treated with vehicle or scrambled peptide in the early phase of wound healing. Furthermore, Ln2-LG3-P2-DN3 significantly accelerated wound reepithelialization relative to vehicle or scrambled peptide and promoted FAK-Tyr397 phosphorylation and Rac1 activation. Collectively, our findings suggest that the PPFEGCIWN motif has potential as a therapeutic agent for cutaneous regeneration via the acceleration of wound reepithelization and wound closure.
Collapse
Affiliation(s)
- Seung Bin Jo
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, South Korea
| | - Cho Yeon Park
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, South Korea
| | - Hyun Ki Kang
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, South Korea
| | - Sung Youn Jung
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, South Korea
| | - Byung-Moo Min
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, South Korea
| |
Collapse
|
3
|
Hamsici S, Cinar G, Celebioglu A, Uyar T, Tekinay AB, Guler MO. Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth. J Mater Chem B 2016; 5:517-524. [PMID: 32263668 DOI: 10.1039/c6tb02441f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Guidance of neurite extension and establishment of neural connectivity hold great importance for neural tissue regeneration and neural conduit implants. Although bioactive-epitope functionalized synthetic or natural polymeric materials have been proposed for the induction of neural regeneration, chemical modifications of these materials for neural differentiation still remain a challenge due to the harsh conditions of chemical reactions, along with non-homogeneous surface modifications. In this study, a facile noncovalent functionalization method is proposed by exploiting host-guest interactions between an adamantane-conjugated laminin derived bioactive IKVAV epitope and electrospun cyclodextrin nanofibers (CDNFs) to fabricate implantable scaffolds for peripheral nerve regeneration. While electrospun CDNFs introduce a three-dimensional biocompatible microenvironment to promote cellular viability and adhesion, the bioactive epitopes presented on the surface of electrospun CDNFs guide the cellular differentiation of PC-12 cells. In addition to materials synthesis and smart functionalization, physical alignment of the electrospun nanofibers guides the cells for enhanced differentiation. Cells cultured on aligned and IKVAV functionalized electrospun CDNFs had significantly higher expression of neuron-specific βIII-tubulin and synaptophysin. The neurite extension is also higher on the bioactive aligned scaffolds compared to random and non-functionalized electrospun CDNFs. Both chemical and physical cues were utilized for an effective neuronal differentiation process.
Collapse
Affiliation(s)
- Seren Hamsici
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey.
| | | | | | | | | | | |
Collapse
|
4
|
Enhancement of Neural Stem Cell Survival, Proliferation, Migration, and Differentiation in a Novel Self-Assembly Peptide Nanofibber Scaffold. Mol Neurobiol 2016; 54:8050-8062. [PMID: 27878763 DOI: 10.1007/s12035-016-0295-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
Considerable efforts have been made to combine biologically active molecules into the self-assembling peptide in order to improve cells growth, survival, and differentiation. In this study, a novel three-dimensional scaffold (RADA4GGSIKVAV; R-GSIK) was designed by adding glycine and serine between RADA4 and IKVAV to promote the strength of the peptide. The cell adhesion, viability, proliferation, migration, and differentiation of rat embryonic neural stem cells (NSCs) in R-GSIK were investigated and compared to laminin-coated, two-dimensional, and Puramatrix cultures. The scanning electron microscopy studies of the R-GSIK showed an open porous structure and a suitable surface area available for cell interaction. R-GSIK promoted the cell adhesion, viability, proliferation, and migration compared to the other cultures. In addition, the R-GSIK enhanced NSCs differentiation into neuronal cells. The NSCs injected in R-GSIK had a lower glial differentiation rate than in the Puramatrix. The results suggest that R-GSIK holds great promise for cell therapies and neuronal tissue repair.
Collapse
|
5
|
Yeo IS, Min SK, Ki Kang H, Kwon TK, Youn Jung S, Min BM. Adhesion and spreading of osteoblast-like cells on surfaces coated with laminin-derived bioactive core peptides. Data Brief 2015; 5:411-5. [PMID: 26958602 PMCID: PMC4773398 DOI: 10.1016/j.dib.2015.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022] Open
Abstract
Functional peptides are attractive as novel therapeutic reagents because their amino acid sequences are flexible in adopting and mimicking the local functional features of proteins. These peptides are of low molecular weight, synthetically versatile and inexpensive to produce, suggesting that they can be used as drug targeting, potent, stable and bioavailable agents. A short bioactive peptide is expected to be more beneficial in regenerative medicine than an entire protein because of the lower antigenicity of short amino acid sequences. We detected core peptides from human laminin that are involved in adhesion and spreading, which are the first steps of various cells including osteogenic cells, in becoming functional. In this experiment, we detected adhesion and spreading of osteoblast-like cells seeded on the core peptide-coated surface. These in vitro data are related to the research article, entitled “Identification of a bioactive core sequence from human laminin and its applicability to tissue engineering” (Yeo et al., 2015) [1].
Collapse
Affiliation(s)
- In-Sung Yeo
- Department of Prosthodontics, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Seung-Ki Min
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hyun Ki Kang
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology and Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Taek-Ka Kwon
- Department of Dentistry, St. Vincent Hospital, Catholic University of Korea, Suwon, Republic of Korea
| | - Sung Youn Jung
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology and Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Byung-Moo Min
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology and Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Corresponding author. Tel.: +82 2 740 8661.
| |
Collapse
|
6
|
Yeo IS, Min SK, Kang HK, Kwon TK, Jung SY, Min BM. Identification of a bioactive core sequence from human laminin and its applicability to tissue engineering. Biomaterials 2015; 73:96-109. [PMID: 26406450 DOI: 10.1016/j.biomaterials.2015.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/28/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022]
Abstract
Finding bioactive short peptides derived from proteins is a critical step to the advancement of tissue engineering and regenerative medicine, because the former maintains the functions of the latter without immunogenicity in biological systems. Here, we discovered a bioactive core nonapeptide sequence, PPFEGCIWN (residues 2678-2686; Ln2-LG3-P2-DN3), from the human laminin α2 chain, and investigated the role of this peptide in binding to transmembrane proteins to promote intracellular events leading to cell functions. This minimum bioactive sequence had neither secondary nor tertiary structures in a computational structure prediction. Nonetheless, Ln2-LG3-P2-DN3 bound to various cell types as actively as laminin in cell adhesion assays. The in vivo healing tests using rats revealed that Ln2-LG3-P2-DN3 promoted bone formation without any recognizable antigenic activity. Ln2-LG3-P2-DN3-treated titanium (Ti) discs and Ti implant surfaces caused the enhancement of bone cell functions in vitro and induced faster osseointegration in vivo, respectively. These findings established a minimum bioactive sequence within human laminin, and its potential application value for regenerative medicine, especially for bone tissue engineering.
Collapse
Affiliation(s)
- In-Sung Yeo
- Department of Prosthodontics, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| | - Seung-Ki Min
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| | - Hyun Ki Kang
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology and Dental Research Institute, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| | - Taek-Ka Kwon
- Department of Dentistry, St. Vincent Hospital, Catholic University of Korea, Ji-Dong, Paldal-Ku, Suwon 442-723, Republic of Korea.
| | - Sung Youn Jung
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology and Dental Research Institute, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| | - Byung-Moo Min
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology and Dental Research Institute, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| |
Collapse
|
7
|
Zhang J, Zhu LX, Cheng X, Lin Y, Yan P, Peng B. Promotion of Dental Pulp Cell Migration and Pulp Repair by a Bioceramic Putty Involving FGFR-mediated Signaling Pathways. J Dent Res 2015; 94:853-62. [PMID: 25724555 DOI: 10.1177/0022034515572020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mineral trioxide aggregate is the currently recommended material of choice for clinical pulp repair despite several disadvantages, including handling inconvenience. Little is known about the signaling mechanisms involved in bioceramic-mediated dental pulp repair-particularly, dental pulp cell (DPC) migration. This study evaluated the effects of iRoot BP Plus, a novel ready-to-use nanoparticulate bioceramic putty, on DPC migration in vitro and pulp repair in vivo, focusing on possible involvement of fibroblast growth factor receptor (FGFR)-related signaling, including mitogen-activated protein kinase and Akt pathways. Treatment with iRoot BP Plus extracts enhanced horizontal and vertical migration of DPCs, which was comparable with the effects induced by mineral trioxide aggregate extracts. The DPCs exposed to iRoot BP Plus extracts demonstrated no evident apoptosis. Importantly, treatment with iRoot BP Plus extracts resulted in rapid activation of FGFR, p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), and Akt signaling in DPCs. Confocal immunofluorescence staining revealed that iRoot BP Plus stimulated focal adhesion formation and stress fiber assembly in DPCs, in addition to upregulating the expression of focal adhesion molecules, including p-focal adhesion kinase, p-paxillin, and vinculin. Moreover, activation of FGFR, ERK, JNK, and Akt were found to mediate the upregulated expression of focal adhesion molecules, stress fiber assembly, and enhanced DPC migration induced by iRoot BP Plus. Consistent with the in vitro results, we observed induction of homogeneous dentin bridge formation and expression of p-focal adhesion kinase, p-FGFR, p-ERK 1/2, p-JNK, and p-Akt near injury sites by iRoot BP Plus in an in vivo pulp repair model. These data demonstrate that iRoot BP Plus can promote DPC migration and pulp repair involving the FGFR-mediated ERK 1/2, JNK, and Akt pathways. These findings provide valuable insights into the signaling mechanisms underlying nanoparticulate bioceramic-mediated pulp repair.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L X Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - X Cheng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - P Yan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 2014; 15:11878-921. [PMID: 25000263 PMCID: PMC4139820 DOI: 10.3390/ijms150711878] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/21/2023] Open
Abstract
Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.
Collapse
|
9
|
Abstract
Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.
Collapse
|
10
|
Kang HK, Kim OB, Min SK, Jung SY, Jang DH, Kwon TK, Min BM, Yeo IS. The effect of the DLTIDDSYWYRI motif of the human laminin α2 chain on implant osseointegration. Biomaterials 2013; 34:4027-4037. [PMID: 23465831 DOI: 10.1016/j.biomaterials.2013.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
Considerable effort has been directed towards replacing lost teeth using tissue-engineering methods such as titanium implants. A number of studies have tried to modify bioinert titanium surfaces by coating them with functionally bioactive molecules for faster and stronger osseointegration than pure titanium surfaces. Recently, peptides have been recognized as valuable scientific tools in the field of tissue-engineering. The DLTIDDSYWYRI motif of the human laminin-2 α2 chain has been previously reported to promote the attachment of various cell types; however, the in vivo effects of the DLTIDDSYWYRI motif on new bone formation have not yet been studied. To examine whether a laminin-2-derived peptide can promote osseointegration by accelerating new bone formation in vivo, we applied titanium implants coated with the DLTIDDSYWYRI motif in a rabbit tibia model. The application of the DLTIDDSYWYRI motif-treated implant to tibia wounds enhanced collagen deposition and alkaline phosphatase expression. It significantly promoted implant osseointegration compared with treatment with scrambled peptide-treated implants by increasing the bone-to-implant contact ratio and bone area. These findings support the hypothesis that the DLTIDDSYWYRI motif acts as an effective osseointegration accelerator by enhancing new bone formation.
Collapse
Affiliation(s)
- Hyun Ki Kang
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, 28 Yeonkun-Dong, Chongno-Ku, Seoul 110-749, Republic of Korea.
| | - O Bok Kim
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, 28 Yeonkun-Dong, Chongno-Ku, Seoul 110-749, Republic of Korea.
| | - Seung-Ki Min
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, 28 Yeonkun-Dong, Chongno-Ku, Seoul 110-749, Republic of Korea.
| | - Sung Youn Jung
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, 28 Yeonkun-Dong, Chongno-Ku, Seoul 110-749, Republic of Korea.
| | - Da Hyun Jang
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, 28 Yeonkun-Dong, Chongno-Ku, Seoul 110-749, Republic of Korea.
| | - Taek-Ka Kwon
- Department of Dentistry, St. Vincent Hospital, Catholic University of Korea, Ji-Dong, Paldal-Ku, Suwon 442-723, Republic of Korea.
| | - Byung-Moo Min
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, 28 Yeonkun-Dong, Chongno-Ku, Seoul 110-749, Republic of Korea.
| | - In-Sung Yeo
- Department of Prosthodontics and Dental Research Institute, Seoul National University School of Dentistry, 28 Yeonkun-Dong, Chongno-Ku, Seoul 110-749, Republic of Korea.
| |
Collapse
|
11
|
Retinoic acid suppresses the adhesion and migration of human retinal pigment epithelial cells. Exp Eye Res 2013; 109:22-30. [PMID: 23428742 DOI: 10.1016/j.exer.2013.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/13/2012] [Accepted: 01/10/2013] [Indexed: 01/22/2023]
Abstract
The study was designed to better understand how retinoic acid (RA) influenced the migration and invasion abilities of retinal pigment epithelial cells (RPE) in vitro and how the related genes of the extracellular matrix (ECM) were expressed. The inhibition effects of RA on proliferative vitreoretinopathy (PVR) formation induced by RPE cells were studied in rabbits. Wound healing and Boyden chamber assays were used to show the abilities of migration and invasion of RPE. Microarray, real-time quantitative PCR (qPCR) and Western blotting showed how RA regulated the ECM genes. RA (10(-5) M) significantly (P < 0.05) inhibited PVR membrane and traction retinal detachment formation (80%). Moreover, RA treatment significantly inhibited the migration (80%) and invasion (65%) behaviors of human RPE cells (P < 0.05) by wound healing and Boyden chamber assays, respectively. Microarray and q PCR analysis showed RA treatment did inhibit the motility of human RPE cells by inhibition of metalloproteinases (MMP) 1, 2, 9, fibronectin-1, transforming growth factor beta, thrombospondin-1, tenascin C, most collagen, integrin, laminin molecules and along enhancing E-cadherin and MMP3 genes expression. And Western blotting indicated the coincident results on protein level of MMP1, 2, 3, 9, 14; fibronectin-1; integrinαM, β2 and E-cadherin. In conclusions, RA is a vital drug to inhibit the abilities of migration and invasion of RPE and to hamper the PVR formation by regulating some genes expression of ECM.
Collapse
|
12
|
Youn Jung S, Bok Kim O, Kang HK, Jang DH, Min BM, Yu FH. Protein kinase Cα/β inhibitor Gö6976 promotes PC12 cell adhesion and spreading through membrane recruitment and activation of protein kinase Cδ. Exp Cell Res 2013; 319:153-60. [DOI: 10.1016/j.yexcr.2012.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/30/2022]
|