1
|
Ponnaiyan D, Rughwani RR, Victor DJ, Shetty G. Stem Cells in the Periodontium-Anatomically Related Yet Physiologically Diverse. Eur J Dent 2024; 18:1-13. [PMID: 36588293 PMCID: PMC10959637 DOI: 10.1055/s-0042-1759487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is a complex chronic disease discernible by the deterioration of periodontal tissue. The goal of periodontal therapy is to achieve complete tissue regeneration, and one of the most promising treatment options is to harness the regenerative potential of stem cells available within the periodontal complex. Periodontal ligament stem cells, gingival mesenchymal stem cells, oral periosteal stem cells, and dental follicle stem cells have structural similarities, but their immunological responses and features differ. The qualities of diverse periodontal stem cells, their immune-modulatory effects, and variances in their phenotypes and characteristics will be discussed in this review. Although there is evidence on each stem cell population in the periodontium, understanding the differences in markers expressed, the various research conducted so far on their regenerative potential, will help in understanding which stem cell population will be a better candidate for tissue engineering. The possibility of selecting the most amenable stem cell population for optimal periodontal regeneration and the development and current application of superior tissue engineering treatment options such as autologous transplantation, three-dimensional bioengineered scaffolds, dental stem cell-derived extracellular vesicles will be explored.
Collapse
Affiliation(s)
- Deepa Ponnaiyan
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Roshan R. Rughwani
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Dhayanand John Victor
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Ganesh Shetty
- Dental and Orthodontic Clinic, Bangalore, Karnataka, India
| |
Collapse
|
2
|
Ivan A, Cristea MI, Telea A, Oprean C, Galuscan A, Tatu CA, Paunescu V. Stem Cells Derived from Human Exfoliated Deciduous Teeth Functional Assessment: Exploring the Changes of Free Fatty Acids Composition during Cultivation. Int J Mol Sci 2023; 24:17249. [PMID: 38139076 PMCID: PMC10743411 DOI: 10.3390/ijms242417249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The metabolic regulation of stemness is widely recognized as a crucial factor in determining the fate of stem cells. When transferred to a stimulating and nutrient-rich environment, mesenchymal stem cells (MSCs) undergo rapid proliferation, accompanied by a change in protein expression and a significant reconfiguration of central energy metabolism. This metabolic shift, from quiescence to metabolically active cells, can lead to an increase in the proportion of senescent cells and limit their regenerative potential. In this study, MSCs from human exfoliated deciduous teeth (SHEDs) were isolated and expanded in vitro for up to 10 passages. Immunophenotypic analysis, growth kinetics, in vitro plasticity, fatty acid content, and autophagic capacity were assessed throughout cultivation to evaluate the functional characteristics of SHEDs. Our findings revealed that SHEDs exhibit distinctive patterns of cell surface marker expression, possess high self-renewal capacity, and have a unique potential for neurogenic differentiation. Aged SHEDs exhibited lower proliferation rates, reduced potential for chondrogenic and osteogenic differentiation, an increasing capacity for adipogenic differentiation, and decreased autophagic potential. Prolonged cultivation of SHEDs resulted in changes in fatty acid composition, signaling a transition from anti-inflammatory to proinflammatory pathways. This underscores the intricate connection between metabolic regulation, stemness, and aging, crucial for optimizing therapeutic applications.
Collapse
Affiliation(s)
- Alexandra Ivan
- Department of Immunology and Allergology, Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.T.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Mirabela I. Cristea
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Ada Telea
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Camelia Oprean
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
- Department of Drug analysis, Chemistry of the Environment and Food, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Atena Galuscan
- Translational and Experimental Clinical Research Centre in Oral Health, Department of Preventive, Community Dentistry and Oral Health, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Calin A. Tatu
- Department of Immunology and Allergology, Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.T.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Virgil Paunescu
- Department of Immunology and Allergology, Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.T.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| |
Collapse
|
3
|
Cren PY, Penel N, Cordoba A, Decanter G, Gaboriau L, Ben Haj Amor M. Myositis ossificans circumscripta after surgery and radiotherapy and during sunitinib treatment: a case report. J Med Case Rep 2022; 16:454. [PMID: 36474288 PMCID: PMC9727934 DOI: 10.1186/s13256-022-03664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Myositis ossificans circumscripta is a self-limiting, benign, ossifying lesion that can affect any type of soft tissue. It is most commonly found in muscles as a solitary lesion. A history of recent trauma has been reported in approximately 50% of cases. Clinically, MOC presents as a painful swelling, which rapidly increases in size. The pain and inflammatory symptoms spontaneously disappear after approximately 2-6 weeks, and the mass stabilizes or decreases. Radiologically, myositis ossificans circumscripta can be divided into two phases. The first is the acute phase, which is followed by the mature phase 2-6 weeks later. During the acute phase, the radiological aspect does not show any specific abnormality. In the mature phase, plain radiographs and computed tomography show blurred calcifications around a hypodense center. We describe here the first case of myositis ossificans circumscripta, with appropriate follow-up, occurring during sunitinib exposure. CASE PRESENTATION We report a case of myositis ossificans circumscripta in a 34-year-old man (ethnicity unknown) receiving sunitinib for metastatic alveolar soft part sarcoma of the left thigh after surgery and radiotherapy. Four months after the first dose of sunitinib, the patient experienced painful swelling in the surgical scar area. Magnetic resonance imaging showed diffuse and marked edema of the anterior compartment of the thigh, without nodular lesions circumscribing a central core, and without bone signal abnormality. The increased visibility of the intermuscular fascia and convergence of normal muscle fibers (black hole effect), without the displacement seen in tumors, were suggestive of myositis. Therefore, antiangiogenic treatment was discontinued, and the symptoms rapidly resolved within a few days. Three weeks after the discontinuation of sunitinib, the inflammatory findings completely disappeared. Two months after the diagnosis of myositis ossificans circumscripta, plain radiographs and computed tomography showed an extensive calcified mass measuring > 12 cm. The continuation of favorable clinical outcomes was confirmed. CONCLUSIONS To the best of our knowledge, this is the first case of myositis ossificans circumscripta with appropriate follow-up occurring during sunitinib exposure. Owing to multimodal treatment of sarcoma, we cannot rule out the radiotherapy and surgery causality.
Collapse
Affiliation(s)
- Pierre-Yves Cren
- grid.452351.40000 0001 0131 6312Département d’oncologie Médicale, Centre Oscar Lambret, 3 Rue Frédéric Combemale, 59000 Lille, France ,grid.503422.20000 0001 2242 6780Université de Lille, Lille, France
| | - Nicolas Penel
- grid.452351.40000 0001 0131 6312Département d’oncologie Médicale, Centre Oscar Lambret, 3 Rue Frédéric Combemale, 59000 Lille, France ,grid.503422.20000 0001 2242 6780Université de Lille, Lille, France
| | - Abel Cordoba
- grid.452351.40000 0001 0131 6312Département de Radiothérapie, Centre Oscar Lambret, Lille, France
| | - Gauthier Decanter
- grid.452351.40000 0001 0131 6312Département de Chirurgie, Centre Oscar Lambret, Lille, France
| | - Louise Gaboriau
- grid.410463.40000 0004 0471 8845Centre Régional de Pharmacovigilance, Service de Pharmacologie Médicale, CHU Lille, Lille, France
| | - Mariem Ben Haj Amor
- grid.452351.40000 0001 0131 6312Département d’imagerie Médicale, Centre Oscar Lambret, Lille, France
| |
Collapse
|
4
|
Inada R, Mendoza HY, Tanaka T, Horie T, Satomi T. Preclinical study for the treatment of diabetes mellitus using β-like cells derived from human dental pulp stem cells. Regen Med 2022; 17:905-913. [DOI: 10.2217/rme-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim: The current study assessed whether insulin-producing cells obtained from dental pulp stem cells (DPSCs) can be a new therapeutic approach in a rat model of diabetes mellitus (DM). Materials & methods: Stem cells were differentiated into pancreatic β cells under hydrogen sulfide exposure via 2D and 3D methods. Each β-like cell was immunostained and transplanted into DM rats, after which the in vivo therapeutic effect was determined. Results: Immunostaining revealed the expression of various β-cell markers in each β-like cell differentiated using the 3D method. DPSC-derived β-like cell differentiated via the 3D method promoted a sufficient therapeutic effect. Conclusion: The 3D method promoted islet differentiation, indicating that DPSC-derived β-like cell transplantation could be a new approach for DM treatment.
Collapse
Affiliation(s)
- Ryo Inada
- Department of Oral & Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Hiromi Yagi Mendoza
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Tomoko Tanaka
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Tetsuro Horie
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Takafumi Satomi
- Department of Oral & Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| |
Collapse
|
5
|
ANGPTL4 regulates the osteogenic differentiation of periodontal ligament stem cells. Funct Integr Genomics 2022; 22:769-781. [PMID: 35831768 DOI: 10.1007/s10142-022-00882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
The molecular mechanism of mechanical force regulating the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) has not been clearly elucidated. In this study, two mRNA-seqs, GSE106887 and GSE109167, which contained several samples of PDLSCs under mechanical force, were downloaded from Gene Expression Omnibus. Differential expression analysis was firstly taken between GSE106887 and GSE109167, then the common 84 up-regulated genes and 26 down-regulated genes were selected. Function enrichment analysis was used to identify the key genes and pathways in PDLSCs subjected to the tension and compression force. PDLSCs were isolated from human periodontal ligament tissues. The effects of ANGPTL4 knockdown with shRNA on the osteogenic differentiation of PDLSCs were studied in vitro. Then, the orthodontic tooth movement (OTM) rat model was used to study the expression of HIF-1α and ANGPTL4 in alveolar bone remodeling in vivo. ANGPTL4 and the HIF-1 pathway were identified in PDLSCs subjected to the tension and compression force. alizarin red staining, alcian blue staining, and oil red O staining verified that PDLSCs had the ability of osteogenic, chondrogenic, and adipogenic differentiation, respectively. Verification experiment revealed that the expression of ANGPTL4 in PDLSCs significantly increased when cultured under osteogenic medium in vitro. While ANGPTL4 was knocked down by shRNA, the levels of ALPL, RUNX2, and OCN decreased significantly, as well as the protein levels of COL1A1, ALPL, RUNX2, and OCN. During the OTM, the expression of HIF-1α and ANGPTL4 in periodontal ligament cells increased on the tension and compression sides. We concluded the positive relationship between ANGPTL4 and osteogenic differentiation of PDLSCs.
Collapse
|
6
|
Maruoka H, Hasegawa T, Yoshino H, Abe M, Haraguchi-Kitakamae M, Yamamoto T, Hongo H, Nakanishi K, Nasoori A, Nakajima Y, Omaki M, Sato Y, Luiz de Fraitas PH, Li M. Immunolocalization of endomucin-reactive blood vessels and α-smooth muscle actin-positive cells in murine nasal conchae. J Oral Biosci 2022; 64:337-345. [PMID: 35589073 DOI: 10.1016/j.job.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Recently, the biological functions of endomucin-positive blood vessels and closely associated αSMA-positive cells in long bones have been highlighted. The surrounding tissues of the flat bones, such as nasal bones covered with mucosa and lamina propria, are different from those of the long bones, indicating the different distributions of endomucin-positive blood vessels and αSMA-reactive cells in nasal bones. This study demonstrates the immunolocalization of endomucin-reactive blood vessels and αSMA-positive cells in the nasal conchae of 3- and 7-week-old mice. METHODS The nasal conchae of 3-week-old and 7-week-old male C57BL/6J mice were used for immunoreaction of endomucin, CD34, PDGFbb, TRAP, and c-kit. RESULTS While we identified abundant endomucin-reactive blood vessels in the lamina propria neighboring the bone, not all were positive for endomucin. More CD34-reactive cells and small blood vessels were observed in the nasal conchae of 3-week-old mice than in those of 7-week-old mice. Some αSMA-positive cells in the nasal conchae surrounded the blood vessels, indicating vascular smooth muscle cells, while other αSMA-immunopositive fibroblastic cells were detected throughout the lamina propria. αSMA-positive cells did not co-localize with C-kit-immunoreactivity, thereby indicating that the αSMA-positive cells may be myofibroblasts rather than undifferentiated mesenchymal cells. CONCLUSIONS Unlike long bones, nasal conchae contain endomucin-positive as well as endomucin-negative blood vessels and exhibit numerous αSMA-positive fibroblastic cells throughout the lamina propria neighboring the bone. Apparently, the distribution patterns of endomucin-positive blood vessels and αSMA-positive cells in nasal conchae are different from those in long bones.
Collapse
Affiliation(s)
| | | | | | - Miki Abe
- Developmental Biology of Hard Tissue
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue; Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | | | | | | | | | | | - Yoshiaki Sato
- Orthodontics, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
7
|
Kotova AV, Lobov AA, Dombrovskaya JA, Sannikova VY, Ryumina NA, Klausen P, Shavarda AL, Malashicheva AB, Enukashvily NI. Comparative Analysis of Dental Pulp and Periodontal Stem Cells: Differences in Morphology, Functionality, Osteogenic Differentiation and Proteome. Biomedicines 2021; 9:1606. [PMID: 34829835 PMCID: PMC8616025 DOI: 10.3390/biomedicines9111606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Dental stem cells are heterogeneous in their properties. Despite their common origin from neural crest stem cells, they have different functional capacities and biological functions due to niche influence. In this study, we assessed the differences between dental pulp stem cells (DPSC) and periodontal ligament stem cells (PDLSC) in their pluripotency and neuroepithelial markers transcription, morphological and functional features, osteoblast/odontoblast differentiation and proteomic profile during osteogenic differentiation. The data were collected in paired observations: two cell cultures, DPSC and PDLSC, were obtained from each donor. Both populations had the mesenchymal stem cells surface marker set exposed on their membranes but differed in Nestin (a marker of neuroectodermal origin) expression, morphology, and proliferation rate. OCT4 mRNA was revealed in DPSC and PDLSC, while OCT4 protein was present in the nuclei of DPSC only. However, transcription of OCT4 mRNA was 1000-10,000-fold lower in dental stem cells than in blastocysts. DPSC proliferated at a slower rate and have a shape closer to polygonal but they responded better to osteogenic stimuli as compared to PDLSC. RUNX2 mRNA was detected by qPCR in both types of dental stem cells but RUNX2 protein was detected by LC-MS/MS shotgun proteomics only in PDLSC suggesting the posttranscriptional regulation. DSPP and DMP1, marker genes of odontoblastic type of osteogenic differentiation, were transcribed in DPSC but not in PDLSC samples. Our results prove that DPSC and PDLSC are different in their biology and therapeutic potential: DPSC are a good candidate for osteogenic or odontogenic bone-replacement cell-seeded medicines, while fast proliferating PDLSC are a prospective candidate for other cell products.
Collapse
Affiliation(s)
- Anastasia V. Kotova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
- Cell Technologies Laboratory, General Dentistry Department, North-Western State Medical University, 191015 St. Petersburg, Russia;
| | - Arseniy A. Lobov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | - Julia A. Dombrovskaya
- Cell Technologies Laboratory, General Dentistry Department, North-Western State Medical University, 191015 St. Petersburg, Russia;
| | - Valentina Y. Sannikova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | | | - Polina Klausen
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | - Alexey L. Shavarda
- Research Resource Center Molecular and Cell Technologies, Saint-Petersburg State University, 199034 St. Petersburg, Russia;
| | - Anna B. Malashicheva
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | - Natella I. Enukashvily
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
- Cell Technologies Laboratory, General Dentistry Department, North-Western State Medical University, 191015 St. Petersburg, Russia;
| |
Collapse
|
8
|
Application of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets for Periodontal Regeneration. Int J Mol Sci 2019; 20:ijms20112796. [PMID: 31181666 PMCID: PMC6600219 DOI: 10.3390/ijms20112796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a chronic inflammatory disorder that causes destruction of the periodontal attachment apparatus including alveolar bone, the periodontal ligament, and cementum. Dental implants have been routinely installed after extraction of periodontitis-affected teeth; however, recent studies have indicated that many dental implants are affected by peri-implantitis, which progresses rapidly because of the failure of the immune system. Therefore, there is a renewed focus on periodontal regeneration aroundnatural teeth. To regenerate periodontal tissue, many researchers and clinicians have attempted to perform periodontal regenerative therapy using materials such as bioresorbable scaffolds, growth factors, and cells. The concept of guided tissue regeneration, by which endogenous periodontal ligament- and alveolar bone-derived cells are preferentially proliferated by barrier membranes, has proved effective, and various kinds of membranes are now commercially available. Clinical studies have shown the significance of barrier membranes for periodontal regeneration; however, the technique is indicated only for relatively small infrabony defects. Cytokine therapies have also been introduced to promote periodontal regeneration, but the indications are also for small size defects. To overcome this limitation, ex vivo expanded multipotent mesenchymal stromal cells (MSCs) have been studied. In particular, periodontal ligament-derived multipotent mesenchymal stromal cells are thought to be a responsible cell source, based on both translational and clinical studies. In this review, responsible cell sources for periodontal regeneration and their clinical applications are summarized. In addition, recent transplantation strategies and perspectives about the cytotherapeutic use of stem cells for periodontal regeneration are discussed.
Collapse
|
9
|
Li X, He X, Yin Y, Wu R, Tian B, Chen F. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med 2017; 21:3162-3177. [PMID: 28767189 PMCID: PMC5706509 DOI: 10.1111/jcmm.13286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ex vivo-expanded stem cells have long been a cornerstone of biotherapeutics and have attracted increasing attention for treating intractable diseases and improving tissue regeneration. However, using exogenous cellular materials to develop restorative treatments for large numbers of patients has become a major concern for both economic and safety reasons. Advances in cell biological research over the past two decades have expanded the potential for using endogenous stem cells during wound healing processes, and in particular, recent insight into stem cell movement and homing has prompted regenerative research and therapy based on recruiting endogenous cells. Inspired by the natural healing process, artificial administration of specific chemokines as signals systemically or at the injury site, typically using biomaterials as vehicles, is a state-of-the-art strategy that potentiates stem cell homing and recreates an anti-inflammatory and immunomodulatory microenvironment to enhance in situ tissue regeneration. However, pharmacologically coaxing endogenous stem cells to act as therapeutics in the field of biomedicine remains in the early stages; its efficacy is limited by the lack of innovative methodologies for chemokine presentation and release. This review describes how to direct the homing of endogenous stem cells via the administration of specific signals, with a particular emphasis on targeted signalling molecules that regulate this homing process, to enhance in situ tissue regeneration. We also provide an outlook on and critical considerations for future investigations to enhance stem cell recruitment and harness the reparative potential of these recruited cells as a clinically relevant cell therapy.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Xiao‐Tao He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Yuan Yin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Rui‐Xin Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Bei‐Min Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Fa‐Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
10
|
Zhong B, Li Y, Liu X, Wang D. Association of mast cell infiltration with gastric cancer progression. Oncol Lett 2017; 15:755-764. [PMID: 29422964 PMCID: PMC5772921 DOI: 10.3892/ol.2017.7380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to determine the expression of mast cells, C-C motif chemokine ligand 2 (CCL-2) and C-C motif chemokine receptor 2 (CCR2) in gastric cancer tumor tissue; and the association of mast cells with the proliferation, migration, invasion and apoptosis of gastric cancer cells. In addition, whether the stem cell factor (SCF)/c-Kit pathway was associated with the secretion of CCL-2 by gastric cancer cells was explored. Flow cytometry analysis and immunohistochemistry were used to observe the relative number of mast cells, and reverse transcription-quantitative polymerase chain reaction and western blot analysis were utilized to determine the expression of CCL-2 and CCR2 mRNA and protein. Following the co-culture of the mast cell line HMC-1 and the gastric cancer cell line BGC-823, a Transwell assay was used to validate the effect of mast cells on the migration and invasion of gastric cancer cells. Furthermore, Cell Counting kit-8 and dual acridine orange/ethidium bromide fluorescent staining assays were performed to determine the proliferation and apoptosis of gastric cancer cells, following co-culture with mast cells. The expression of SCF and c-Kit were also determined with a western blot analysis. A specific phosphoinositide 3-kinase (PI3K) inhibitor, wortmannin, was used to test the effect of PI3K inhibition on the secretion of CCL-2 in gastric cancer. The results demonstrated that the proportion of infiltrating mast cells, and the mRNA/protein expression of CCL-2 and CCR2, were significantly increased in tumor tissue relative to adjacent tissues. In addition, the migration and invasion of gastric cancer cells were significantly increased when mast cells were used as an attractant. When co-cultured with mast cells, the viability of gastric cancer cells was significantly increased and H2O2-induced apoptosis was inhibited. In gastric cancer tissue samples, the expression of SCF, c-Kit and phosphorylated (p)-Akt protein were significantly increased compared with normal adjacent tissues. It was hypothesized that SCF/c-Kit signaling pathway was activated by PI3K-Akt, resulting in an increase in the expression of CCL-2 mRNA and protein. Furthermore, it was demonstrated that CCL-2 mRNA and protein expression was significantly inhibited by treatment with the PI3K inhibitor wortmannin. Additionally, wortmannin intervention significantly inhibited gastric cancer cell migration and invasion. Therefore, the results of the present study demonstrated that mast cells may promote gastric cancer cell proliferation, migration and invasion, and inhibit apoptosis. In addition, the activation of the SCF/c-Kit signaling pathway was identified to promote the expression of CCL-2, which is associated with the development and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Bei Zhong
- Department of Hyperbaric Oxygen, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yu Li
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaodong Liu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Dongsheng Wang
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
11
|
Zheng Y, Li X, Huang Y, Jia L, Li W. The Circular RNA Landscape of Periodontal Ligament Stem Cells During Osteogenesis. J Periodontol 2017; 88:906-914. [PMID: 28598284 DOI: 10.1902/jop.2017.170078] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The present study aims to investigate the distinct expression pattern of circular RNAs (circRNAs) in periodontal ligament stem cells (PDLSCs) during osteogenesis. METHODS PDLSCs were isolated and cultured in osteogenic medium. Total RNA was extracted from cells at day 0 (D0), day 3 (D3), day 7 (D7), and day 14 (D14) and submitted to RNA-sequencing to detect expression profiles of circRNAs, messenger RNAs (mRNAs), and microRNAs (miRNAs). Real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was performed to validate expression of circRNAs and miRNAs. Differential expression analysis and gene ontology analysis were performed. A circRNA-miRNA-mRNA network was constructed to reveal the potential regulatory role of circRNAs. RESULTS A total of 12,693 circRNA transcripts were detected, and circRNAs displayed stage-specific expression. Expression of four well-known circRNAs was validated by qRT-PCR. In total, 118 circRNAs were differentially expressed at D3, 128 circRNAs were differentially expressed at D7, and 139 circRNAs were differentially expressed at D14 compared with D0. Host genes of differentially expressed circRNAs were enriched in cytoplasmic or membrane-bound vesicles and extracellular matrix, indicating their potential roles in modulating biogenesis of extracellular vesicles. Moreover, mRNAs that were potentially regulated by circRNAs were enriched in bone-formation-associated processes, including extracellular matrix organization, cell differentiation, and bone morphogenetic protein signaling pathway. CONCLUSION Expression profiles of circRNAs were significantly altered during osteogenic differentiation of PDLSCs, providing a clue for future studies on the role of circRNAs in osteoblast differentiation.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology.,Department of Central Laboratory, Peking University School and Hospital of Stomatology
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
12
|
Gugliandolo A, Rajan TS, Scionti D, Diomede F, Bramanti P, Mazzon E, Trubiani O. Reprogramming of Oncogene Expression in Gingival Mesenchymal Stem Cells Following Long-Term Culture In Vitro. Cell Reprogram 2017; 19:159-170. [DOI: 10.1089/cell.2016.0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | | | | | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti-Pescara, Chieti, Italy
| | | | | | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
13
|
Tissue-specific Differentiation Potency of Mesenchymal Stromal Cells from Perinatal Tissues. Sci Rep 2016; 6:23544. [PMID: 27045658 PMCID: PMC4820697 DOI: 10.1038/srep23544] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
Human perinatal tissue is an abundant source of mesenchymal stromal cells(MSCs) and lacks the ethical concerns. Perinatal MSCs can be obtained from various tissues as like amnion, chorion, and umbilical cord. Still, little is known of the distinct nature of each MSC type. In this study, we successfully isolated and cultured MSCs from amnion(AMSCs), chorion(CMSCs), and umbilical cord(UC-MSCs). Proliferation potential was different among them, that AMSCs revealed the lowest proliferation rate due to increased Annexin V and senescence-associated β-galactosidase positive cells. We demonstrated distinct characteristic gene expression according to the source of the original tissue using microarray. In particular, genes associated with apoptosis and senescence including CDKN2A were up-regulated in AMSCs. In CMSCs, genes associated with heart morphogenesis and blood circulation including HTR2B were up-regulated. Genes associated with neurological system processes including NPY were up-regulated in UC-MSCs. Quantitative RT-PCR confirmed the gene expression data. And in vitro differentiation of MSCs demonstrated that CMSCs and UC-MSCs had a more pronounced ability to differentiate into cardiomyocyte and neural cells, respectively. This study firstly demonstrated the innate tissue-specific differentiation potency of perinatal MSCs which can be helpful in choosing more adequate cell sources for better outcome in a specific disease.
Collapse
|
14
|
Ceccarelli G, Graziano A, Benedetti L, Imbriani M, Romano F, Ferrarotti F, Aimetti M, Cusella de Angelis GM. Osteogenic Potential of Human Oral-Periosteal Cells (PCs) Isolated From Different Oral Origin: An In Vitro Study. J Cell Physiol 2016. [PMID: 26206324 DOI: 10.1002/jcp.25104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The periosteum is a specialized connective tissue containing multipotent stem cells capable of bone formation. In this study, we aimed at demonstrating that human oral periosteal cells derived from three different oral sites (upper vestibule, lower vestibule, and hard palate) represent an innovative cell source for maxillo-facial tissue engineering applications in terms of accessibility and self-commitment towards osteogenic lineage. Periosteal cells (PCs) were isolated from patients with different ages (20-30 yy, 40-50 yy, 50-60 yy); we then analyzed the in vitro proliferation capacity and the bone self-commitment of cell clones culturing them without any osteogenic supplement to support their differentiation. We found that oral PCs, independently of their origin and age of patients, are mesenchymal stem cells with stem cell characteristics (clonogenical and proliferative activity) and that, even in absence of any osteogenic induction, they undertake the osteoblast lineage after 45 days of culture. These results suggest that oral periosteal cells could replace mesenchymal cells from bone marrow in oral tissue-engineering applications.
Collapse
Affiliation(s)
- Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, Pavia, Italy.,CIT, Tissue Engineering Center, University of Pavia, Pavia, Italy
| | - Antonio Graziano
- Dental school, University of Turin, Turin, Italy.,SHRO Center of Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Laura Benedetti
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, Pavia, Italy.,CIT, Tissue Engineering Center, University of Pavia, Pavia, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Ergonomy and Disability, Nanotechnology Laboratory, Salvatore Maugeri Foundation, IRCCS, Pavia, Italy
| | | | | | | | - Gabriella M Cusella de Angelis
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, Pavia, Italy.,CIT, Tissue Engineering Center, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Franco-Murillo Y, Miranda-Rodríguez JA, Rendón-Huerta E, Montaño LF, Cornejo GV, Gómez LP, Valdez-Morales FJ, Gonzalez-Sanchez I, Cerbón M. Unremitting cell proliferation in the secretory phase of eutopic endometriosis: involvement of pAkt and pGSK3β. Reprod Sci 2014; 22:502-10. [PMID: 25194152 DOI: 10.1177/1933719114549843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. DESIGN Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. RESULTS Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. CONCLUSION Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways.
Collapse
Affiliation(s)
- Yanira Franco-Murillo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| | | | - Erika Rendón-Huerta
- Departamento Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico, Federal District, Mexico
| | - Luis F Montaño
- Departamento Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico, Federal District, Mexico
| | | | - Lucila Poblano Gómez
- Servicio de Ginecología y Obstetricia, Hospital Español, Mexico, Federal District, Mexico
| | | | - Ignacio Gonzalez-Sanchez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| |
Collapse
|