1
|
Banazadeh M, Ilaghi M, Abadi B, Joushi S, Pishbin E, Dabiri S, Ramezani Farani M, Rahi A, Mostafavi E, Zare I. Chitosan nanoparticles-hydrogel composites for biomedical applications. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:633-678. [DOI: 10.1016/b978-0-443-14088-4.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Yue P, Nagendraraj T, Wang G, Jin Z, Angelovski G. The role of responsive MRI probes in the past and the future of molecular imaging. Chem Sci 2024; 15:20122-20154. [PMID: 39611034 PMCID: PMC11600131 DOI: 10.1039/d4sc04849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Magnetic resonance imaging (MRI) has become an indispensable tool in biomedical research and clinical radiology today. It enables the tracking of physiological changes noninvasively and allows imaging of specific biological processes at the molecular or cellular level. To this end, bioresponsive MRI probes can greatly contribute to improving the specificity of MRI, as well as significantly expanding the scope of its application. A large number of these sensor probes has been reported in the past two decades. Importantly, their development was done hand in hand with the ongoing advances in MRI, including emerging methodologies such as chemical exchange saturation transfer (CEST) or hyperpolarised MRI. Consequently, several approaches on successfully using these probes in functional imaging studies have been reported recently, giving new momentum to the field of molecular imaging, also the chemistry of MRI probes. This Perspective summarizes the major strategies in the development of bioresponsive MRI probes, highlights the major research directions within an individual group of probes (T 1- and T 2-weighted, CEST, fluorinated, hyperpolarised) and discusses the practical aspects that should be considered in designing the MRI sensors, up to their intended application in vivo.
Collapse
Affiliation(s)
- Ping Yue
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Thavasilingam Nagendraraj
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Ziyi Jin
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| |
Collapse
|
3
|
Luo GF, Zhang XZ. Magnetic nanoparticles for use in bioimaging. Biomater Sci 2024; 12:6224-6236. [PMID: 39498601 DOI: 10.1039/d4bm01145g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Magnetic nanoparticles (MNPs) are well-known contrast agents for use in medical imageology, facilitating disease detection via magnetic resonance imaging (MRI). With the development of nanotechnology, various MNPs have been exploited with strong contrast enhancement effects as well as multiple functions to conquer challenges related to the low detection accuracy and sensitivity. In this review, the typical characteristics and types of MNPs are outlined, and the design and fabrication of MNP-based MRI contrast agents as well as multi-mode imaging agents are also introduced by discussing the representative studies. In the pursuit of performance-enhanced MNPs, novel MNPs are expected to be developed as the next generation of contrast agents for precise bioimaging applications in a broad spectrum of fields.
Collapse
Affiliation(s)
- Guo-Feng Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
4
|
Jain P, Jangid AK, Pooja D, Kulhari H. Design of manganese-based nanomaterials for pharmaceutical and biomedical applications. J Mater Chem B 2024; 12:577-608. [PMID: 38116805 DOI: 10.1039/d3tb00779k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In the past few years, manganese-based nanostructures have been extensively investigated in the biomedical field particularly to design highly biocompatible theranostics, which can not only act as efficient diagnostic imaging contrast agents but also deliver the drugs to the target sites. The nanoscale size, large surface area-to-volume ratio, availability of cheap precursors, flexibility to synthesize nanostructures with reproducible properties and high yield, and easy scale up are the major reasons for the attraction towards manganese nanostructures. Along with these properties, the nontoxic nature, pH-sensitive degradation, and easy surface functionalization are additional benefits for the use of manganese nanostructures in biomedical and pharmaceutical sciences. Therefore, in this review, we discuss the recent progress made in the synthesis of manganese nanostructures, describe the attempts made to modify their surfaces to impart biocompatibility and stability in biological fluids, and critically discuss their use in magnetic resonance imaging, drug and gene delivery, hyperthermia, photothermal/photodynamic, immunotherapy, biosensing and tumor diagnosis.
Collapse
Affiliation(s)
- Poonam Jain
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Limda Road, Vadodara, Gujarat, 391760, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Deep Pooja
- School of Pharmacy, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
5
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Martinez de la Torre C, Freshwater KA, Looney-Sanders MA, Wang Q, Bennewitz MF. Caveat Emptor: Commercialized Manganese Oxide Nanoparticles Exhibit Unintended Properties. ACS OMEGA 2023; 8:18799-18810. [PMID: 37273625 PMCID: PMC10233837 DOI: 10.1021/acsomega.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Nano-encapsulated manganese oxide (NEMO) particles are noteworthy contrast agents for magnetic resonance imaging (MRI) due to their bright, pH-switchable signal ("OFF" to "ON" at low pH), high metal loading, and targeting capability for increased specificity. For the first time, we performed a head-to-head comparison of NEMO particles from In-house and commercialized sources (US Nano vs Nanoshel) to assess their potential as bright T1 MRI contrast agents. Manganese oxide nanocrystals (MnO, Mn2O3, and Mn3O4) were systematically evaluated for size, chemistry, release of manganese ions, and MRI signal pre- and post-encapsulation within poly(lactic-co-glycolic acid) (PLGA). Suprisingly, a majority of the commercialized formulations were not as advertised by displaying unintended sizes, morphologies, chemistry, dissolution profiles, and/or MRI signal that precludes in vivo use. US Nano's Mn3O4 and Mn2O3 nanocrystals contained impurities that impacted Mn ion release as well as micron-sized rodlike structures. Nanoshel's MnO and Mn2O3 nanoparticles had very large hydrodynamic sizes (>600 nm). In-house MnO and Nanoshel's Mn3O4 nanoparticles demonstrated the best characteristics with brighter T1 MRI signals, small hydrodynamic sizes, and high encapsulation efficiencies. Our findings highlight that researchers must confirm the properties of purchased nanomaterials before utilizing them in desired applications, as their experimental success may be impacted.
Collapse
Affiliation(s)
- Celia Martinez de la Torre
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| | - Kasey A. Freshwater
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| | - Mara A. Looney-Sanders
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| | - Qiang Wang
- Shared
Research Facilities, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Margaret F. Bennewitz
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
7
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Ali AA, Al-Othman A, Al-Sayah MH. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022; 351:476-503. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
With cancer research shifting focus to achieving multifunctionality in cancer treatment strategies, hybrid nanogels are making a rapid rise to the spotlight as novel, multifunctional, stimuli-responsive, and biocompatible cancer therapeutic strategies. They can possess cancer cell-specific cytotoxic effects themselves, carry drugs or enzymes that can produce cytotoxic effects, improve imaging modalities, and target tumor cells over normal cells. Hybrid nanogels bring together a wide range of desirable properties for cancer treatment such as stimuli-responsiveness, efficient loading and protection of molecules such as drugs or enzymes, and effective crossing of cellular barriers among other properties. Despite their promising abilities, hybrid nanogels are still far from being used in the clinic, and their available data remains relatively limited. However, many studies can be done to facilitate this clinical transition. This review is critically summarizing and analyzing the recent information and progress on the use of hybrid nanogels particularly inorganic nanoparticle-based and organic nanoparticle-based hybrid nanogels in the field of oncology and future directions to aid in transferring those results to the clinic. This work concludes that the future of hybrid nanogels is greatly impacted by therapeutic and non-therapeutic factors. Therapeutic factors include the lack of hemocompatibility studies, acute and chronic toxicological studies, and information on agglomeration capability and extent, tumor heterogeneity, interaction with proteins in physiological fluids, endocytosis-exocytosis, and toxicity of the nanogels' breakdown products. Non-therapeutic factors include the lack of clear regulatory guidelines and standardized assays, limitations of animal models, and difficulties associated with good manufacture practices (GMP).
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Mohammad H Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
9
|
Dou Y, Zhang Y, Lin C, Han R, Wang Y, Wu D, Zheng J, Lu C, Tang L, He Y. pH-responsive theranostic nanoplatform of ferrite and ceria co-engineered nanoparticles for anti-inflammatory. Front Bioeng Biotechnol 2022; 10:983677. [PMID: 36159657 PMCID: PMC9500451 DOI: 10.3389/fbioe.2022.983677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple component integration to achieve both therapy and diagnosis in a single theranostic nanosystem has aroused great research interest in the medical investigator. This study aimed to construct a novel theranostic nanoplatform ferrite and ceria co-engineered mesoporous silica nanoparticles (Fe/Ce-MSN) antioxidant agent though a facile metal Fe/Ce-codoping approach in the MSN framework. The resulted Fe3+-incorporated ceria-based MSN nanoparticles possessing a higher Ce3+-to-Ce4+ ratio than those revealed by ceria-only nanoparticles. The as-prepared Fe/Ce-MSN nanoparticles exhibited an excellent efficiency in scavenging reactive oxygen species (ROS), which is attributed to improving the superoxide dismutase (SOD) mimetics activity by increasing Ce3+ content and maintaining a higher activity of catalase (CAT) mimetics via including ferrite ion in nanoparticles. The fast Fe/Ce-MSN biodegradation, which is sensitive to the mild acidic microenvironment of inflammation, can accelerate Fe/Ce ion release, and the freed Fe ions enhanced T2-weighted magnetic resonance imaging in the inflammation site. PEGylated Fe/Ce-MSN nanoparticles in vitro cell models significantly attenuated ROS-induced inflammation, oxidative stress, and apoptosis in macrophages by scavenging overproduced intracellular ROS. More importantly, Fe/Ce-MSN-PEG NPs exhibited significant anti-inflammatory effects by inhibiting lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) levels in vitro. Additionally, it can promote the macrophages polarization of pro-inflammatory M1 phenotype towards an anti-inflammatory M2 phenotype. Thus, the novel pH-responsive theranostic nanoplatform shows great promise for inflammation and oxidative stress-associated disease treatment.
Collapse
Affiliation(s)
- Yuanyao Dou
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yimin Zhang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Wu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Zheng
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Liling Tang, ; Yong He,
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Liling Tang, ; Yong He,
| |
Collapse
|
10
|
Zhu L, Yang Y, Yan Z, Zeng J, Weng F, Shi Y, Shen P, Liu L, Yang H. Controlled Release of TGF-β3 for Effective Local Endogenous Repair in IDD Using Rat Model. Int J Nanomedicine 2022; 17:2079-2096. [PMID: 35592099 PMCID: PMC9113136 DOI: 10.2147/ijn.s358396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Lifan Zhu
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
- Lifan Zhu, Department of Orthopedics, Suzhou Ninth Hospital affiliated to Soochow University, Suzhou, 215200, People’s Republic of China, Email
| | - Yanjun Yang
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Zhanjun Yan
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Jincai Zeng
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Fengbiao Weng
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Yuhui Shi
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Pengcheng Shen
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Ling Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
- Correspondence: Huilin Yang, Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People’s Republic of China, Email
| |
Collapse
|
11
|
Zhang X, Wei P, Wang Z, Zhao Y, Xiao W, Bian Y, Liang D, Lin Q, Song W, Jiang W, Wang H. Herceptin-Conjugated DOX-Fe 3O 4/P(NIPAM-AA-MAPEG) Nanogel System for HER2-Targeted Breast Cancer Treatment and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15956-15969. [PMID: 35378977 DOI: 10.1021/acsami.1c24770] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is essential to synthesize a "diagnosis and therapy" integration nanocarrier for magnetic resonance imaging-guided breast cancer-targeted chemotherapy. Here, we report Fe3O4/P(NIPAM-AA-MAPEG) nanogels (MNLs) based on in situ loading of doxorubicin (DOX) by miniemulsion polymerization. Especially, propyl acrylic acid (AA) moieties were introduced to absorb DOX by electrostatic interactions and conjugated with the antibody herceptin (HER) through the amino-carboxyl coupling reaction. The size and morphology of MNLs could be adjusted by varying the polymerization parameters, such as the monomer feeding ratio, ferrofluid content, and cross-linker content. The MNLs showed superior stability in a physiological environment, but their structures were destroyed in an acidic environment to accelerate DOX release. The dissociation of the HER-DOX-MNLs accelerated the delivery of DOX and enhanced the therapeutic effects. The studies exhibited that the HER-DOX-MNLs could inhibit the tumor growth. In addition, the MNLs with a high magnetic content had the potential advantages in magnetic resonance imaging (MRI) of breast cancer diagnosis. The dual-targeted pH-responsive nanogels were successfully designed as a multifunctional nanocarrier for realizing HER2-positive breast cancer chemotherapy and diagnostics.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Pengfei Wei
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Yuan Zhao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Wenke Xiao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- College of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dong Liang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Qing Lin
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Wenli Song
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huan Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| |
Collapse
|
12
|
Wang H, Wang W, Liu L, Wang M, Li G, Li H, Li B, Yu S, Ma D, Xue W. Biodegradable Hollow Polydopamine@manganese Dioxide as an Oxygen Self-Supplied Nanoplatform for Boosting Chemo-photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57009-57022. [PMID: 34806877 DOI: 10.1021/acsami.1c18601] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) has attracted extensive attention in the clinical treatment of malignant tumor. However, the acidic and hypoxic conditions of the tumor microenvironment (TME) limit the further application of PDT in the clinic. Herein, we fabricate a new nanoplatform─HPDA@MnO2@Ce6/DOX@PEG-RGD (HPMRCD)─by means of coating hollow polydopamine nanoparticles (HPDA) with manganese dioxide (MnO2), which is modified by cyclic RGD functionalized poly(ethylene glycol) (PEG) and further co-loaded with a photosensitizer, Chlorin e6 (Ce6), and a chemotherapy drug, doxorubicin (DOX). This nanoplatform could be enriched in tumor tissues, then instantly dissociated under an acidic and H2O2-rich TME. The dual-responsive release of Mn2+ ions and oxygen (O2) can relieve tumor hypoxia, which can be used as a magnetic resonance contrast agent and the latter can enhance the PDT effect. Furthermore, the degradation of HPMRCD leads to an efficient loaded therapeutic molecule release, thus yielding a potential therapy to enhance tumor suppression by adopting the combined chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Haiyang Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wenbo Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lu Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Meng Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Guowei Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Hang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bo Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- MOE Key Laboratory of Glucolipid Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, College of Chinese Medicine Research, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Siming Yu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Biodegradable nano-porous Mn3O4 with sustainable release for improving the stability and bioactivity of peptide RVPSL. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Kim J, Lee K, Nam YS. Metal-polyphenol Complexes as Versatile Building Blocks for Functional Biomaterials. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Biotinylated chitosan macromolecule based nanosystems: A review from chemical design to biological targets. Int J Biol Macromol 2021; 188:82-93. [PMID: 34363823 DOI: 10.1016/j.ijbiomac.2021.07.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/16/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022]
Abstract
World Health Organization estimates that 30-50% of cancers are preventable by healthy lifestyle choices, early detection and adequate therapy. When the conventional therapeutic strategies are still regulated by the lack of selectivity, multidrug resistance and severe toxic side effects, nanotechnology grants a new frontier for cancer management since it targets cancer cells and spares healthy tissues. This review highlights recent studies using biotin molecule combined with functional nanomaterials used in biomedical applications, with a particular attention on biotinylated chitosan-based nanosystems. Succinctly, this review focuses on five areas of recent advances in biotin engineering: (a) biotin features, (b) biotinylation approaches, (c) biotin functionalized chitosan based nanosystems for drug and gene delivery functions, (d) diagnostic and theranostic perspectives, and (e) author's inputs to the biotin-chitosan based tumour-targeting drug delivery structures. Precisely engineered biotinylated-chitosan macromolecules shaped into nanosystems are anticipated to emerge as next-generation platforms for treatment and molecular imaging modalities applications.
Collapse
|
16
|
Zhou ZH, Liang SY, Zhao TC, Chen XZ, Cao XK, Qi M, Huang YY, Ju WT, Yang M, Zhu DW, Pang YC, Zhong LP. Overcoming chemotherapy resistance using pH-sensitive hollow MnO 2 nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma. J Nanobiotechnology 2021; 19:157. [PMID: 34039370 PMCID: PMC8157461 DOI: 10.1186/s12951-021-00901-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Smart nanoscale drug delivery systems that target acidic tumor microenvironments (TME) could offer controlled release of drugs and modulate the hypoxic TME to enhance cancer therapy. The majority of previously reported MnO2 nanostructures are nanoparticles, nanosheets, or nanocomposites incorporated with other types of nanoparticles, which may not offer the most effective method for drug loading or for the controlled release of therapeutic payloads. Previous studies have designed MnO2 nanoshells that achieve tumor-specific and enhanced combination therapy for localized advanced cancer. However, the therapeutic effect of MnO2 nanoshells on metastatic cancer is still uncertain. RESULT Here, intelligent "theranostic" platforms were synthesized based on hollow mesoporous MnO2 (H-MnO2) nanoshells that were loaded with chemotherapy agents docetaxel and cisplatin (TP) to form H-MnO2-PEG/TP nanoshells, which were designed to alleviate tumor hypoxia, attenuate angiogenesis, trigger the dissolution of Mn2+, and synergize the efficacy of first-class anticancer chemotherapy. The obtained H-MnO2-PEG/TP nanoshells decomposed in the acidic TME, releasing the loaded drugs (TP) and simultaneously attenuated tumor hypoxia and hypoxia-inducible factor-1α (HIF-1α) expression by inducing endogenous tumor hydrogen peroxide (H2O2) decomposition. In vitro experiments showed that compared with the control group, the proliferation, colony formation and migration ability of CAL27 and SCC7 cells were significantly reduced in H-MnO2-PEG/TP group, while cell apoptosis was enhanced, and the expression of hypoxia-inducible factor-1α(HIF-1α) was down-regulated. In vivo experiments showed that tumor to normal organ uptake ratio (T/N ratio) of mice in H-MnO2-PEG/TP group was significantly higher than that in TP group alone (without the nanoparticle), and tumor growth was partially delayed. In the H-MnO2-PEG/TP treatment group, HE staining showed that most of the tumor cells were severely damaged, and TUNEL assay showed cell apoptosis was up-regulated. He staining of renal and liver sections showed no obvious fibrosis, necrosis or hypertrophy, indicating good biosafety. Fluorescence staining showed that HIF-1α expression was decreased, suggesting that the accumulation of MnO2 in the tumor caused the decomposition of H2O2 into O2 and alleviated the hypoxia of the tumor. CONCLUSION In conclusion, a remarkable in vivo and in vitro synergistic therapeutic effect is achieved through the combination of TP chemotherapy, which simultaneously triggered a series of antiangiogenic and oxidative antitumor reactions.
Collapse
Affiliation(s)
- Zhi-Hang Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Si-Yuan Liang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Tong-Chao Zhao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Xu-Zhuo Chen
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Kun Cao
- Department of Orthopaedics Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, China
| | - Ming Qi
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China
| | - Ying-Ying Huang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wu-Tong Ju
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Meng Yang
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Dong-Wang Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| | - Yi-Chuan Pang
- Department of Nuclear Medicine, Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Middle Road, Shanghai, 200072, China.
| | - Lai-Ping Zhong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| |
Collapse
|
17
|
Wu Q, Zhang Q, Yu T, Wang X, Jia C, Zhao Z, Zhao J. Self-Assembled Hybrid Nanogel as a Multifunctional Theranostic Probe for Enzyme-Regulated Ultrasound Imaging and Tumor Therapy. ACS APPLIED BIO MATERIALS 2021; 4:4244-4253. [PMID: 35006837 DOI: 10.1021/acsabm.1c00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multifunctional theranostic nanoprobes integrated with stimuli-responsive imaging and therapeutic capabilities have shown great potential to enhance the early cancer diagnostic efficacy and therapeutic efficiency. Elevated levels of lactate and hydrogen peroxide have been considered as the characteristic feature of the tumor microenvironment and can thus be exploited for developing promising theranostic strategies. We demonstrate here that the biocompatible and responsive enzyme-based nanogel probe has been designed as a promising theranostic tool to target high lactate and hydrogen peroxide for ultrasound imaging (US) and cancer treatment. We encapsulate the dual enzyme lactate oxidase (LOD) and catalase (CAT) into the self-assembled nanogels to fabricate responsive nanoprobe LOD/CAT-loaded nanogels (LCNGs). The nanoprobes can respond to the lactate and H2O2 rich tumor microenvironment to generate abundant oxygen, which further accumulates into microbubbles for enhanced US imaging. Besides, LCNGs@DOX has been further created by integrating the nanoprobes with doxorubicin (DOX) for cancer therapy. Both in vitro and in vivo results demonstrate enhanced US imaging and effective cell proliferation inhibition of LCNGs@DOX, allowing the preparation of safe and efficient theranostic nanoprobes capable of responsive US imaging and treating tumors.
Collapse
Affiliation(s)
- Qing Wu
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Qi Zhang
- School of Chemical Science and Engineering, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Tianyu Yu
- School of Chemical Science and Engineering, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Xia Wang
- School of Chemical Science and Engineering, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
| | - Zonghui Zhao
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
| |
Collapse
|
18
|
Yang S, Li D, Chen L, Zhou X, Fu L, You Y, You Z, Kang L, Li M, He C. Coupling metal organic frameworks with molybdenum disulfide nanoflakes for targeted cancer theranostics. Biomater Sci 2021; 9:3306-3318. [PMID: 33459315 DOI: 10.1039/d0bm02012e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The superior properties of metal organic frameworks (MOF) can provide great opportunities for merging functional nanoparticles to construct smart and versatile cancer theranostic agents. In this study, on the basis of non-mesoporous nanoparticles (molybdenum disulfide, MoS2), the structure of the MOF shell layer with an adjustable structure can be constructed through the natural coordination interaction between polydopamine (PDA) and iron ion, and the tumor cell target ligand was modified on the surface of the nanocomposite after loading the anticancer drug doxorubicin hydrochloride (DOX) to form a multifunctional cancer theranostics nanoplatform (DOX@MoS2-PMA). Benefiting from the excellent properties of MoS2 and MOF, the favorable photothermal properties and pH/near-infrared (NIR) laser-triggered DOX release behavior of composite nanoparticles were demonstrated. Its well-defined nanostructure, adequate colloidal stability, and satisfactory biocompatibility were further evidenced. Furthermore, the selective tumor cell targeting ability of DOX@MoS2-PMA can improve the cellular uptake efficacy and the photothermal-chemotherapy combination therapy can significantly enhance the killing effect on cancer cells both in vitro and in vivo. In addition, fluorescence imaging results show that nanoparticles can efficiently accumulate inside tumors. The photoacoustic (PA) and magnetic resonance (MR) imaging capabilities derived from different components of nanoparticles can perform better imaging effects. To the best of our knowledge, this is the first attempt to merge the performance of MoS2 with MOF for PA/MR dual-modality imaging-guided photothermal-chemotherapy combination therapy. Our work presented herein proves that MOF can be combined with non-mesoporous nanoparticles and exhibits excellent performance, thus opening a new avenue for endowing non-mesoporous nanoparticles with an efficient drug loading capacity and practical applications of MOFs in nanomedicine.
Collapse
Affiliation(s)
- Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201301, China
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Liwen Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Yanling You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhengwei You
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Li Kang
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
19
|
Yang HY, Li Y, Lee DS. Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P.R. China
| | - Yi Li
- College of Materials and Textile Engineering Jiaxing University Jiaxing Zhejiang Province 314001 P.R. China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
20
|
Ultra-small size gelatin nanogel as a blood brain barrier impermeable contrast agent for magnetic resonance imaging. Acta Biomater 2021; 125:290-299. [PMID: 33601066 DOI: 10.1016/j.actbio.2021.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Magnetic Resonance Imaging (MRI) contrast agents with rapid renal excretion that do not penetrate the blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCFB) are preferred for safer and low-risk diagnosis. Gadolinium (Gd)-conjugated nanoparticles have been proposed for use as contrast agents; however, the particle size must range between 1 to 7 nm to ensure rapid renal excretion. In this study, three types of gelatin, dissolved in water at varying concentrations of 0.1-2 wt.%, were irradiated with 5 kGy γ-rays at 25°C under aerated conditions to produce ultra-small gelatin nanogels having an average particle size ranging between 6 ± 2 to 21 ± 4 nm. Ultra-small Gd-coordinated gelatin nanogels (GdGN) suitable for use as MRI contrast agents were produced using 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DOTA-NHS) and DOTA-butylamine as Gd ligand derivatives. Non-cytotoxicity and effective relaxivity of GdGN as a positive MRI contrast agent were verified using in vivo experiments. Rapid renal excretion of GdGN was observed in mice within 1 h with no accumulation in the liver. GdGN did not migrate across the BCFB in normal mice, thus emphasizing its safety as an MRI contrast agent. STATEMENT OF SIGNIFICANCE: The authors developed ultra-small sized gelatin nanogels as blood-brain-barrier impermeable contrast agents for magnetic resonance imaging (MRI). The authors used radiation crosslinking technique to ensure better integrity of the amino acids present in the gelatin nanogels while conjugating with gadolinium (Gd) to form gadolinium-coordinated gelatin nanogels (GdGN). The safety and efficacy of GdGN, as MRI contrast agents, were verified by in vivo studies. GdGN exhibited rapid renal excretion within 90 minutes and no passage across the barriers in the brain.
Collapse
|
21
|
Wang X, Wang Q. Enzyme-Laden Bioactive Hydrogel for Biocatalytic Monitoring and Regulation. Acc Chem Res 2021; 54:1274-1287. [PMID: 33570397 DOI: 10.1021/acs.accounts.0c00832] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes, a class of highly efficient and specific catalysts in Nature, dictate a myriad of reactions that constitute various cascades in biological systems. There is growing evidence that many cellular reactions within metabolic pathways are catalyzed by matrix-associated multienzyme complexes, not via the free enzymes, verifying the vital effects of microenvironmental organization, which would reveal implications for the high efficiency, specificity, and regulation of metabolic pathways. The extracellular matrix (ECM), as the noncellular component, is composed of various proteins such as collagens, laminins, proteoglycans, and remodeling enzymes, playing the key role in tissue architecture and homeostasis. Hydrogels are defined as highly hydrated polymer materials and maintain structural integrity by physical and chemical force, which are thought of as the most suitable materials for matching the chemical, physical, and mechanical properties with natural ECM. As one specific type of soft and wet materials, hydrogels are suitable three-dimensional carriers to locally confine bioactive guests, such as enzymes, for molecular-level biological interactions. The efficient cascade catalysis can be realized by enzyme-laden hydrogels, which can potentially interact with cells and tissues by material-to-biology communication. In this Account, we present recent progress on the preparation of enzymatic bioactive hydrogels, including in situ coassembly, in situ cross-linking strategy, and in situ enzymatic radical polymerization technology, further promoting their applications on biomedical tissue engineering, biocatalytic health monitoring, and therapeutic research. First, we provide a brief introduction of the basic concept related to an enzymatic strategy in living systems and the importance of bioinspired enzyme-laden bioactive hydrogel systems. We discuss the difficulties of the fabrication of a bioactive hydrogel with a high catalytic efficiency, thereby providing the novel molecular design and regulation based on a noncovalent coassembly and in situ self-immobilization strategy to obtain the compartmentalized enzyme-laden structure. Then the applications of an enzyme-laden bioactive hydrogel for biocatalytic applications are discussed in detail. The enzyme-laden bioactive hydrogel can maintain the favorable perception and regulation behavior of enzymes with optimal enzymatic efficacy between this confined hydrogel network and a surrounding environment. A highlight to the advances in the responsively biocatalytic monitoring and regulation of bioactive hydrogel, including the enzymatic biomedical tissue engineering and health monitoring, enzymatic regulation of tumor reactive oxygen species and therapeutic research are given. Finally, the outlook of open challenges and future developments of this rapidly evolving field is provided. This Account with highlights of diverse enzyme-laden bioactive hydrogel systems not only provides interesting insights to understand the cascade enzymatic strategy of life but also inspires to broaden and enhance the molecular-level material design and bioapplications of existing enzymatic materials in chemistry, materials science, and biology.
Collapse
Affiliation(s)
- Xia Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
22
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
23
|
Pramod Kumar EK, Um W, Park JH. Recent Developments in Pathological pH-Responsive Polymeric Nanobiosensors for Cancer Theranostics. Front Bioeng Biotechnol 2020; 8:601586. [PMID: 33330431 PMCID: PMC7717944 DOI: 10.3389/fbioe.2020.601586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- E. K. Pramod Kumar
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, South Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Jae Hyung Park,
| |
Collapse
|
24
|
Mansouri H, Gholibegloo E, Mortezazadeh T, Yazdi MH, Ashouri F, Malekzadeh R, Najafi A, Foroumadi A, Khoobi M. A biocompatible theranostic nanoplatform based on magnetic gadolinium-chelated polycyclodextrin: in vitro and in vivo studies. Carbohydr Polym 2020; 254:117262. [PMID: 33357850 DOI: 10.1016/j.carbpol.2020.117262] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023]
Abstract
A novel theranostic nanoplatform was prepared based on Fe3O4 nanoparticles (NPs) coated with gadolinium ions decorated-polycyclodextrin (PCD) layer (Fe3O4@PCD-Gd) and employed for Curcumin (CUR) loading. The dissolution profile of CUR indicated a pH sensitive release manner. Fe3O4@PCD-Gd NPs exhibited no significant toxicity against both normal and cancerous cell lines (MCF 10A and 4T1, respectively); while the CUR-free NPs showed more toxicity against 4T1 than MCF 10A cells. In vivo anticancer study revealed appropriate capability of the system in tumor shrinking with no tissue toxicity and adverse effect on body weight. In vivo MR imaging of BALB/c mouse showed both T1 and T2 contrast enhancement on the tumor cells. Fe3O4@PCD-Gd/CUR NPs showed significant features as a promising multifunctional system having appropriate T1-T2 dual contrast enhancement and therapeutic efficacy in cancer theranostics.
Collapse
Affiliation(s)
- Hedieh Mansouri
- Active Pharmaceutical Ingredients Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Gholibegloo
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Najafi
- Department of Immunology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Mehdi Khoobi
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176, Iran.
| |
Collapse
|
25
|
Huang J, Huang Y, Xue Z, Zeng S. Tumor microenvironment responsive hollow mesoporous Co 9S 8@MnO 2-ICG/DOX intelligent nanoplatform for synergistically enhanced tumor multimodal therapy. Biomaterials 2020; 262:120346. [PMID: 32927232 DOI: 10.1016/j.biomaterials.2020.120346] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
The development of multifunctional nanoplatform with combination of tumor microenvironment (TME)-responsive dual T1/T2 magnetic resonance (MR) imaging and synergistically self-enhanced photothermal/photodynamic/chemo-therapy is of significant importance for tumor theranostic, which still remains a great challenge. Herein, a novel hollow mesoporous double-shell Co9S8@MnO2 nanoplatform loaded with photodynamic agent of indocyanine green molecules (ICG) and chemotherapy drug of doxorubicin (DOX) was designed for TME responsive dual T1/T2 enhanced MR imaging and synergistically enhanced anti-tumor therapy. The designed nanoplatform with MnO2 shell can act as a TME-responsive oxygen self-supplied producer to alleviate tumor hypoxia and simultaneously improve photodynamic therapy (PDT) efficiency. Moreover, the TME-induced MnO2 dissolving and near-infrared (NIR) triggered photothermal nature from Co9S8 shell can further promote the tumor-targeted DOX release, leading to the synergistically improved anti-tumor efficacy. And the simultaneous enhancement in dual T1/T2 MR signal was achieved for highly specific tumor diagnosis. The in vivo and in vitro results confirmed that the designed TME-triggered nanoplatform with synergistic combination therapy presented good biocompatibility, and superior inhibition of tumor growth than monotherapy. This study provides the opportunities of designing intelligent TME-activated nanoplatform for highly specific tumor MR imaging and collaborative self-enhanced tumor therapy.
Collapse
Affiliation(s)
- Junqing Huang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, PR China
| | - Yao Huang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, PR China
| | - Zhenluan Xue
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, PR China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
26
|
Qi M, Pan H, Shen H, Xia X, Wu C, Han X, He X, Tong W, Wang X, Wang Q. Nanogel Multienzyme Mimics Synthesized by Biocatalytic ATRP and Metal Coordination for Bioresponsive Fluorescence Imaging. Angew Chem Int Ed Engl 2020; 59:11748-11753. [PMID: 32243658 DOI: 10.1002/anie.202002331] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Indexed: 12/12/2022]
Abstract
The design of enzyme mimics from stable and nonprotein systems is especially attractive for applications in highly specific cancer diagnosis and treatment, and it has become an emerging field in recent years. Herein, metal crosslinked polymeric nanogels (MPGs) were prepared using FeII ion coordinated biocompatible acryloyl-lysine polymer brushes obtained from an enzyme-catalyzed atomic transfer radical polymerization (ATRPase) method. The monoatomic and highly dispersed Fe ions in the MPGs serve as efficient crosslinkers of the gel network, and also as active centers of multienzyme mimics of superoxide dismutase (SOD) and peroxidase (POD). The catalytic activities were compared to those of conventional Fe-based nanozymes. Studies on both cells and animals verify that efficient reactive oxygen species (ROS) responsive biofluorescence imaging can be successfully realized using the MPGs.
Collapse
Affiliation(s)
- Meiyuan Qi
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Hui Pan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Hongdou Shen
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xianmeng Xia
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Chu Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xiaoke Han
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xingyue He
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Wei Tong
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, P. R. China
| | - Xia Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
27
|
Qi M, Pan H, Shen H, Xia X, Wu C, Han X, He X, Tong W, Wang X, Wang Q. Nanogel Multienzyme Mimics Synthesized by Biocatalytic ATRP and Metal Coordination for Bioresponsive Fluorescence Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meiyuan Qi
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Hui Pan
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Hongdou Shen
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Xianmeng Xia
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Chu Wu
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Xiaoke Han
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Xingyue He
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Wei Tong
- High Magnetic Field Laboratory Chinese Academy of Sciences 350 Shushanhu Road Hefei 230031 P. R. China
| | - Xia Wang
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Qigang Wang
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| |
Collapse
|
28
|
Xiu W, Gan S, Wen Q, Qiu Q, Dai S, Dong H, Li Q, Yuwen L, Weng L, Teng Z, Mou Y, Wang L. Biofilm Microenvironment-Responsive Nanotheranostics for Dual-Mode Imaging and Hypoxia-Relief-Enhanced Photodynamic Therapy of Bacterial Infections. RESEARCH 2020; 2020:9426453. [PMID: 32377640 PMCID: PMC7128073 DOI: 10.34133/2020/9426453] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/05/2020] [Indexed: 01/06/2023]
Abstract
The formation of bacterial biofilms closely associates with infectious diseases. Until now, precise diagnosis and effective treatment of bacterial biofilm infections are still in great need. Herein, a novel multifunctional theranostic nanoplatform based on MnO2 nanosheets (MnO2 NSs) has been designed to achieve pH-responsive dual-mode imaging and hypoxia-relief-enhanced antimicrobial photodynamic therapy (aPDT) of bacterial biofilm infections. In this study, MnO2 NSs were modified with bovine serum albumin (BSA) and polyethylene glycol (PEG) and then loaded with chlorin e6 (Ce6) as photosensitizer to form MnO2-BSA/PEG-Ce6 nanosheets (MBP-Ce6 NSs). After being delivered into the bacterial biofilm-infected tissues, the MBP-Ce6 NSs could be decomposed in acidic biofilm microenvironment and release Ce6 with Mn2+, which subsequently activate both fluorescence (FL) and magnetic resonance (MR) signals for effective dual-mode FL/MR imaging of bacterial biofilm infections. Meanwhile, MnO2 could catalyze the decomposing of H2O2 in biofilm-infected tissues into O2 and relieve the hypoxic condition of biofilm, which significantly enhances the efficacy of aPDT. An in vitro study showed that MBP-Ce6 NSs could significantly reduce the number of methicillin-resistant Staphylococcus aureus (MRSA) in biofilms after 635 nm laser irradiation. Guided by FL/MR imaging, MRSA biofilm-infected mice can be efficiently treated by MBP-Ce6 NSs-based aPDT. Overall, MBP-Ce6 NSs not only possess biofilm microenvironment-responsive dual-mode FL/MR imaging ability but also have significantly enhanced aPDT efficacy by relieving the hypoxia habitat of biofilm, which provides a promising theranostic nanoplatform for bacterial biofilm infections.
Collapse
Affiliation(s)
- Weijun Xiu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Siyu Gan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qirui Wen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qiu Qiu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Sulai Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Qiang Li
- Department of Oral Implantology, Nanjing Stomatological Hospital, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhaogang Teng
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
29
|
Multifunctional Gadolinium-Based Coordination Polymer Hollow Submicrospheres: Synthesis, Characterization and Properties. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01276-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Zhang K, Lin H, Mao J, Luo X, Wei R, Su Z, Zhou B, Li D, Gao J, Shan H. An extracellular pH-driven targeted multifunctional manganese arsenite delivery system for tumor imaging and therapy. Biomater Sci 2019; 7:2480-2490. [PMID: 30957825 DOI: 10.1039/c9bm00216b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Expanding the use of arsenic trioxide (ATO, As2O3) in cancer chemotherapy has received extensive attention in recent years owing to its remarkable efficacy in treating acute promyelocytic leukemia (APL). To date, the use of ATO for clinical treatment of solid tumors is still limited by its poor biocompatibility and severe toxic side effects. To address these limitations, here we developed a pH-low insertion peptide (pHLIP) modified ATO-based multifunctional drug-delivery system (DDS), which is termed MnAs@SiO2-pHLIP. With the coating of pHLIP, MnAs@SiO2-pHLIP could efficiently target the acidic tumor microenvironment, resulting in high intracellular accumulation of the DDS. As a "smart" nanoparticle (NP) platform, the DDS could controllably discharge the loaded ATO in response to acidic environments, which promotes the apoptosis of cancer cells. The features of controlled release capacity and the outstanding targeting ability contribute to better anticancer efficacy and less toxicity towards normal tissues compared with free ATO. It is worth noting that the acidic tumor microenvironment would also trigger the release of manganese ions (Mn2+) that brighten the T1 signal, which is exploited for real-time monitoring via contrast-enhanced magnetic resonance imaging (MRI). These multifunctional features, as demonstrated by both in vitro and in vivo experiments, could potentially expand the use of ATO to the treatment of solid tumors. We believe that MnAs@SiO2-pHLIP could serve as an auspicious agent for cancer theranostics and find tremendous applications in cancer management.
Collapse
Affiliation(s)
- Ke Zhang
- Center for Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhou H, Ge J, Miao Q, Zhu R, Wen L, Zeng J, Gao M. Biodegradable Inorganic Nanoparticles for Cancer Theranostics: Insights into the Degradation Behavior. Bioconjug Chem 2019; 31:315-331. [PMID: 31765561 DOI: 10.1021/acs.bioconjchem.9b00699] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inorganic nanoparticles as a versatile nanoplatform have been broadly applied in the diagnosis and treatment of cancers due to their inherent superior physicochemical properties (including magnetic, thermal, optical, and catalytic performance) and excellent functions (e.g., imaging, targeted delivery, and controlled release of drugs) through surface functional modification or ingredient dopant. However, in practical biological applications, inorganic nanomaterials are relatively difficult to degrade and excrete, which induces a long residence time in living organisms and thus may cause adverse effects, such as inflammation and tissue cysts. Therefore, the development of biodegradable inorganic nanomaterials is of great significance for their biomedical application. This Review will focus on the recent advances of degradable inorganic nanoparticles for cancer theranostics with highlight on the degradation mechanism, aiming to offer an in-depth understanding of degradation behavior and related biomedical applications. Finally, key challenges and guidelines will be discussed to explore biodegradable inorganic nanomaterials with minimized toxicity issues, facilitating their potential clinical translation in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Qingqing Miao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Ran Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Ling Wen
- Department of Radiology , The First Affiliated Hospital of Soochow University , Suzhou 215006 , China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China.,Institute of Chemistry, Chinese Academy of Sciences/School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
32
|
Arian M, Zamanian A, Taheri S. Highly water-dispersible calcium lignosulfonate-capped MnO nanoparticles as a T 1 MRI contrast agent with exceptional colloidal stability, low toxicity and remarkable relaxivity. RSC Adv 2019; 9:40498-40506. [PMID: 35542658 PMCID: PMC9076238 DOI: 10.1039/c9ra09125d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022] Open
Abstract
A simple and efficient method to synthesize highly water-dispersible calcium lignosulfonate-coated manganese oxide nanoparticles as a potential candidate for the current magnetic resonance imaging (MRI) T 1 contrast agents was reported. Hydrophobic MnO nanoparticles with dimensions of about 10 nm were prepared by thermal decomposition of manganese(ii)acetylacetonate in the presence of oleic acid as a surfactant. The characteristics of the synthesized nanoparticles, cytotoxicity assay and in vitro MRI properties were investigated in detail. Results showed that calcium lignosulfonate has a great influence on the colloidal stability and biocompatibility of MnO nanoparticles in water. Furthermore, this coating agent ensures abundant exposure of external Mn ion with protons of water, which endows the nanoparticles with a longitudinal molar relaxivity (r 1) of 4.62 mM-1 s-1. An efficient contrast enhancement effect was observed in the study of MRI investigations.
Collapse
Affiliation(s)
- Mahdi Arian
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC) PO Box 14155-4777 Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC) PO Box 14155-4777 Tehran Iran
| | - Salman Taheri
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) PO Box 14335-186 Tehran Iran
| |
Collapse
|
33
|
Li Y, Wang N, Huang X, Li F, Davis TP, Qiao R, Ling D. Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 3:121-142. [DOI: 10.1021/acsabm.9b00896] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
34
|
Wang X, Qiao L, Yu X, Wang X, Jiang L, Wang Q. Controllable Formation of Ternary Inorganic-Supramolecular-Polymeric Hydrogels by Amidation-Fueled Self-assembly and Enzymatic Post-cross-linking for Ultrasound Theranostic. ACS Biomater Sci Eng 2019; 5:5888-5896. [DOI: 10.1021/acsbiomaterials.9b01065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xia Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Li Qiao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Xiao Yu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoshan Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lixin Jiang
- Department of Ultrasound in Medicine, Jiao Tong University, Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
35
|
Li F, Liang Z, Ling D. Smart Organic-Inorganic Nanogels for Activatable Theranostics. Curr Med Chem 2019; 26:1366-1376. [PMID: 28933302 DOI: 10.2174/0929867324666170920164614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/11/2017] [Accepted: 06/15/2017] [Indexed: 01/14/2023]
Abstract
Intelligent polymeric nanogels, with the rationally designed stimuli-responsive drug delivery and controlled drug release, have attracted considerable attention as an ideal nanoplatform for activatable therapy. On the other hand, functional inorganic nanomaterials are widely used as medical imaging agents due to their unique magnetic or optical properties. The construction of stimuli-responsive polymeric nanogels incorporating with functional inorganic nanomaterials inherits the excellent properties of both polymers and inorganic nanomaterials, consequently, the resulted organic-inorganic hybrid nanogels naturally exhibit stimuli-responsive multi-functionalities for both imaging and therapy. In this review, we summarize the recent advances of stimuli-responsive organic-inorganic hybrid nanogels. Firstly, we discuss the physical and chemical methods thus far developed for the integration of polymeric nanogels and inorganic nanomaterials, and then we show the typical examples of activatable theranostic applications using organic-inorganic hybrid nanogels. In the end, the existing challenges and future directions are briefly discussed.
Collapse
Affiliation(s)
- Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Zeyu Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering A Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Xiao F, Xiao Y, Chen F, Liu X, Lin C, Chen J, Wu Y. Facile synthesis of Silicon quantum dot-Gadolinium: A potential fluorescent/T1-T2 multimodal imaging agent. Talanta 2019; 199:336-346. [PMID: 30952268 DOI: 10.1016/j.talanta.2019.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/03/2019] [Accepted: 02/09/2019] [Indexed: 11/28/2022]
Abstract
Highly stable and multifunctional fluorescent quantum dots are particularly attractive in practical applications. Here, a new kind of ultra-small-sized silicon quantum dot-gadolinium (SiQD-Gd) was successfully fabricated by a newly-designed facile hydrothermal growth and chelating method. The obtained SiQD-Gd exhibited outstanding water dispersibility, stability and good fluorescent property with the quantum yield of 11.6%. SiQD-Gd displayed a low cytotoxicity in normal cell lines (HELF, HEK293F) and tumor cell lines (H1299, A549). Meanwhile, SiQD-Gd showed excellent magnetic resonance response with r1 relaxation rate of 10.5 mmol L-1·s-1 and r2 relaxation rate of 47.5 mmol L-1·s-1, which are 2.5 and 7.4 times enhanced comparing to that of the commercial MR agent Magnevist. In vivo studies showed significant contrast enhancement effect of its T1- and T2-weighted MR imaging. In addition, in vivo fluorescent imaging for mice and zebrafish indicated its potential applications in fluorescent tracking. Thus, the excellent multimodal imaging capacity and biocompatibility of SiQD-Gd make it a potential imaging agent for clinic applications.
Collapse
Affiliation(s)
- Fangnan Xiao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou 350119, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Yue Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; School of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangman Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; School of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chentao Lin
- Department of Immunology, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou 350119, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
37
|
A biodegradable MnSiO3@Fe3O4 nanoplatform for dual-mode magnetic resonance imaging guided combinatorial cancer therapy. Biomaterials 2019; 194:151-160. [DOI: 10.1016/j.biomaterials.2018.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/30/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
|
38
|
Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2018; 119:1666-1762. [DOI: 10.1021/acs.chemrev.8b00401] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Laboratory of Fiber Materials and Modern Textiles, Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Di Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
39
|
García-Hevia L, Bañobre-López M, Gallo J. Recent Progress on Manganese-Based Nanostructures as Responsive MRI Contrast Agents. Chemistry 2018; 25:431-441. [PMID: 29999200 DOI: 10.1002/chem.201802851] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/09/2018] [Indexed: 01/10/2023]
Abstract
Manganese-based nanostructured contrast agents (CAs) entered the field of medical diagnosis through magnetic resonance imaging (MRI) some years ago. Although some of these Mn-based CAs behave as classic T1 contrast enhancers in the same way as clinical Gd-based molecules do, a new type of Mn nanomaterials have been developed to improve MRI sensitivity and potentially gather new functional information from tissues by using traditional T1 contrast enhanced MRI. These nanomaterials have been designed to respond to biological environments, mainly to pH and redox potential variations. In many cases, the differences in signal generation in these responsive Mn-based nanostructures come from intrinsic changes in the magnetic properties of Mn cations depending on their oxidation state. In other cases, no changes in the nature of Mn take place, but rather the nanomaterial as a whole responds to the change in the environment through different mechanisms, including changes in integrity and hydration state. This review focusses on the chemistry and MR performance of these responsive Mn-based nanomaterials.
Collapse
Affiliation(s)
- Lorena García-Hevia
- Advanced (Magnetic) Theranostic Nanostructures Laboratory, Department of Life Sciences, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330, Braga, Portugal
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Laboratory, Department of Life Sciences, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330, Braga, Portugal
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Laboratory, Department of Life Sciences, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330, Braga, Portugal
| |
Collapse
|
40
|
Duan B, Wang D, Wu H, Xu P, Jiang P, Xia G, Liu Z, Wang H, Guo Z, Chen Q. Core–Shell Structurized Fe3O4@C@MnO2 Nanoparticles as pH Responsive T1-T2* Dual-Modal Contrast Agents for Tumor Diagnosis. ACS Biomater Sci Eng 2018; 4:3047-3054. [DOI: 10.1021/acsbiomaterials.8b00287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Beichen Duan
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230026, People’s Republic of China
| | - Dongdong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230026, People’s Republic of China
| | - Huihui Wu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230027, People’s Republic of China
| | - Pengping Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230026, People’s Republic of China
| | - Peng Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230026, People’s Republic of China
| | - Guoliang Xia
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230026, People’s Republic of China
| | - Zhenbang Liu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230027, People’s Republic of China
| | - Haibao Wang
- Radiology Department of the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, People’s Republic of China
| | - Zhen Guo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230027, People’s Republic of China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, No.96, JinZhai Road, Hefei 230026, People’s Republic of China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No.350 Shushanhu Road, Hefei 230031, People’s Republic of China
| |
Collapse
|
41
|
Wang H, Chen Q, Zhou S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 2018; 47:4198-4232. [PMID: 29667656 DOI: 10.1039/c7cs00399d] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.
Collapse
Affiliation(s)
- Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, P. R. China.
| | | | | |
Collapse
|
42
|
Wang X, Chen S, Wu D, Wu Q, Wei Q, He B, Lu Q, Wang Q. Oxidoreductase-Initiated Radical Polymerizations to Design Hydrogels and Micro/Nanogels: Mechanism, Molding, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705668. [PMID: 29504155 DOI: 10.1002/adma.201705668] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/16/2017] [Indexed: 06/08/2023]
Abstract
Due to their 3D cross-linked networks and tunable physicochemical properties, polymer hydrogels with different sizes are applied widely in tissue engineering, drug-delivery systems, pollution regulation, ionic conducting electrolytes, agricultural drought-resistance, cosmetics, and the food industry. Novel, environmentally friendly, and efficient oxidoreductase-initiated radical polymerizations to design hydrogels and micro/nanogels have gained increasing attention. Herein, the recent advances on the use of novel enzyme-initiated systems for hydrogel polymerization, including the mechanisms, and molding of polymeric and hybrid-polymeric networks are reviewed. Preliminary progress related to interfacial enzymatic polymerization for the generation of hybrid micro/nanogels is introduced as an emerging initiating approach. In addition, certain biological applications in tissue engineering, bioimaging, and therapy are demonstrated step by step. Finally, some perspectives on the safety profile of enzymatic formed hydrogels, new enzymatic systems, and potential theranostic applications are discussed.
Collapse
Affiliation(s)
- Xia Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Dongbei Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qing Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qingcong Wei
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Bin He
- Department of Control Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qinghua Lu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
43
|
Liu Y, Lv X, Liu H, Zhou Z, Huang J, Lei S, Cai S, Chen Z, Guo Y, Chen Z, Zhou X, Nie L. Porous gold nanocluster-decorated manganese monoxide nanocomposites for microenvironment-activatable MR/photoacoustic/CT tumor imaging. NANOSCALE 2018; 10:3631-3638. [PMID: 29412212 DOI: 10.1039/c7nr08535d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stimuli-responsive nanoprobes that integrate multi-modal imaging capacities are highly desirable for precise tumor visualization. Herein, novel porous gold nanocluster-decorated manganese monoxide nanocomposites (MnO@Au NCs) were synthesized via a facile approach. The porous gold nanocluster layer was germinated on the surface of the as-prepared MnO@DMSA NPs through simple reduction of chloroauric acid in the presence of hydroxylamine hydrochloride. The MnO@Au NCs could be effectively internalized by tumor cells and slowly release Mn2+ ions within the acidic tumor microenvironment, improving the visualization of the tumor morphology. Benefitting from the porous architecture, the enhanced accessibility of Mn centers to proximal water molecules greatly augmented T1-weighted MRI contrast capacity. Compared with the conventional Mn-based contrast agents, the porous Au nanoclusters on MnO@Au NCs could delay the release of Mn2+ ions and thus effectively prolong the diagnostic time window. The broad near-infrared absorption of MnO@Au NCs features a high photoacoustic imaging depth than that of conventional gold nanospheres. Moreover, the Au nanoclusters exhibited desirable X-ray computed tomography contrast and rapid clearance from the living body. The as-prepared MnO@Au NCs hold great potential for accurate tumor imaging.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sun W, Zhang J, Zhang C, Wang P, Peng C, Shen M, Shi X. Construction of Hybrid Alginate Nanogels Loaded with Manganese Oxide Nanoparticles for Enhanced Tumor Magnetic Resonance Imaging. ACS Macro Lett 2018; 7:137-142. [PMID: 35610908 DOI: 10.1021/acsmacrolett.7b00999] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Development of sensitive contrast agents for positive magnetic resonance (MR) imaging of biosystems still remains a great challenge. Herein, we report a facile process to construct hybrid alginate (AG) nanogels (NGs) loaded with manganese oxide (Mn3O4) nanoparticles (NPs) for enhanced tumor MR imaging. The obtained AG/PEI-Mn3O4 NGs with a mean size of 141.6 nm display excellent colloidal stability in aqueous solution and good cytocompatibility in the studied concentration range. Moreover, the hybrid NGs have a high r1 relaxivity of 26.12 mM-1 s-1, which is about 19.5 times higher than that of PEI-Mn3O4 NPs with PEI surface amine acetylated (PEI.Ac-Mn3O4 NPs). Furthermore, the AG/PEI-Mn3O4 NGs presented longer blood circulation time and better tumor MR imaging performances in vivo than PEI.Ac-Mn3O4 NPs. With the good biosafety confirmed by histological examinations, the developed AG/PEI-Mn3O4 NGs may be potentially used as an efficient contrast agent for enhanced MR imaging of different biosystems.
Collapse
Affiliation(s)
- Wenjie Sun
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jiulong Zhang
- Department
of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
| | - Changchang Zhang
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Peng Wang
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Chen Peng
- Department
of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
| | - Mingwu Shen
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State
Key Laboratory for Modification of Chemical Fiber and Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro
de Química da Madeira, Universidade da Madeira, Campus da
Penteada, 9000-390 Funchal, Portugal
| |
Collapse
|
45
|
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018; 6:210-235. [PMID: 32254164 DOI: 10.1039/c7tb02239e] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Water-soluble, nano-sized crosslinked polymer networks, or nanogels, are delivery vehicles, which have highly interesting properties for therapeutic delivery and imaging. Nanogels may also possess responsive properties, depending on the employed polymers, allowing controlled release of therapeutics or image contrast generation upon exposure to physical or (bio)chemical cues. In this review, polymer nanogels are explored for application in imaging as well as for controlled drug and gene delivery. Moreover, nanogels are explored as responsive biomaterials and future applications are highlighted.
Collapse
Affiliation(s)
- Antonie E Ekkelenkamp
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Madhusudana Rao K, Krishna Rao KS, Ha CS. Functional stimuli-responsive polymeric network nanogels as cargo systems for targeted drug delivery and gene delivery in cancer cells. DESIGN OF NANOSTRUCTURES FOR THERANOSTICS APPLICATIONS 2018:243-275. [DOI: 10.1016/b978-0-12-813669-0.00006-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Jin L, Liu J, Tang Y, Cao L, Zhang T, Yuan Q, Wang Y, Zhang H. MnO 2-Functionalized Co-P Nanocomposite: A New Theranostic Agent for pH-Triggered T 1/T 2 Dual-Modality Magnetic Resonance Imaging-Guided Chemo-photothermal Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41648-41658. [PMID: 29116748 DOI: 10.1021/acsami.7b10608] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Construction of stimuli-responsive theranostic nanoagents that can increase the accuracy of imaging diagnosis and boost the therapeutic efficacy has been demonstrated for a promising approach for diagnosis and treatment of cancer. Herein, we constructed a novel theranostic agent with Co-P nanocomposites as core, mesoporous silica as shell, and manganese dioxide (MnO2) nanosheets as gatekeeper, which have been employed for pH-activatable T1/T2 dual-modality magnetic resonance imaging (MRI)-guided chemotherapeutical and photothermal combination anticancer therapy in vitro and in vivo. Co-P core-enabled theranostic platform could be applied for both photothermal therapy and T2-weighted MRI in the normal circulation owing to its strong near-infrared absorbance and intrinsic magnetic properties. In the acidic environment of tumors, MnO2 cap could be dissolved into Mn2+ ions to not only realize pH-responsive on-demand drug release but also activate T1-weighted MRI contrast enhancement. Such T1/T2 dual-mode MR imaging provides further comprehensive details and accurate information for tumor diagnosis, and the on-demand chemo-photothermal synergetic therapy greatly improved the therapeutic effectiveness and effectively mitigated side effects. These findings demonstrate that Co-P@mSiO2@DOX-MnO2 are promising as pH-responsive theranostic agents for tumor diagnosis and treatment, and stimulate interest in exploration of novel stimuli-responsive theranostic nanoagents which posssess good potential for clinical application in the future.
Collapse
Affiliation(s)
| | | | - Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University , Changchun, 130021 P.R. China
| | | | | | | | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS) , Changchun, 130022 P.R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS) , Changchun, 130022 P.R. China
| |
Collapse
|
48
|
Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z. Hollow MnO 2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 2017; 8:902. [PMID: 29026068 PMCID: PMC5638920 DOI: 10.1038/s41467-017-01050-0] [Citation(s) in RCA: 988] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Herein, an intelligent biodegradable hollow manganese dioxide (H-MnO2) nano-platform is developed for not only tumor microenvironment (TME)-specific imaging and on-demand drug release, but also modulation of hypoxic TME to enhance cancer therapy, resulting in comprehensive effects favoring anti-tumor immune responses. With hollow structures, H-MnO2 nanoshells post modification with polyethylene glycol (PEG) could be co-loaded with a photodynamic agent chlorine e6 (Ce6), and a chemotherapy drug doxorubicin (DOX). The obtained H-MnO2-PEG/C&D would be dissociated under reduced pH within TME to release loaded therapeutic molecules, and in the meantime induce decomposition of tumor endogenous H2O2 to relieve tumor hypoxia. As a result, a remarkable in vivo synergistic therapeutic effect is achieved through the combined chemo-photodynamic therapy, which simultaneously triggers a series of anti-tumor immune responses. Its further combination with checkpoint-blockade therapy would lead to inhibition of tumors at distant sites, promising for tumor metastasis treatment.MnO2 nanostructures are promising TME-responsive theranostic agents in cancer. Here, the authors develop a nano-platform based on hollow H-MnO2 nanoshells able to modulate the tissue microenvironment, release a drug and inhibit tumor growth alone or in combination with check-point blockade therapy.
Collapse
Affiliation(s)
- Guangbao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaoqi Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yifan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
49
|
Wei J, Shuai X, Wang R, He X, Li Y, Ding M, Li J, Tan H, Fu Q. Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. Biomaterials 2017; 145:138-153. [PMID: 28863308 DOI: 10.1016/j.biomaterials.2017.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 11/25/2022]
Abstract
Targeted delivery of therapeutics and diagnostics using nanotechnology holds great promise to minimize the side effects of conventional chemotherapy and enable specific and real-time detection of diseases. To realize this goal, we report a clickable and imageable nanovehicle assembled from multiblock polyurethanes (MPUs). The soft segments of the polymers are based on detachable poly(ethylene glycol) (PEG) and degradable poly(ε-caprolactone) (PCL), and the hard segments are constructed from lysine- and cystine-derivatives bearing reduction-responsive disulfide linkages and click-active alkynyl moieties, allowing for post-conjugation of targeting ligands via a click chemistry. It was found that the cleavage of PEG corona bearing a pH-sensitive benzoic-imine linkage (BPEG) could act as an on-off switch, which is capable of activating the clicked targeting ligands under extracellular acidic condition, followed by triggering the core degradation and payload release within tumor cells. In combination with superparamagnetic iron oxide nanoparticles (SPION) clustered within the micellar core, the MPUs exhibit excellent magnetic resonance imaging (MRI) contrast effects and T2 relaxation in vitro, as well as magnetically guided MR imaging and multimodal targeting of therapeutics to tumor precisely, leading to significant inhibition of cancer with minimal side effect. This work provides a safe and versatile platform for the further development of smart theranostic systems for potential magnetically-targeted and imaging-guided personalized medicine.
Collapse
Affiliation(s)
- Jing Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaoyu Shuai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xueling He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China; Laboratory Animal Center of Sichuan University, Chengdu, 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
50
|
Feng L, Dong Z, Tao D, Zhang Y, Liu Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx062] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
The acidic tumor microenvironment (TME), which mainly results from the high glycolytic rate of tumor cells, has been characterized as a hallmark of solid tumors and found to be a pivotal factor participating in tumor progression. Recently, due to the increasing understanding of the acidic TME, it has been shown that the acidic TME could be utilized as a multifaceted target during the design of various pH-responsive nanoscale theranostic platforms for the precise diagnosis and effective treatment of cancers. In this article, we will give a focused overview on the latest progress in utilizing this characteristic acidic TME as the target of nano-theranostics to enable cancer-specific imaging and therapy. The future perspectives in the development of acidic TME-targeting nanomedicine strategies will be discussed afterwards.
Collapse
Affiliation(s)
- Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Danlei Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yicheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|