1
|
Del Campo-Montoya R, Luquin MR, Puerta E, Garbayo E, Blanco-Prieto M. Hydrogels for Brain Repair: Application to Parkinson's Disease. Expert Opin Drug Deliv 2022; 19:1521-1537. [PMID: 36240170 DOI: 10.1080/17425247.2022.2136161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Parkinson's disease is the second most common neurodegenerative disease. Currently, there are no curative therapies, with only symptomatic treatment available. One of the principal reasons for the lack of treatments is the problem of delivering drugs to the brain, mainly due to the blood-brain barrier. Hydrogels are presented as ideal platforms for delivering treatments to the brain ranging from small molecules to cell replacement therapies. AREAS COVERED The potential application of hydrogel-based therapies for Parkinson's disease is addressed. The desirable composition and mechanical properties of these therapies for brain application are discussed, alongside the preclinical research available with hydrogels in Parkinson's disease. Lastly, translational and manufacturing challenges are presented. EXPERT OPINION Parkinson's disease urgently needs novel therapies to delay its progression and for advanced stages, at which conventional therapies fail to control motor symptoms. Neurotrophic factor-loaded hydrogels with stem cells offer one of the most promising therapies. This approach may increase the striatal dopamine content while protecting and promoting the differentiation of stem cells although the generation of synapses between engrafted and host cells remains an issue to overcome. Other challenges to consider are related to the route of administration of hydrogels and their large-scale production, required to accelerate their translation toward the clinic.
Collapse
Affiliation(s)
| | | | | | - E Garbayo
- University of navarra, pamplona, 31008 spain
| | | |
Collapse
|
2
|
Newland B, Newland H, Lorenzi F, Eigel D, Welzel PB, Fischer D, Wang W, Freudenberg U, Rosser A, Werner C. Injectable Glycosaminoglycan-Based Cryogels from Well-Defined Microscale Templates for Local Growth Factor Delivery. ACS Chem Neurosci 2021; 12:1178-1188. [PMID: 33754692 PMCID: PMC8033563 DOI: 10.1021/acschemneuro.1c00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
![]()
Glycosaminoglycan-based hydrogels
hold great potential for applications
in tissue engineering and regenerative medicine. By mimicking the
natural extracellular matrix processes of growth factor binding and
release, such hydrogels can be used as a sustained delivery device
for growth factors. Since neural networks commonly follow well-defined,
high-aspect-ratio paths through the central and peripheral nervous
system, we sought to create a fiber-like, elongated growth factor
delivery system. Cryogels, with networks formed at subzero temperatures,
are well-suited for the creation of high-aspect-ratio biomaterials,
because they have a macroporous structure making them mechanically
robust (for ease of handling) yet soft and highly compressible (for
interfacing with brain tissue). Unlike hydrogels, cryogels can be
synthesized in advance of their use, stored with ease, and rehydrated
quickly to their original shape. Herein, we use solvent-assisted microcontact
molding to form sacrificial templates, in which we produced highly
porous cryogel microscale scaffolds with a well-defined elongated
shape via the photopolymerization of poly(ethylene glycol) diacrylate
and maleimide-functionalized heparin. Dissolution of the template
yielded cryogels that could load nerve growth factor (NGF) and release
it over a period of 2 weeks, causing neurite outgrowth in PC12 cell
cultures. This microscale template-assisted synthesis technique allows
tight control over the cryogel scaffold dimensions for high reproducibility
and ease of injection through fine gauge needles.
Collapse
Affiliation(s)
- Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Heike Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Francesca Lorenzi
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Francesco Marzolo, 135131 Padova, Italy
| | - Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Petra B. Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Dieter Fischer
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Wenxin Wang
- Charles Institute for Dermatology, University College Dublin, Dublin D04 V1W8, Ireland
| | - Uwe Freudenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, U.K
- Brain Repair And Intracranial Neurotherapeutics (BRAIN) Unit, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis
Building, Maindy Road, Cardiff CF24 4HQ3, U.K
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
3
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
4
|
Glycosaminoglycan-based hydrogels with programmable host reactions. Biomaterials 2020; 228:119557. [DOI: 10.1016/j.biomaterials.2019.119557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
|
5
|
Abstract
Distinct micro-environmental properties have been reported to be essential for maintenance of neural precursor cells (NPCs) within the adult brain. Due to high complexity and technical limitations, the natural niche can barely be studied systematically in vivo. By reconstituting selected environmental properties (adhesiveness, proteolytic degradability, and elasticity) in geldrop cultures, we show that NPCs can be maintained stably at high density over an extended period of time (up to 8 days). In both conventional systems, neurospheres and monolayer cultures, they would expand and (in the case of neurospheres) differentiate rapidly. Further, we report a critical dualism between matrix adhesiveness and degradability. Only if both features are functional NPCs stay proliferative. Lastly, Rho-associated protein kinase was identified as part of a pivotal intracellular signaling cascade controlling cell morphology in response to environmental cues inside geldrop cultures. Our findings demonstrate that simple manipulations of the microenvironment in vitro result in an important preservation of stemness features in the cultured precursor cells.
Collapse
|
6
|
Schirmer L, Atallah P, Werner C, Freudenberg U. StarPEG-Heparin Hydrogels to Protect and Sustainably Deliver IL-4. Adv Healthc Mater 2016; 5:3157-3164. [PMID: 27860466 DOI: 10.1002/adhm.201600797] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/04/2016] [Indexed: 12/31/2022]
Abstract
A major limitation for the therapeutic applications of cytokines is their short half-life time. Glycosaminoglycans (GAGs), known to complex and stabilize cytokines in vivo, are therefore used to form 3D-biohybrid polymer networks capable of aiding the effective administration of Interleukin-4, a key regulator of the inflammatory response. Mimicking the in vivo situation of a protease-rich inflammatory milieu, star-shaped poly(ethylene glycol) (starPEG)-heparin hydrogels and starPEG reference hydrogels without heparin are loaded with Interleukin-4 and subsequently exposed to trypsin as a model protease. Heparin-containing hydrogels retain significantly higher amounts of the Interleukin-4 protein thus exhibiting a significantly higher specific activity than the heparin-free controls. StarPEG-heparin hydrogels are furthermore shown to enable a sustained delivery of the cytokine for time periods of more than two weeks. Primary murine macrophages adopt a wound healing supporting (M2) phenotype when conditioned with Interleukin-4 releasing starPEG-heparin hydrogels. The reported results suggest that GAG-based hydrogels offer valuable options for the effective administration of cytokines in protease-rich proinflammatory milieus such as chronic wounds of diabetic patients.
Collapse
Affiliation(s)
- Lucas Schirmer
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| | - Passant Atallah
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
- Center for Regenerative Therapies Dresden (CRTD); Technische Universität Dresden; Fetscherstraße 105 01307 Dresden Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
7
|
Freudenberg U, Liang Y, Kiick KL, Werner C. Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8861-8891. [PMID: 27461855 PMCID: PMC5152626 DOI: 10.1002/adma.201601908] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Glycosaminoglycans (GAGs) govern important functional characteristics of the extracellular matrix (ECM) in living tissues. Incorporation of GAGs into biomaterials opens up new routes for the presentation of signaling molecules, providing control over development, homeostasis, inflammation, and tumor formation and progression. Recent approaches to GAG-based materials are reviewed, highlighting the formation of modular, tunable biohybrid hydrogels by covalent and non-covalent conjugation schemes, including both theory-driven design concepts and advanced processing technologies. Examples of the application of the resulting materials in biomedical studies are provided. For perspective, solid-phase and chemoenzymatic oligosaccharide synthesis methods for GAG-derived motifs, rational and high-throughput design strategies for GAG-based materials, and the utilization of the factor-scavenging characteristics of GAGs are highlighted.
Collapse
Affiliation(s)
- Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| | - Yingkai Liang
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States,
| | - Kristi L. Kiick
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
8
|
Marxreiter F, Storch A, Winkler J. [Cellular replacement strategies and adult neurogenesis in idiopathic Parkinson's disease]. DER NERVENARZT 2016; 87:805-13. [PMID: 27389601 DOI: 10.1007/s00115-016-0157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is the most common age-related movement disorder and characterized by slowly progressive neurodegeneration resulting in motor symptoms, such as bradykinesia, rigidity, tremor and postural instability. Moreover, non-motor symptoms, such as hyposmia, anxiety and depression reduce the quality of life in PD. Motor symptoms are associated with a distinct striatal dopaminergic deficit resulting from axonal dysfunction and neuronal loss in the substantia nigra (SN). Recent progress in stem cell technology allows the optimization of cellular transplantation strategies in order to alleviate the motor deficit, which potentially leads to a reactivation of this therapeutic strategy. Besides neurodegenerative processes impaired adult neurogenesis and consequentially reduced endogenous cellular plasticity may play an important role in PD. This article discusses the notion that non-motor symptoms in PD may partly be explained by reduced adult neurogenesis in the olfactory bulb and hippocampus.
Collapse
Affiliation(s)
- F Marxreiter
- Abteilung für Molekulare Neurologie, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Deutschland
| | - A Storch
- Klinik und Poliklinik für Neurologie, Universität Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland
| | - J Winkler
- Abteilung für Molekulare Neurologie, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Deutschland.
| |
Collapse
|
9
|
Hacker MC, Nawaz HA. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine. Int J Mol Sci 2015; 16:27677-706. [PMID: 26610468 PMCID: PMC4661914 DOI: 10.3390/ijms161126056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 01/09/2023] Open
Abstract
Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.
Collapse
Affiliation(s)
- Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, D-04317 Leipzig, Germany.
| | - Hafiz Awais Nawaz
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, D-04317 Leipzig, Germany.
| |
Collapse
|
10
|
Sanami M, Shtein Z, Sweeney I, Sorushanova A, Rivkin A, Miraftab M, Shoseyov O, O’Dowd C, Mullen AM, Pandit A, Zeugolis DI. Biophysical and biological characterisation of collagen/resilin-like protein composite fibres. Biomed Mater 2015; 10:065005. [DOI: 10.1088/1748-6041/10/6/065005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|