1
|
Sauer DF, Markel U, Schiffels J, Okuda J, Schwaneberg U. FhuA: From Iron-Transporting Transmembrane Protein to Versatile Scaffolds through Protein Engineering. Acc Chem Res 2023. [PMID: 37191525 DOI: 10.1021/acs.accounts.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
ConspectusProtein engineering has emerged as a powerful methodology to tailor the properties of proteins. It empowers the design of biohybrid catalysts and materials, thereby enabling the convergence of materials science, chemistry, and medicine. The choice of a protein scaffold is an important factor for performance and potential applications. In the past two decades, we utilized the ferric hydroxamate uptake protein FhuA. FhuA is, from our point of view, a versatile scaffold due to its comparably large cavity and robustness toward temperature as well as organic cosolvents. FhuA is a natural iron transporter located in the outer membrane of Escherichia coli (E. coli). Wild-type FhuA consists of 714 amino acids and has a β-barrel structure composed of 22 antiparallel β-sheets, closed by an internal globular "cork" domain (amino acids 1-160). FhuA is robust in a broad pH range and toward organic cosolvents; therefore, we envisioned FhuA to be a suitable platform for various applications in (i) biocatalysis, (ii) materials science, and (iii) the construction of artificial metalloenzymes.(i) Applications in biocatalysis were achieved by removing the globular cork domain (FhuA_Δ1-160), thereby creating a large pore for the passive transport of otherwise difficult-to-import molecules through diffusion. Introducing this FhuA variant into the outer membrane of E. coli facilitates the uptake of substrates for downstream biocatalytic conversion. Furthermore, removing the globular "cork" domain without structural collapse of the ß-barrel protein allowed the use of FhuA as a membrane filter, exhibiting a preference for d-arginine over l-arginine.(ii) FhuA is a transmembrane protein, which makes it attractive to be used for applications in non-natural polymeric membranes. Inserting FhuA into polymer vesicles yielded so-called synthosomes (i.e., catalytic synthetic vesicles in which the transmembrane protein acted as a switchable gate or filter). Our work in this direction enables polymersomes to be used in biocatalysis, DNA recovery, and the controlled (triggered) release of molecules. Furthermore, FhuA can be used as a building block to create protein-polymer conjugates to generate membranes.(iii) Artificial metalloenzymes (ArMs) are formed by incorporating a non-native metal ion or metal complex into a protein. This combines the best of two worlds: the vast reaction and substrate scope of chemocatalysis and the selectivity and evolvability of enzymes. With its large inner diameter, FhuA can harbor (bulky) metal catalysts. Among others, we covalently attached a Grubbs-Hoveyda-type catalyst for olefin metathesis to FhuA. This artificial metathease was then used in various chemical transformations, ranging from polymerizations (ring-opening metathesis polymerization) to enzymatic cascades involving cross-metathesis. Ultimately, we generated a catalytically active membrane by copolymerizing FhuA and pyrrole. The resulting biohybrid material was then equipped with the Grubbs-Hoveyda-type catalyst and used in ring-closing metathesis.The number of reports on FhuA and its various applications indicates that it is a versatile building block to generate hybrid catalysts and materials. We hope that our research will inspire future research efforts at the interface of biotechnology, catalysis, and material science in order to create biohybrid systems that offer smart solutions for current challenges in catalysis, material science, and medicine.
Collapse
Affiliation(s)
- Daniel F Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, D-52056, Aachen, Germany
| |
Collapse
|
2
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
3
|
Hybrid protein-polymer nanoparticles based on P(NVCL-co-DMAEMA) loaded with cisplatin as a potential anti-cancer agent. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
5
|
W/W droplet-based microfluidic interfacial catalysis of xylanase-polymer conjugates for xylooligosaccharides production. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Schwieters MS, Mathieu-Gaedke M, Westphal M, Dalpke R, Dirksen M, Qi D, Grull M, Bick T, Taßler S, Sauer DF, Bonn M, Wendler P, Hellweg T, Beyer A, Gölzhäuser A, Schwaneberg U, Glebe U, Böker A. Protein Nanopore Membranes Prepared by a Simple Langmuir-Schaefer Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102975. [PMID: 34643032 DOI: 10.1002/smll.202102975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Filtration through membranes with nanopores is typically associated with high transmembrane pressures and high energy consumption. This problem can be addressed by reducing the respective membrane thickness. Here, a simple procedure is described to prepare ultrathin membranes based on protein nanopores, which exhibit excellent water permeance, two orders of magnitude superior to comparable, industrially applied membranes. Furthermore, incorporation of either closed or open protein nanopores allows tailoring the membrane's ion permeability. To form such membranes, the transmembrane protein ferric hydroxamate uptake protein component A (FhuA) or its open-pore variant are assembled at the air-water interface of a Langmuir trough, compressed to a dense film, crosslinked by glutaraldehyde, and transferred to various support materials. This approach allows to prepare monolayer or multilayer membranes with a very high density of protein nanopores. Freestanding membranes covering holes up to 5 μm in diameter are visualized by atomic force microscopy (AFM), helium ion microscopy, and transmission electron microscopy. AFM PeakForce quantitative nanomechanical property mapping (PeakForce QNM) demonstrates remarkable mechanical stability and elastic properties of freestanding monolayer membranes with a thickness of only 5 nm. The new protein membrane can pave the way to energy-efficient nanofiltration.
Collapse
Affiliation(s)
- Magnus S Schwieters
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Maria Mathieu-Gaedke
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Michael Westphal
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Raphael Dalpke
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Maxim Dirksen
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Daizong Qi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marco Grull
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Thomas Bick
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Stephanie Taßler
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Gif-Sur-Yvette, Saint-Aubin, 91192, France
| | - Daniel F Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Petra Wendler
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - André Beyer
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| |
Collapse
|
7
|
Hu Y, Shi CY, Xun XM, Huang BR, You S, Wu FA, Wang J. Xylanase-polymer conjugates as new catalysts for xylooligosaccharides production from lignocellulose. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Saska S, Pilatti L, Blay A, Shibli JA. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers (Basel) 2021; 13:563. [PMID: 33668617 PMCID: PMC7918883 DOI: 10.3390/polym13040563] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023] Open
Abstract
Three-dimensional (3D) printing is a valuable tool in the production of complexes structures with specific shapes for tissue engineering. Differently from native tissues, the printed structures are static and do not transform their shape in response to different environment changes. Stimuli-responsive biocompatible materials have emerged in the biomedical field due to the ability of responding to other stimuli (physical, chemical, and/or biological), resulting in microstructures modifications. Four-dimensional (4D) printing arises as a new technology that implements dynamic improvements in printed structures using smart materials (stimuli-responsive materials) and/or cells. These dynamic scaffolds enable engineered tissues to undergo morphological changes in a pre-planned way. Stimuli-responsive polymeric hydrogels are the most promising material for 4D bio-fabrication because they produce a biocompatible and bioresorbable 3D shape environment similar to the extracellular matrix and allow deposition of cells on the scaffold surface as well as in the inside. Subsequently, this review presents different bioresorbable advanced polymers and discusses its use in 4D printing for tissue engineering applications.
Collapse
Affiliation(s)
- Sybele Saska
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Livia Pilatti
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Alberto Blay
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Jamil Awad Shibli
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos, Sao Paulo 07023-070, Brazil
| |
Collapse
|
9
|
Mirzaei Garakani T, Sauer DF, Mertens MAS, Lazar J, Gehrmann J, Arlt M, Schiffels J, Schnakenberg U, Okuda J, Schwaneberg U. FhuA–Grubbs–Hoveyda Biohybrid Catalyst Embedded in a Polymer Film Enables Catalysis in Neat Substrates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Daniel F. Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Jaroslav Lazar
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
| | - Julia Gehrmann
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Marcus Arlt
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, D-52056 Aachen, Germany
| |
Collapse
|
10
|
Lian J, Xu H, Duan S, Ding X, Hu Y, Zhao N, Ding X, Xu FJ. Tunable Adhesion of Different Cell Types Modulated by Thermoresponsive Polymer Brush Thickness. Biomacromolecules 2019; 21:732-742. [DOI: 10.1021/acs.biomac.9b01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiamin Lian
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Haifeng Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
11
|
Mirzaei Garakani T, Liu Z, Glebe U, Gehrmann J, Lazar J, Mertens MAS, Möller M, Hamzelui N, Zhu L, Schnakenberg U, Böker A, Schwaneberg U. In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29276-29289. [PMID: 31329408 DOI: 10.1021/acsami.9b09302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthosomes are polymer vesicles with transmembrane proteins incorporated into block copolymer membranes. They have been used for selective transport in or out of the vesicles as well as catalysis inside the compartments. However, both the insertion process of the membrane protein, forming nanopores, and the spreading of the vesicles on planar substrates to form solid-supported biomimetic membranes have been rarely studied yet. Herein, we address these two points and, first, shed light on the real-time monitoring of protein insertion via isothermal titration calorimetry. Second, the spreading process on different solid supports, namely, SiO2, glass, and gold, via different techniques like spin- and dip-coating as well as a completely new approach of potential-assisted spreading on gold surfaces was studied. While inhomogeneous layers occur via traditional methods, our proposed potential-assisted strategy to induce adsorption of positively charged vesicles by applying negative potential on the electrode leads to remarkable vesicle spreading and their further fusion to form more homogeneous planar copolymer films on gold. The polymer vesicles in our study are formed from amphiphilic copolymers poly(2-methyl oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl oxazoline) (PMOXA-b-PDMS-b-PMOXA). Engineered variants of the transmembrane protein ferric hydroxamate uptake protein component A (FhuA), one of the largest β-barrel channel proteins, are used as model nanopores. The incorporation of FhuA Δ1-160 is shown to facilitate the vesicle spreading process further. Moreover, high accessibility of cysteine inside the channel was proven by linkage of a fluorescent dye inside the engineered variant FhuA ΔCVFtev and hence preserved functionality of the channels after spreading. The porosity and functionality of the spread synthosomes on the gold plates have been examined by studying the passive ion transport response in the presence of Li+ and ClO4- ions and electrochemical impedance spectroscopy analysis. Our approach to form solid-supported biomimetic membranes via the potential-assisted strategy could be important for the development of new (bio-) sensors and membranes.
Collapse
Affiliation(s)
- Tayebeh Mirzaei Garakani
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 , Aachen , Germany
| | - Zhanzhi Liu
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstraße 69 , 14476 Potsdam -Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry , University of Potsdam , Karl-Liebknecht-Str. 24-25 , 14476 Potsdam -Golm, Germany
| | - Julia Gehrmann
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Jaroslav Lazar
- Institute of Materials in Electrical Engineering 1 , RWTH Aachen University , Sommerfeldstraße 24 , 52074 Aachen , Germany
| | | | - Mieke Möller
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Niloofar Hamzelui
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Leilei Zhu
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1 , RWTH Aachen University , Sommerfeldstraße 24 , 52074 Aachen , Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstraße 69 , 14476 Potsdam -Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry , University of Potsdam , Karl-Liebknecht-Str. 24-25 , 14476 Potsdam -Golm, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 , Aachen , Germany
| |
Collapse
|
12
|
Anand D, Dhoke GV, Gehrmann J, Garakani TM, Davari MD, Bocola M, Zhu L, Schwaneberg U. Chiral separation of d/l-arginine with whole cells through an engineered FhuA nanochannel. Chem Commun (Camb) 2019; 55:5431-5434. [PMID: 30916680 DOI: 10.1039/c9cc00154a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Downstream processing to obtain enantiopure compounds from a racemic mixture relies mainly on crystallization. Natural transporters can specifically translocate enantiomers through membranes. Here a β-barrel transmembrane protein FhuA is re-engineered into a chiral channel protein (FhuAF4) to resolve racemic mixtures of d-/l-arginine. The engineered FhuAF4 variant exhibits an enantioselectivity (E-value) of 1.92 and an enantiomeric excess percentage (ee%) of 23.91 at 52.39% conversion. OmniChange mutant libraries at the computationally identified "filter-regions" likely help to identify FhuA variants for enantiomeric separation of other compounds.
Collapse
Affiliation(s)
- Deepak Anand
- Institute of Biotechnology, RWTH Aachen University Worringer Weg 3, D-52074 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Edgar L, Altamimi A, García Sánchez M, Tamburrinia R, Asthana A, Gazia C, Orlando G. Utility of extracellular matrix powders in tissue engineering. Organogenesis 2018; 14:172-186. [PMID: 30183489 PMCID: PMC6300104 DOI: 10.1080/15476278.2018.1503771] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular matrix (ECM) materials have had remarkable success as scaffolds in tissue engineering (TE) and as therapies for tissue injury whereby the ECM microenvironment promotes constructive remodeling and tissue regeneration. ECM powder and solubilized derivatives thereof have novel applications in TE and RM afforded by the capacity of these constructs to be dynamically modulated. The powder form allows for effective incorporation and penetration of reagents; hence, ECM powder is an efficacious platform for 3D cell culture and vehicle for small molecule delivery. ECM powder offers minimally invasive therapy for tissue injury and successfully treatment for wounds refractory to first-line therapies. Comminution of ECM and fabrication of powder-derived constructs, however, may compromise the biological integrity of the ECM. The current lack of optimized fabrication protocols prevents a more extensive and effective clinical application of ECM powders. Further study on methods of ECM powder fabrication and modification is needed.
Collapse
Affiliation(s)
- Lauren Edgar
- Wake Forest School of Medicine, Department of Surgery, Winston-Salem, NC, USA,Correspondence to: Lauren Elizabeth Edgar, E-mail:
| | - Afnan Altamimi
- Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA,King Khalid University Hospital, Department of Surgery, Riyadh, Saudi Arabia
| | | | - Riccardo Tamburrinia
- Wake Forest School of Medicine, Department of Surgery, Winston-Salem, NC, USA,Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA,School of Experimental Medicine, University of Pavia, Pavia, Italy
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA
| | - Carlo Gazia
- Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Department of Surgery, Winston-Salem, NC, USA,Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA
| |
Collapse
|
14
|
Zhang S, Bisterfeld C, Bramski J, Vanparijs N, De Geest BG, Pietruszka J, Böker A, Reinicke S. Biocatalytically Active Thin Films via Self-Assembly of 2-Deoxy-d-ribose-5-phosphate Aldolase-Poly(N-isopropylacrylamide) Conjugates. Bioconjug Chem 2017; 29:104-116. [PMID: 29182313 DOI: 10.1021/acs.bioconjchem.7b00645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
2-Deoxy-d-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. However, substrate as well as product inhibition requires a more-sophisticated process design for the synthesis of these motifs. One way to do so is to the couple aldehyde conversion with transport processes, which, in turn, would require an immobilization of the enzyme within a thin film that can be deposited on a membrane support. Consequently, we developed a fabrication process for such films that is based on the formation of DERA-poly(N-isopropylacrylamide) conjugates that are subsequently allowed to self-assemble at an air-water interface to yield the respective film. In this contribution, we discuss the conjugation conditions, investigate the interfacial properties of the conjugates, and, finally, demonstrate a successful film formation under the preservation of enzymatic activity.
Collapse
Affiliation(s)
- Shuhao Zhang
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.,Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| | - Carolin Bisterfeld
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany
| | - Julia Bramski
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany
| | - Nane Vanparijs
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany.,IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , 52425 Jülich, Germany
| | - Alexander Böker
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.,Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| | - Stefan Reinicke
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
15
|
Liu Z, Ghai I, Winterhalter M, Schwaneberg U. Engineering Enhanced Pore Sizes Using FhuA Δ1-160 from E. coli Outer Membrane as Template. ACS Sens 2017; 2:1619-1626. [PMID: 29052976 DOI: 10.1021/acssensors.7b00481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biological membranes are the perfect example of a molecular filter using membrane channels to control the permeability of small water-soluble molecules. To allow filtering of larger hydrophilic molecules we started from the known mutant channel FhuA Δ1-160 in which the cork domain closing the channel had been removed. Here we further expand the pore diameter by copying the amino acid sequence of two β-strands in a stepwise manner increasing the total number of β-strands from 22 to 34. The pore size of the respective expanded channel protein was characterized by single-channel conductance. Insertion of additional β-strands increased the pore conductance but also induced more ion current flickering on the millisecond scale. Further, polymer exclusion measurements were performed by analyzing single-channel conductance in the presence of differently sized polyethylene glycol of known polymer random coil radii. The conclusion from channel conductance of small channel penetrating polymers versus larger excluded ones suggested an increase in pore radii from 1.6 nm for FhuA Δ1-160 up to a maximum of about 2.7 nm for +8 β insertion. Integration of more β-strand caused instability of the channel and exclusion of smaller sized polymer. FhuA Δ1-160 + 10 β and FhuA Δ1-160 + 12 β effective radius decreased to 1.4 and 1.3 nm, respectively, showing the limitations of this approach.
Collapse
Affiliation(s)
- Zhanzhi Liu
- Institute
of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Ishan Ghai
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, 28719, Bremen, Germany
| | - Mathias Winterhalter
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, 28719, Bremen, Germany
| | - Ulrich Schwaneberg
- Institute
of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| |
Collapse
|
16
|
Lanzalaco S, Armelin E. Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels 2017; 3:E36. [PMID: 30920531 PMCID: PMC6318659 DOI: 10.3390/gels3040036] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022] Open
Abstract
The innate ability of poly(N-isopropylacrylamide) (PNIPAAm) thermo-responsive hydrogel to copolymerize and to graft synthetic polymers and biomolecules, in conjunction with the highly controlled methods of radical polymerization which are now available, have expedited the widespread number of papers published in the last decade-especially in the biomedical field. Therefore, PNIPAAm-based hydrogels are extensively investigated for applications on the controlled delivery of active molecules, in self-healing materials, tissue engineering, regenerative medicine, or in the smart encapsulation of cells. The most promising polymers for biodegradability enhancement of PNIPAAm hydrogels are probably poly(ethylene glycol) (PEG) and/or poly(ε-caprolactone) (PCL), whereas the biocompatibility is mostly achieved with biopolymers. Ultimately, advances in three-dimensional bioprinting technology would contribute to the design of new devices and medical tools with thermal stimuli response needs, fabricated with PNIPAAm hydrogels.
Collapse
Affiliation(s)
- Sonia Lanzalaco
- Industrial and Digital Innovation Department (DIID), Chemical Engineering, University of Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy.
| | - Elaine Armelin
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/d'Eduard Maristany, 10-14, Building I, E-08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE), C/d'Eduard Maristany 10-14, Edifici IS, 08019 Barcelona, Spain.
| |
Collapse
|
17
|
Thakur AK, Larimi MG, Gooden K, Movileanu L. Aberrantly Large Single-Channel Conductance of Polyhistidine Arm-Containing Protein Nanopores. Biochemistry 2017; 56:4895-4905. [PMID: 28812882 DOI: 10.1021/acs.biochem.7b00577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There have been only a few studies reporting on the impact of polyhistidine affinity tags on the structure, function, and dynamics of proteins. Because of the relatively short size of the tags, they are often thought to have little or no effect on the conformation or activity of a protein. Here, using membrane protein design and single-molecule electrophysiology, we determined that the presence of a hexahistidine arm at the N-terminus of a truncated FhuA-based protein nanopore, leaving the C-terminus untagged, produces an unusual increase in the unitary conductance to ∼8 nS in 1 M KCl. To the best of our knowledge, this is the largest single-channel conductance ever recorded with a monomeric β-barrel outer membrane protein. The hexahistidine arm was captured by an anti-polyhistidine tag monoclonal antibody added to the side of the channel-forming protein addition, but not to the opposite side, documenting that this truncated FhuA-based protein nanopore inserts into a planar lipid bilayer with a preferred orientation. This finding is in agreement with the protein insertion in vivo, in which the large loops face the extracellular side of the membrane. The aberrantly large single-channel conductance, likely induced by a greater cross-sectional area of the pore lumen, along with the vectorial insertion into a lipid membrane, will have profound implications for further developments of engineered protein nanopores.
Collapse
Affiliation(s)
- Avinash Kumar Thakur
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University , 111 College Place, Syracuse, New York 13244-4100, United States
| | - Motahareh Ghahari Larimi
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Kristin Gooden
- Department of Physics and Astronomy, University of Missouri , 223 Physics Building, Columbia, Missouri 65211-7010, United States
| | - Liviu Movileanu
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University , 111 College Place, Syracuse, New York 13244-4100, United States.,Department of Biomedical and Chemical Engineering, Syracuse University , 329 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
18
|
Kinzel J, Sauer DF, Bocola M, Arlt M, Mirzaei Garakani T, Thiel A, Beckerle K, Polen T, Okuda J, Schwaneberg U. 2-Methyl-2,4-pentanediol (MPD) boosts as detergent-substitute the performance of ß-barrel hybrid catalyst for phenylacetylene polymerization. Beilstein J Org Chem 2017; 13:1498-1506. [PMID: 28845193 PMCID: PMC5550818 DOI: 10.3762/bjoc.13.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/13/2017] [Indexed: 02/02/2023] Open
Abstract
Covering hydrophobic regions with stabilization agents to solubilize purified transmembrane proteins is crucial for their application in aqueous media. The small molecule 2-methyl-2,4-pentanediol (MPD) was used to stabilize the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA) utilized as host for the construction of a rhodium-based biohybrid catalyst. Unlike commonly used detergents such as sodium dodecyl sulfate or polyethylene polyethyleneglycol, MPD does not form micelles in solution. Molecular dynamics simulations revealed the effect and position of stabilizing MPD molecules. The advantage of the amphiphilic MPD over micelle-forming detergents is demonstrated in the polymerization of phenylacetylene, showing a ten-fold increase in yield and increased molecular weights.
Collapse
Affiliation(s)
- Julia Kinzel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Daniel F Sauer
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marco Bocola
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Marcus Arlt
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Tayebeh Mirzaei Garakani
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Andreas Thiel
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Klaus Beckerle
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Tino Polen
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jun Okuda
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| |
Collapse
|
19
|
Lligadas G, Enayati M, Grama S, Smail R, Sherman SE, Percec V. Ultrafast SET-LRP with Peptoid Cytostatic Drugs as Monofunctional and Bifunctional Initiators. Biomacromolecules 2017; 18:2610-2622. [DOI: 10.1021/acs.biomac.7b00722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gerard Lligadas
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Mojtaba Enayati
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Silvia Grama
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Rauan Smail
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Samuel E. Sherman
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
20
|
Charan H, Glebe U, Anand D, Kinzel J, Zhu L, Bocola M, Garakani TM, Schwaneberg U, Böker A. Nano-thin walled micro-compartments from transmembrane protein-polymer conjugates. SOFT MATTER 2017; 13:2866-2875. [PMID: 28352880 DOI: 10.1039/c6sm02520j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The high interfacial activity of protein-polymer conjugates has inspired their use as stabilizers for Pickering emulsions, resulting in many interesting applications such as synthesis of templated micro-compartments and protocells or vehicles for drug and gene delivery. In this study we report, for the first time, the stabilization of Pickering emulsions with conjugates of a genetically modified transmembrane protein, ferric hydroxamate uptake protein component A (FhuA). The lysine residues of FhuA with open pore (FhuA ΔCVFtev) were modified to attach an initiator and consequently controlled radical polymerization (CRP) carried out via the grafting-from technique. The resulting conjugates of FhuA ΔCVFtev with poly(N-isopropylacrylamide) (PNIPAAm) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA), the so-called building blocks based on transmembrane proteins (BBTP), have been shown to engender larger structures. The properties such as pH-responsivity, temperature-responsivity and interfacial activity of the BBTP were analyzed using UV-Vis spectrophotometry and pendant drop tensiometry. The BBTP were then utilized for the synthesis of highly stable Pickering emulsions, which could remain non-coalesced for well over a month. A new UV-crosslinkable monomer was synthesized and copolymerized with NIPAAm from the protein. The emulsion droplets, upon crosslinking of polymer chains, yielded micro-compartments. Fluorescence microscopy proved that these compartments are of micrometer scale, while cryo-scanning electron microscopy and scanning force microscopy analysis yielded a thickness in the range of 11.1 ± 0.6 to 38.0 ± 18.2 nm for the stabilizing layer of the conjugates. Such micro-compartments would prove to be beneficial in drug delivery applications, owing to the possibility of using the channel of the transmembrane protein as a gate and the smart polymer chains as trigger switches to tune the behavior of the capsules.
Collapse
Affiliation(s)
- Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
22
|
Tebaldi ML, Charan H, Mavliutova L, Böker A, Glebe U. Dual-Stimuli Sensitive Hybrid Materials: Ferritin-PDMAEMA by Grafting-From Polymerization. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marli Luiza Tebaldi
- Fraunhofer Institute for Applied Polymer Research IAP; Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Universidade Federal de Itajubá; Itabira 35.903-087 Minas Gerais Brazil
| | - Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP; Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie; Universität Potsdam; 14476 Potsdam-Golm Germany
| | - Liliia Mavliutova
- Fraunhofer Institute for Applied Polymer Research IAP; Geiselbergstr. 69 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP; Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie; Universität Potsdam; 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP; Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie; Universität Potsdam; 14476 Potsdam-Golm Germany
| |
Collapse
|