1
|
Wang N, Wang H, Weng D, Wang B, Wang J, He J, Mo X, Wang F, He Z. Human amniotic mesenchymal stem cells improve patency and regeneration of electrospun biodegradable vascular grafts via anti-thrombogenicity and M2 macrophage polarization. Colloids Surf B Biointerfaces 2025; 250:114559. [PMID: 39951949 DOI: 10.1016/j.colsurfb.2025.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Small-diameter vascular grafts (SDVGs) are prone to thrombosis and have low long-term patency rates for various reasons, which cannot meet the clinical requirements. In this work, Human amniotic mesenchymal stem cell (hAMSC) seeding electrospun polylactic acid-co-polycaprolactone (PLCL) SDVGs are fabricated and their application potential is systematically evaluated. The SDVG has excellent mechanical properties. PLCL eletrospinning membrane has no cytotoxicity. The SDVG has a porous fibrous tube wall, uniform distribution of hAMSCs, and good cell compatibility, blood compatibility, histocompatibility and mechanical properties. hAMSCs loading can improve the acute antithrombotic ability, patency and in vivo regeneration effect of PLCL electrospun SDVGs. The mechanism is related to hAMSCs increasing the content of endothelial cells, contractile smooth muscle cells, and M2 macrophages, as well as activating extracellular matrix production.
Collapse
Affiliation(s)
- Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China; The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China; Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China; The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| | - Haoyuan Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563006, China; The Second Clinical Institute, Zunyi Medical University, Zunyi, Guizhou 563003, China; Department of Cardiac Surgery, Liuzhou People's Hospital, Liuzhou, Guangxi 545001, China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China; The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China; Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China; The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Bin Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Juan Wang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Jing He
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Feng Wang
- Department of Cardiac Surgery, Liuzhou People's Hospital, Liuzhou, Guangxi 545001, China.
| | - Zhixu He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China; The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China; Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China; The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| |
Collapse
|
2
|
Ding X, Sha D, Sun K, Fan Y. Biomechanical insights into the development and optimization of small-diameter vascular grafts. Acta Biomater 2025:S1742-7061(25)00270-3. [PMID: 40239752 DOI: 10.1016/j.actbio.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/22/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Small-diameter vascular grafts (SDVGs; inner diameter ≤6 mm) offer transformative potential for treating cardiovascular diseases, yet their clinical application remains limited due to high rates of complications such as acute thrombosis and intimal hyperplasia (IH), which compromise long-term patency. While advancements in biological and material science have driven progress, the critical role of biomechanical factors-such as hemodynamic forces and mechanical mismatch-in graft failure is often overlooked. This review presents insights from recent clinical trials of SDVG products and summarizes biomechanical contributors to failure, including disturbed flow patterns, mechanical mismatch, and insufficient mechanical strength. We outline essential mechanical performance criteria (e.g., compliance, burst pressure) and evaluation methodologies to assess SDVG performance. Furthermore, we present optimization strategies based on biomechanical principles: (1) graft morphological design optimization to improve hemodynamic stability, (2) structural, material, and fabrication innovations to achieve compliance matching with native arteries, and (3) biomimetic approaches to mimic vascular tissue and promote endothelialization. By systematically addressing these biomechanical challenges, next-generation SDVGs may achieve superior patency, accelerating their clinical translation. This review highlights the necessity of considering biomechanical compatibility in SDVG development, thereby providing initial insights for the clinical translation of SDVG. STATEMENT OF SIGNIFICANCE: Small-diameter vascular grafts (SDVGs) offer transformative potential for cardiovascular disease treatment but face clinical limitations. While significant progress has been made in biological and material innovations, the critical role of biomechanical factors in graft failure has often been underestimated. This review highlights the importance of biomechanical compatibility in SDVG design and performance, emphasizing the need to address disturbed flow patterns, mechanical mismatch, and inadequate mechanical strength. By proposing optimization strategies based on biomechanical principles, such as graft morphological design, compliance matching, and biomimetic approaches, this work provides a roadmap for developing next-generation SDVGs with improved patency. These advancements have the potential to overcome current limitations, accelerate clinical translation, ultimately benefiting patients worldwide.
Collapse
Affiliation(s)
- Xili Ding
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China
| | - Dongyu Sha
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Kaixin Sun
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Superior College for Engineers, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China.
| |
Collapse
|
3
|
Zhang J, Guo J, Zhang J, Li D, Zhong M, Gu Y, Yan X, Huang P. Heparin and Gelatin Co-Functionalized Polyurethane Artificial Blood Vessel for Improving Anticoagulation and Biocompatibility. Bioengineering (Basel) 2025; 12:304. [PMID: 40150768 PMCID: PMC11939800 DOI: 10.3390/bioengineering12030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
The primary challenges in the tissue engineering of small-diameter artificial blood vessels include inadequate mechanical properties and insufficient anticoagulation capabilities. To address these challenges, urea-pyrimidone (Upy)-based polyurethane elastomers (PIIU-B) were synthesized by incorporating quadruple hydrogen bonding within the polymer backbone. The synthesis process employed poly(L-lactide-ε-caprolactone) (PLCL) as the soft segment, while di-(isophorone diisocyanate)-Ureido pyrimidinone (IUI) and isophorone diisocyanate (IPDI) were utilized as the hard segment. The resulting PIIU-B small-diameter artificial blood vessel with a diameter of 4 mm was fabricated using the electrospinning technique, achieving an optimized IUI/IPDI composition ratio of 1:1. Enhanced by multiple hydrogen bonds, the vessels exhibited a robust elastic modulus of 12.45 MPa, an extracellular matrix (ECM)-mimetic nanofiber morphology, and a high porosity of 41.31%. Subsequently, the PIIU-B vessel underwent dual-functionalization with low-molecular-weight heparin and gelatin via ultraviolet (UV) crosslinking (designated as PIIU-B@LHep/Gel), which conferred superior biocompatibility and exceptional anticoagulation properties. The study revealed improved anti-platelet adhesion characteristics as well as a prolonged activated partial thromboplastin time (APTT) of 157.2 s and thrombin time (TT) of 64.2 s in vitro. Following a seven-day subcutaneous implantation, the PIIU-B@LHep/Gel vessel exhibited excellent biocompatibility, evidenced by complete integration with the surrounding peri-implant tissue, significant cell infiltration, and collagen formation in vivo. Consequently, polyurethane-based artificial blood vessels, reinforced by multiple hydrogen bonds and dual-functionalized with heparin and gelatin, present as promising candidates for vascular tissue engineering.
Collapse
Affiliation(s)
- Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Jingzhe Guo
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Junxian Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Danting Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Meihui Zhong
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Yuxuan Gu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Xiaozhe Yan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
4
|
Li Y, Yang T, Zhang K, Zou C, Hou K, Yin A. Enhanced Biodegradation and Biocompatibility of Vascular Grafts Through Oriented Core-Shell Fibrous Structure and Incorporation of Sodium Tanshinone IIA Sulfonate. J Biomed Mater Res A 2025; 113:e37877. [PMID: 39893558 DOI: 10.1002/jbm.a.37877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Microstructure and biological activity have been pivotal factors in the modification of vascular grafts. Equally crucial, however, are degradation behavior and mechanical stability, both of which are key to long-term success of grafts. To optimize these properties, we prepared oriented fiber membranes with core-shell structures through coaxial electrospinning, incorporating varying concentrations of sodium tanshinone IIA sulfonate (STS). In this design, poly-ethylene oxide (PEO)/STS served as the core layer, while poly-L-lactide-co-caprolactone (PLCL) formed the shell. Our findings revealed that both random and oriented fiber membranes exhibited excellent mechanical properties. Notably, compared to random fiber membranes, the oriented counterparts showed enhanced hydrophilicity and a tunable degradation rate. Furthermore, the sustained release of STS from the membranes inhibited platelet adhesion and significantly promote cell diffusion, growth, and proliferation. Importantly, the oriented fiber membranes loaded with STS were able to induce a highly organized cell arrangement and upregulate the expression of CD144 and vWF in endothelial cells. These promising findings suggest that oriented core-shell fiber membranes loaded with PEO/STS could offer valuable insights into vascular graft design and hold potential for further exploration in animal studies.
Collapse
Affiliation(s)
- Yunhuan Li
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, China
- Beijing Biosis Healing Biological Technology Co. Ltd., Beijing, China
- Department of Materials Engineering, College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tao Yang
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Kuihua Zhang
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Chengyu Zou
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Keqing Hou
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Anlin Yin
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
5
|
Yang F, Wang Y, Yang D, Zheng X, Xie X, Feng K, Cheng G, Hu Q, Chai C, Zhang Q. Topography immune-responsive silk films for skin regeneration. Int J Biol Macromol 2025; 287:138543. [PMID: 39653216 DOI: 10.1016/j.ijbiomac.2024.138543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Scar formation and chronic refractory wounds pose a significant threat to public health, with abnormal immune regulation as a key characteristic. However, topography, a crucial factor influencing immune responses, has not been adequately considered in the design of wound dressings. In this study, we constructed a hierarchical structure on silk fibroin (SF) films by combining soft lithography and femtosecond laser ablation, without altering the intrinsic properties of SF. The discontinuity in the hierarchical structure induced a transformation in the morphology of macrophage RAW264.7 cells from round to spindle or pancake-like shapes, leading to phenotypic polarization toward M2 or M1. The timely transition from M1 to M2 polarization and the balance between these states promoted fibroblast L929 cells to express mRNA for FN, coll-I, TGF-β1, and α-SMA. The hierarchical structure of SF films facilitates full-thickness wound repair in vivo by regulating inflammation and promoting neovascularization and collagen deposition. Thus, hierarchical topography presents a promising strategy for the design of immunomodulatory wound dressings.
Collapse
Affiliation(s)
- Futing Yang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yonglong Wang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Daiying Yang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xi Zheng
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaofan Xie
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Kun Feng
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Guotao Cheng
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333001, China
| | - Chunli Chai
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Wang Z, Li M, Chen J, Zhang S, Wang B, Wang J. Immunomodulatory Hydrogel for Electrostatically Capturing Pro-inflammatory Factors and Chemically Scavenging Reactive Oxygen Species in Chronic Diabetic Wound Remodeling. Adv Healthc Mater 2024; 13:e2402080. [PMID: 39380409 DOI: 10.1002/adhm.202402080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Diabetic wound exhibits the complex characteristics involving continuous oxidative stress and excessive expression of pro-inflammatory cytokines to cause a long-term inflammatory microenvironment. The repair healing of chronic diabetic wounding is tremendously hindered due to persistent inflammatory reaction. To address the aforementioned issues, here, a dual-functional hydrogel is designed, consisting of N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-tetramethylpropane-1, 3-diaminium (TSPBA) modified polyvinyl alcohol (PVA) and methacrylamide carboxymethyl chitosan (CMCSMA) can not only electrostatically adsorb proinflammatory cytokines of IL1-β and TNF-α, but can also chemically scavenge the excessive reactive oxygen species (ROS) in situ. Both in vitro and in vivo evaluations verify that the negatively charged and ROS-responsive hydrogel (NCRH) can effectively modulate the chronic inflammatory microenvironment of diabetic wounds and significantly enhance wound remodeling. More importantly, the well-designed NCRH shows a superior skin recovery in comparison with the commercial competitor product of wound dressing. Consequently, the current work highlights the need for new strategies to expedite the healing process of diabetic wounds and offers a wound dressing material with immunomodulation.
Collapse
Affiliation(s)
- Zihao Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Mengyu Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jia Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Jianglin Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
7
|
Zhang Y, Hu H, Zhu Y, Xiao J, Li C, Qian C, Yu X, Zhao J, Chen X, Liu J, Zhou J. Butterfly-Inspired Multiple Cross-Linked Dopamine-Metal-Phenol Bioprosthetic Valves with Enhanced Endothelialization and Anticalcification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64522-64535. [PMID: 39535147 PMCID: PMC11615854 DOI: 10.1021/acsami.4c14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Valve replacement is the most effective means of treating heart valve diseases, and transcatheter heart valve replacement (THVR) is the hottest field at present. However, the durability of the commercial bioprosthetic valves has always been the limiting factor restricting the development of interventional valve technology. The chronic inflammatory reaction, calcification, and difficulty in endothelialization after the implantation of a glutaraldehyde cross-linked porcine aortic valve or bovine pericardium often led to valve degeneration. Improving the biocompatibility of valve materials and inducing endothelialization to promote in situ regeneration can extend the service life of valve materials. Herein, inspired by the hardening process of butterfly wings, this study proposed a dopamine-metal-phenol strategy to modify decellularized porcine pericardium (DPP). This is a strategy to make dopamine (DA) coordinate trivalent metal chromium ions (Cr(III)) with antiplatelets (PLTs) and anti-inflammatory properties, and then cross-link it with tea polyphenols (TP) to generate a valve scaffold that is mechanically comparable to glutaraldehyde-cross-linked scaffolds but avoids the cytotoxicity of aldehyde and presents better biocompatibility, hemocompatibility, anticalcification, and anti-inflammatory response properties.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Hai Hu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Yaoxi Zhu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jie Xiao
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Chenghao Li
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Chen Qian
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Xiaobo Yu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jinping Zhao
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Xing Chen
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jinping Liu
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| | - Jianliang Zhou
- Department
of Cardiovascular Surgery, Zhongnan Hospital
of Wuhan University, Wuhan 430071, China
- Hubei
Provincial Engineering Research Center of Minimally Invasive Cardiovascular
Surgery, Wuhan 430071, China
- Wuhan
Clinical Research Center for Minimally Invasive Treatment of Structural
Heart Disease, Wuhan 430071, China
| |
Collapse
|
8
|
Wu J, Chen Y, Liu X, Liu S, Deng L, Tang K. Human acellular amniotic membrane/polycaprolactone vascular grafts prepared by electrospinning enable vascular remodeling in vivo. Biomed Eng Online 2024; 23:112. [PMID: 39506815 PMCID: PMC11542409 DOI: 10.1186/s12938-024-01302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Vascular transplantation is an effective treatment for severe vascular lesions. The design of the bioactive and mechanical properties of small-caliber vascular grafts is critical for their application in tissue engineering. In this study, we sought to develope a small-caliber vascular graft by electrospinning a mixture of a human acellular amniotic membrane (HAAM) and polycaprolactone (PCL). RESULTS Mechanical tests showed that the vascular grafts were strong enough to endure stress from adjacent blood vessels and blood pressure. The biocompatibility of the HAAM/PCL vascular grafts was evaluated based on cell proliferation in vitro. The tubular formation test demonstrated that vascular grafts containing HAAM could improve human umbilical vein endothelial cell function, and in vivo implantation was performed by replacing the rat abdominal aorta. The HAAM/PCL vascular graft was found to promote attachment and endothelial cell retention. The regenerated smooth muscle layer was similar to native arteries' smooth muscle layer and the endothelium coverage was complete. CONCLUSIONS These results suggest that our constructs may be promising vascular graft candidates and can potentially be used to develop vascular grafts that can endothelialize rapidly in vivo.
Collapse
Affiliation(s)
- Jiayi Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yixin Chen
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Xiaoxi Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Shun Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Long Deng
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Kai Tang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China.
| |
Collapse
|
9
|
Chen YG, Dombaxe C, D'Amato AR, Van Herck S, Welch H, Fu Q, Zhang S, Wang Y. Transformation of metallo-elastomer grafts in a carotid artery interposition model over a year. Biomaterials 2024; 309:122598. [PMID: 38696943 DOI: 10.1016/j.biomaterials.2024.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Current vascular grafts, primarily Gore-Tex® and Dacron®, don't integrate with the host and have low patency in small-diameter vessels (<6 mm). Biomaterials that possess appropriate viscoelasticity, compliance, and high biocompatibility are essential for their application in small blood vessels. We have developed metal ion crosslinked poly(propanediol-co-(hydroxyphenyl methylene)amino-propanediol sebacate) (M-PAS), a biodegradable elastomer with a wide range of mechanical properties. We call these materials metallo-elastomers. An initial test on Zn-, Fe-, and Cu-PAS grafts reveals that Cu-PAS is the most suitable because of its excellent elastic recoil and well-balanced polymer degradation/tissue regeneration rate. Here we report host remodeling of Cu-PAS vascular grafts in rats over one year. 76 % of the grafts remain patent and >90 % of the synthetic polymer is degraded by 12 months. Extensive cell infiltration leads to a positive host remodeling. The remodeled grafts feature a fully endothelialized lumen. Circumferentially organized smooth muscle cells, elastin fibers, and widespread mature collagen give the neoarteries mechanical properties similar to native arteries. Proteomic analysis further reveals the presence of important vascular proteins in the neoarteries. Evidence suggests that Cu-PAS is a promising material for engineering small blood vessels.
Collapse
Affiliation(s)
- Ying Grace Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Catia Dombaxe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | | | - Simon Van Herck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Halle Welch
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14850, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14850, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
10
|
Ren C, Chang Z, Li K, Wang X, Wang D, Xu Y, Li X, Li Q. Impact of uniaxial cyclic stretching on matrix-associated endothelial cell responses. Mater Today Bio 2024; 27:101152. [PMID: 39104901 PMCID: PMC11298614 DOI: 10.1016/j.mtbio.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Uniaxial cyclic stretching plays a pivotal role in the fields of tissue engineering and regenerative medicine, influencing cell behaviors and functionality based on physical properties, including matrix morphology and mechanical stimuli. This study delves into the response of endothelial cells to uniaxial cyclic strain within the geometric constraints of micro-nano fibers. Various structural scaffold forms of poly(l-lactide-co-caprolactone) (PLCL), such as flat membranes, randomly oriented fiber membranes, and aligned fiber membranes, were fabricated through solvent casting and electrospinning methods. Our investigation focuses on the morphological variation of endothelial cells under diverse geometric constraints and the mechanical-dependent release of nitric oxide (NO) on oriented fibrous membranes. Our results indicate that while uniaxial cyclic stretching promotes endothelial cell spreading, the anisotropy of the matrix morphology remains the primary driving factor for cell alignment. Additionally, uniaxial cyclic stretching significantly enhances NO release, with a notably stronger effect correlated to the increasing strain amplitude. Importantly, this study reveals that uniaxial cyclic stretching enhances the mRNA expression of key proteins, including talin, vinculin, rac, and nitric oxide synthase (eNOS).
Collapse
Affiliation(s)
- Cuihong Ren
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhonghua Chang
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, 450046, PR China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Dongfang Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yiyang Xu
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| |
Collapse
|
11
|
Shen Y, Pan Y, Liang F, Song J, Yu X, Cui J, Cai G, EL-Newehy M, Abdulhameed MM, Gu H, Sun B, Yin M, Mo X. Development of 3D printed electrospun vascular graft loaded with tetramethylpyrazine for reducing thrombosis and restraining aneurysmal dilatation. BURNS & TRAUMA 2024; 12:tkae008. [PMID: 38596623 PMCID: PMC11002459 DOI: 10.1093/burnst/tkae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024]
Abstract
Background Small-diameter vascular grafts have become the focus of attention in tissue engineering. Thrombosis and aneurysmal dilatation are the two major complications of the loss of vascular access after surgery. Therefore, we focused on fabricating 3D printed electrospun vascular grafts loaded with tetramethylpyrazine (TMP) to overcome these limitations. Methods Based on electrospinning and 3D printing, 3D-printed electrospun vascular grafts loaded with TMP were fabricated. The inner layer of the graft was composed of electrospun poly(L-lactic-co-caprolactone) (PLCL) nanofibers and the outer layer consisted of 3D printed polycaprolactone (PCL) microfibers. The characterization and mechanical properties were tested. The blood compatibility and in vitro cytocompatibility of the grafts were also evaluated. Additionally, rat abdominal aortas were replaced with these 3D-printed electrospun grafts to evaluate their biosafety. Results Mechanical tests demonstrated that the addition of PCL microfibers could improve the mechanical properties. In vitro experimental data proved that the introduction of TMP effectively inhibited platelet adhesion. Afterwards, rat abdominal aorta was replaced with 3D-printed electrospun grafts. The 3D-printed electrospun graft loaded with TMP showed good biocompatibility and mechanical strength within 6 months and maintained substantial patency without the occurrence of acute thrombosis. Moreover, no obvious aneurysmal dilatation was observed. Conclusions The study demonstrated that 3D-printed electrospun vascular grafts loaded with TMP may have the potential for injured vascular healing.
Collapse
Affiliation(s)
- Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Jiahui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Guangfang Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Mohamed EL-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hongbing Gu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201600, PR China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
12
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Li Y, Liu S, Zhang J, Wang Y, Lu H, Zhang Y, Song G, Niu F, Shen Y, Midgley AC, Li W, Kong D, Zhu M. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration. Nat Commun 2024; 15:1377. [PMID: 38355941 PMCID: PMC10866888 DOI: 10.1038/s41467-024-45764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Injectable biomaterials have garnered increasing attention for their potential and beneficial applications in minimally invasive surgical procedures and tissue regeneration. Extracellular matrix (ECM) hydrogels and porous synthetic polymer microspheres can be prepared for injectable administration to achieve in situ tissue regeneration. However, the rapid degradation of ECM hydrogels and the poor injectability and biological inertness of most polymeric microspheres limit their pro-regenerative capabilities. Here, we develop a biomaterial system consisting of elastic porous poly(l-lactide-co-ε-caprolactone) (PLCL) microspheres mixed with ECM hydrogels as injectable composites with interleukin-4 (IL-4) and insulin-like growth factor-1 (IGF-1) dual-release functionality. The developed multifunctional composites have favorable injectability and biocompatibility, and regulate the behavior of macrophages and myogenic cells following injection into muscle tissue. The elicited promotive effects on tissue regeneration are evidenced by enhanced neomusle formation, vascularization, and neuralization at 2-months post-implantation in a male rat model of volumetric muscle loss. Our developed system provides a promising strategy for engineering bioactive injectable composites that demonstrates desirable properties for clinical use and holds translational potential for application as a minimally invasive and pro-regenerative implant material in multiple types of surgical procedures.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Siyang Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jingjing Zhang
- Chifeng Municipal Hospital, Chifeng, 024000, Inner Mongolia, China
| | - Yumeng Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Hongjiang Lu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yuexi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Guangzhou Song
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Fanhua Niu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yufan Shen
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wen Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Deling Kong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
Federici AS, Tornifoglio B, Lally C, Garcia O, Kelly DJ, Hoey DA. Melt electrowritten scaffold architectures to mimic tissue mechanics and guide neo-tissue orientation. J Mech Behav Biomed Mater 2024; 150:106292. [PMID: 38109813 DOI: 10.1016/j.jmbbm.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023]
Abstract
All human tissues present with unique mechanical properties critical to their function. This is achieved in part through the specific architecture of the extracellular matrix (ECM) fibres within each tissue. An example of this is seen in the walls of the vasculature where each layer presents with a unique ECM orientation critical to its functions. Current adopted vascular grafts to bypass a stenosed/damaged vessel fail to recapitulate this unique mechanical behaviour, particularly in the case of small diameter vessels (<6 mm), leading to failure. Therefore, in this study, melt-electrowriting (MEW) was adopted to produce a range of fibrous scaffolds to mimic the extracellular matrix (ECM) architecture of the tunica media of the vasculature, in an attempt to match the mechanical and biological behaviour of the native porcine tissue. Initially, the range of collagen architectures within the native vessel was determined, and subsequently replicated using MEW (winding angles (WA) 45°, 26.5°, 18.4°, 11.3°). These scaffolds recapitulated the anisotropic, non-linear mechanical behaviour of native carotid blood vessels. Moreover, these grafts facilitated human mesenchymal stem cell (hMSC) infiltration, differentiation, and ECM deposition that was independent of WA. The bioinspired MEW fibre architecture promoted cell alignment and preferential neo-tissue orientation in a manner similar to that seen in native tissue, particularly for WA 18.4° and 11.3°, which is a mandatory requirement for long-term survival of the regenerated tissue post-scaffold degradation. Lastly, the WA 18.4° was translated to a tubular graft and was shown to mirror the mechanical behaviour of small diameter vessels within physiological strain. Taken together, this study demonstrates the capacity to use MEW to fabricate bioinspired scaffolds to mimic the tunica media of vessels and recapitulate vascular mechanics which could act as a framework for small diameter graft development to guide tissue regeneration and orientation.
Collapse
Affiliation(s)
- Angelica S Federici
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland
| | - Brooke Tornifoglio
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, CA, USA
| | - Daniel J Kelly
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland
| | - David A Hoey
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland.
| |
Collapse
|
15
|
Lee G, Han SB, Kim SH, Jeong S, Kim DH. Stretching of porous poly (l-lactide-co-ε-caprolactone) membranes regulates the differentiation of mesenchymal stem cells. Front Cell Dev Biol 2024; 12:1303688. [PMID: 38333594 PMCID: PMC10850303 DOI: 10.3389/fcell.2024.1303688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Background: Among a variety of biomaterials supporting cell growth for therapeutic applications, poly (l-lactide-co-ε-caprolactone) (PLCL) has been considered as one of the most attractive scaffolds for tissue engineering owing to its superior mechanical strength, biocompatibility, and processibility. Although extensive studies have been conducted on the relationship between the microstructure of polymeric materials and their mechanical properties, the use of the fine-tuned morphology and mechanical strength of PLCL membranes in stem cell differentiation has not yet been studied. Methods: PLCL membranes were crystallized in a combination of diverse solvent-nonsolvent mixtures, including methanol (MeOH), isopropanol (IPA), chloroform (CF), and distilled water (DW), with different solvent polarities. A PLCL membrane with high mechanical strength induced by limited pore formation was placed in a custom bioreactor mimicking the reproducible physiological microenvironment of the vascular system to promote the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells (SMCs). Results: We developed a simple, cost-effective method for fabricating porosity-controlled PLCL membranes based on the crystallization of copolymer chains in a combination of solvents and non-solvents. We confirmed that an increase in the ratio of the non-solvent increased the chain aggregation of PLCL by slow evaporation, leading to improved mechanical properties of the PLCL membrane. Furthermore, we demonstrated that the cyclic stretching of PLCL membranes induced MSC differentiation into SMCs within 10 days of culture. Conclusion: The combination of solvent and non-solvent casting for PLCL solidification can be used to fabricate mechanically durable polymer membranes for use as mechanosensitive scaffolds for stem cell differentiation.
Collapse
Affiliation(s)
- Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Peters MM, Brister JK, Tang EM, Zhang FW, Lucian VM, Trackey PD, Bone Z, Zimmerman JF, Jin Q, Burpo FJ, Parker KK. Self-organizing behaviors of cardiovascular cells on synthetic nanofiber scaffolds. APL Bioeng 2023; 7:046114. [PMID: 38046543 PMCID: PMC10693444 DOI: 10.1063/5.0172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023] Open
Abstract
In tissues and organs, the extracellular matrix (ECM) helps maintain inter- and intracellular architectures that sustain the structure-function relationships defining physiological homeostasis. Combining fiber scaffolds and cells to form engineered tissues is a means of replicating these relationships. Engineered tissues' fiber scaffolds are designed to mimic the topology and chemical composition of the ECM network. Here, we asked how cells found in the heart compare in their propensity to align their cytoskeleton and self-organize in response to topological cues in fibrous scaffolds. We studied cardiomyocytes, valvular interstitial cells, and vascular endothelial cells as they adapted their inter- and intracellular architectures to the extracellular space. We used focused rotary jet spinning to manufacture aligned fibrous scaffolds to mimic the length scale and three-dimensional (3D) nature of the native ECM in the muscular, valvular, and vascular tissues of the heart. The representative cardiovascular cell types were seeded onto fiber scaffolds and infiltrated the fibrous network. We measured different cell types' propensity for cytoskeletal alignment in response to fiber scaffolds with differing levels of anisotropy. The results indicated that valvular interstitial cells on moderately anisotropic substrates have a higher propensity for cytoskeletal alignment than cardiomyocytes and vascular endothelial cells. However, all cell types displayed similar levels of alignment on more extreme (isotropic and highly anisotropic) fiber scaffold organizations. These data suggest that in the hierarchy of signals that dictate the spatiotemporal organization of a tissue, geometric cues within the ECM and cellular networks may homogenize behaviors across cell populations and demographics.
Collapse
Affiliation(s)
- Michael M. Peters
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| | - Jackson K. Brister
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| | - Edward M. Tang
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - Felita W. Zhang
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - Veronica M. Lucian
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - Paul D. Trackey
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - Zachary Bone
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - John F. Zimmerman
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| | - Qianru Jin
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| | - F. John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | | |
Collapse
|
17
|
Kabirian F, Mozafari M, Mela P, Heying R. Incorporation of Controlled Release Systems Improves the Functionality of Biodegradable 3D Printed Cardiovascular Implants. ACS Biomater Sci Eng 2023; 9:5953-5967. [PMID: 37856240 DOI: 10.1021/acsbiomaterials.3c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
New horizons in cardiovascular research are opened by using 3D printing for biodegradable implants. This additive manufacturing approach allows the design and fabrication of complex structures according to the patient's imaging data in an accurate, reproducible, cost-effective, and quick manner. Acellular cardiovascular implants produced from biodegradable materials have the potential to provide enough support for in situ tissue regeneration while gradually being replaced by neo-autologous tissue. Subsequently, they have the potential to prevent long-term complications. In this Review, we discuss the current status of 3D printing applications in the development of biodegradable cardiovascular implants with a focus on design, biomaterial selection, fabrication methods, and advantages of implantable controlled release systems. Moreover, we delve into the intricate challenges that accompany the clinical translation of these groundbreaking innovations, presenting a glimpse of potential solutions poised to enable the realization of these technologies in the realm of cardiovascular medicine.
Collapse
Affiliation(s)
- Fatemeh Kabirian
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Petra Mela
- Medical Materials and Implants, Department of Mechanical Engineering, Munich Institute of Biomedical Engineering, and TUM School of Engineering and Design, Technical University of Munich, Munich 80333, Germany
| | - Ruth Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
18
|
Bai S, Zhang J, Gao Y, Chen X, Wang K, Yuan X. Surface Functionalization of Electrospun Scaffolds by QK-AG73 Peptide for Enhanced Interaction with Vascular Endothelial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14162-14172. [PMID: 37722015 DOI: 10.1021/acs.langmuir.3c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Rapid endothelialization still remains challenging for blood-contacting biomaterials, especially for long-term, functional, small-diameter vascular grafts. The vascular endothelial growth factor (VEGF)-mimicking QK peptide holds great promise in promoting vascular endothelial cellular activities such as adhesion, spreading, proliferation, and migration. Syndecans are transmembrane proteoglycans that are highly expressed on cell surfaces, including vascular endothelial cells, which can act as docking receptors to provide binding sites for a variety of cellular growth and signaling molecules. Herein, a novel peptide QK-AG73 that coupled the QK domain with the syndecan binding peptide AG73 was proposed, aiming to synergistically enhance the interaction with vascular endothelial cells. In addition, mechanically matched bioactive scaffolds based on poly(l-lactide-co-ε-caprolactone) were successfully prepared by surface functionalization of the covalently combined QK-AG73 peptide. The result showed that the adhesion of human umbilical vein endothelial cells (HUVECs) was increased by approximately 2-fold on QK-AG73-modified surface compared with those modified with a single QK or AG73 peptide. Moreover, surface functionalization of electrospun scaffolds by this QK-AG73 peptide was more efficient in specifically promoting the proliferation of HUVECs and allowing them to grow with an elongated cobblestone-like cell morphology. It was hypothesized that both VEGF receptors and transmembrane syndecan receptors were involved in cellular regulation by the QK-AG73 peptide, which resulted in synergistic improvement of the interactions with vascular endothelial cells and provided a promising strategy to promote endothelialization of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Shan Bai
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yong Gao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaoqi Chen
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyan Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
19
|
Wang Z, Zhang W, Bai G, Lu Q, Li X, Zhou Y, Yang C, Xiao Y, Lang M. Highly resilient and fatigue-resistant poly(4-methyl- ε-caprolactone) porous scaffold fabricated via thiol-yne photo-crosslinking/salt-templating for soft tissue regeneration. Bioact Mater 2023; 28:311-325. [PMID: 37334070 PMCID: PMC10275743 DOI: 10.1016/j.bioactmat.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
Elastomeric scaffolds, individually customized to mimic the structural and mechanical properties of natural tissues have been used for tissue regeneration. In this regard, polyester elastic scaffolds with tunable mechanical properties and exceptional biological properties have been reported to provide mechanical support and structural integrity for tissue repair. Herein, poly(4-methyl-ε-caprolactone) (PMCL) was first double-terminated by alkynylation (PMCL-DY) as a liquid precursor at room temperature. Subsequently, three-dimensional porous scaffolds with custom shapes were fabricated from PMCL-DY via thiol-yne photocrosslinking using a practical salt template method. By manipulating the Mn of the precursor, the modulus of compression of the scaffold was easily adjusted. As evidenced by the complete recovery from 90% compression, the rapid recovery rate of >500 mm min-1, the extremely low energy loss coefficient of <0.1, and the superior fatigue resistance, the PMCL20-DY porous scaffold was confirmed to harbor excellent elastic properties. In addition, the high resilience of the scaffold was confirmed to endow it with a minimally invasive application potential. In vitro testing revealed that the 3D porous scaffold was biocompatible with rat bone marrow stromal cells (BMSCs), inducing BMSCs to differentiate into chondrogenic cells. In addition, the elastic porous scaffold demonstrated good regenerative efficiency in a 12-week rabbit cartilage defect model. Thus, the novel polyester scaffold with adaptable mechanical properties may have extensive applications in soft tissue regeneration.
Collapse
Affiliation(s)
- Zhaochuang Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wenhao Zhang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guo Bai
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoyu Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chi Yang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
20
|
Dong J, Li Y, Wang X, Liu Y, Ren K, Liu X, Zhang H, Li Z, Han X, Uyama H, Li Q. Microinjection Molded Biopolymeric Airway Stent with Antibacterial and Anti-Hyperplastic Properties. Macromol Biosci 2023; 23:e2300113. [PMID: 37326455 DOI: 10.1002/mabi.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Central airway stenosis is a condition that the diameter of the trachea or main bronchus shrinkage is caused by external compression or internal tissue hyperplasia, which can cause difficulty breathing, asphyxia, and even death. Airway stenting is an easy way to restore the patency of the central airway, but airway stents commonly used in clinical practice can lead to complications such as mucus plugging, bacterial infection, and granulation tissue hyperplasia. Moreover, the non-degradable characteristic makes it requires a second operation to remove, which has the potential to cause tissue damage. In this study, a biodegradable airway stent is fabricated by microinjection molding using the bioelastomer of poly (L-lactide-co-ε-caprolactone) as the matrix material. The airway stent has excellent mechanical properties and an appropriate degradation rate. The hydrophilic surface of the airway stent can inhibit mucus plugging. The loading of silver nanoparticles and cisplatin endows the stent with antibacterial and anti-hyperplastic functions. In vitro and in vivo experiments demonstrate that this study provides an antibacterial and anti-hyperplastic biodegradable airway stent with elastic properties to avoid secondary removal operation and reduce complications associated with mucus plugging, bacterial infection, and granulation tissue hyperplasia.
Collapse
Affiliation(s)
- Jiahui Dong
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China
- Department of Applied Chemistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yahua Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yajing Liu
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Kewei Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, 450052, China
| | - Xuedi Liu
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Han Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Qian Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
21
|
Shi J, Teng Y, Li D, He J, Midgley AC, Guo X, Wang X, Yang X, Wang S, Feng Y, Lv Q, Hou S. Biomimetic tri-layered small-diameter vascular grafts with decellularized extracellular matrix promoting vascular regeneration and inhibiting thrombosis with the salidroside. Mater Today Bio 2023; 21:100709. [PMID: 37455822 PMCID: PMC10339197 DOI: 10.1016/j.mtbio.2023.100709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/20/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Small-diameter vascular grafts (SDVGs) are urgently required for clinical applications. Constructing vascular grafts mimicking the defining features of native arteries is a promising strategy. Here, we constructed a tri-layered vascular graft with a native artery decellularized extracellular matrix (dECM) mimicking the component of arteries. The porcine thoracic aorta was decellularized and milled into dECM powders from the differential layers. The intima and media dECM powders were blended with poly (L-lactide-co-caprolactone) (PLCL) as the inner and middle layers of electrospun vascular grafts, respectively. Pure PLCL was electrospun as a strengthening sheath for the outer layer. Salidroside was loaded into the inner layer of vascular grafts to inhibit thrombus formation. In vitro studies demonstrated that dECM provided a bioactive milieu for human umbilical vein endothelial cell (HUVEC) extension adhesion, proliferation, migration, and tube-forming. The in vivo studies showed that the addition of dECM could promote endothelialization, smooth muscle regeneration, and extracellular matrix deposition. The salidroside could inhibit thrombosis. Our study mimicked the component of the native artery and combined it with the advantages of synthetic polymer and dECM which provided a promising strategy for the design and construction of SDVGs.
Collapse
Affiliation(s)
- Jie Shi
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Yanjiao Teng
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Duo Li
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Ju He
- Vascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqin Guo
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Xiudan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Xinran Yang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, 30072, China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, 30072, China
| | - Qi Lv
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| |
Collapse
|
22
|
Ratner B. Vascular Grafts: Technology Success/Technology Failure. BME FRONTIERS 2023; 4:0003. [PMID: 37849668 PMCID: PMC10521696 DOI: 10.34133/bmef.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 10/19/2023] Open
Abstract
Vascular prostheses (grafts) are widely used for hemodialysis blood access, trauma repair, aneurism repair, and cardiovascular reconstruction. However, smaller-diameter (≤4 mm) grafts that would be valuable for many reconstructions have not been achieved to date, although hundreds of papers on small-diameter vascular grafts have been published. This perspective article presents a hypothesis that may open new research avenues for the development of small-diameter vascular grafts. A historical review of the vascular graft literature and specific types of vascular grafts is presented focusing on observations important to the hypothesis to be presented. Considerations in critically reviewing the vascular graft literature are discussed. The hypothesis that perhaps the "biocompatible biomaterials" comprising our vascular grafts-biomaterials that generate dense, nonvascularized collagenous capsules upon implantation-may not be all that biocompatible is presented. Examples of materials that heal with tissue reconstruction and vascularity, in contrast to the fibrotic encapsulation, are offered. Such prohealing materials may lead the way to a new generation of vascular grafts suitable for small-diameter reconstructions.
Collapse
Affiliation(s)
- Buddy Ratner
- Center for Dialysis Innovation (CDI), Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
24
|
Ding X, Zhang W, Xu P, Feng W, Tang X, Yang X, Wang L, Li L, Huang Y, Ji J, Chen D, Liu H, Fan Y. The Regulatory Effect of Braided Silk Fiber Skeletons with Differential Porosities on In Vivo Vascular Tissue Regeneration and Long-Term Patency. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9825237. [PMID: 36474603 PMCID: PMC9703915 DOI: 10.34133/2022/9825237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 06/21/2024]
Abstract
The development of small-diameter vascular grafts that can meet the long-term patency required for implementation in clinical practice presents a key challenge to the research field. Although techniques such as the braiding of scaffolds can offer a tunable platform for fabricating vascular grafts, the effects of braided silk fiber skeletons on the porosity, remodeling, and patency in vivo have not been thoroughly investigated. Here, we used finite element analysis of simulated deformation and compliance to design vascular grafts comprised of braided silk fiber skeletons with three different degrees of porosity. Following the synthesis of low-, medium-, and high-porosity silk fiber skeletons, we coated them with hemocompatible sulfated silk fibroin sponges and then evaluated the mechanical and biological functions of the resultant silk tubes with different porosities. Our data showed that high-porosity grafts exhibited higher elastic moduli and compliance but lower suture retention strength, which contrasted with low-porosity grafts. Medium-porosity grafts offered a favorable balance of mechanical properties. Short-term in vivo implantation in rats indicated that porosity served as an effective means to regulate blood leakage, cell infiltration, and neointima formation. High-porosity grafts were susceptible to blood leakage, while low-porosity grafts hindered graft cellularization and tended to induce intimal hyperplasia. Medium-porosity grafts closely mimicked the biomechanical behaviors of native blood vessels and facilitated vascular smooth muscle layer regeneration and polarization of infiltrated macrophages to the M2 phenotype. Due to their superior performance and lack of occlusion, the medium-porosity vascular grafts were evaluated in long-term (24-months) in vivo implantation. The medium-porosity grafts regenerated the vascular smooth muscle cell layers and collagen extracellular matrix, which were circumferentially aligned and resembled the native artery. Furthermore, the formed neoarteries pulsed synchronously with the adjacent native artery and demonstrated contractile function. Overall, our study underscores the importance of braided silk fiber skeleton porosity on long-term vascular graft performance and will help to guide the design of next-generation vascular grafts.
Collapse
Affiliation(s)
- Xili Ding
- School of Engineering Medicine, Beihang University, Beijing 100083, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weirong Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Peng Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Wentao Feng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaokai Tang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xianda Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Linhao Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yan Huang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Diansheng Chen
- eRobot Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China
| | - Haifeng Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100083, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
25
|
Wang Z, Mithieux SM, Vindin H, Wang Y, Zhang M, Liu L, Zbinden J, Blum KM, Yi T, Matsuzaki Y, Oveissi F, Akdemir R, Lockley KM, Zhang L, Ma K, Guan J, Waterhouse A, Pham NTH, Hawkett BS, Shinoka T, Breuer CK, Weiss AS. Rapid Regeneration of a Neoartery with Elastic Lamellae. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205614. [PMID: 36120809 DOI: 10.1002/adma.202205614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Native arteries contain a distinctive intima-media composed of organized elastin and an adventitia containing mature collagen fibrils. In contrast, implanted biodegradable small-diameter vascular grafts do not present spatially regenerated, organized elastin. The elastin-containing structures within the intima-media region encompass the elastic lamellae (EL) and internal elastic lamina (IEL) and are crucial for normal arterial function. Here, the development of a novel electrospun small-diameter vascular graft that facilitates de novo formation of a structurally appropriate elastin-containing intima-media region following implantation is described. The graft comprises a non-porous microstructure characterized by tropoelastin fibers that are embedded in a PGS matrix. After implantation in mouse abdominal aorta, the graft develops distinct cell and extracellular matrix profiles that approximate the native adventitia and intima-media by 8 weeks. Within the newly formed intima-media region there are circumferentially aligned smooth muscle cell layers that alternate with multiple EL similar to that found in the arterial wall. By 8 months, the developed adventitia region contains mature collagen fibrils and the neoartery presents a distinct IEL with thickness comparable to that in mouse abdominal aorta. It is proposed that this new class of material can generate the critically required, organized elastin needed for arterial regeneration.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Howard Vindin
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yiwei Wang
- Burns Research and Reconstructive Surgery, Anzac Research Institute, Sydney, NSW, 2139, Australia
- Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Miao Zhang
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jacob Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Tai Yi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Farshad Oveissi
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Reyda Akdemir
- Department of Chemical Engineering, University Rovira i Virgili, Tarragona, E-43007, Spain
| | - Karen M Lockley
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Lingyue Zhang
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ke Ma
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Anna Waterhouse
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
- The Heart Research Institute, University of Sydney, Sydney, NSW, 204206, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nguyen T H Pham
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Brian S Hawkett
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
26
|
Li J, Zhuo N, Zhang J, Sun Q, Si J, Wang K, Zhi D. The loading of C-type natriuretic peptides improved hemocompatibility and vascular regeneration of electrospun poly(ε-caprolactone) grafts. Acta Biomater 2022; 151:304-316. [PMID: 36002127 DOI: 10.1016/j.actbio.2022.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/01/2022]
Abstract
As a result of thrombosis or intimal hyperplasia, synthetic artificial vascular grafts had a low success rate when they were used to replace small-diameter arteries (inner diameter < 6 mm). C-type natriuretic peptides (CNP) have anti-thrombotic effects, and can promote endothelial cell (EC) proliferation and inhibit vascular smooth muscle cell (SMC) over-growth. In this study, poly(ε-caprolactone) (PCL) vascular grafts loaded with CNP (PCL-CNP) were constructed by electrospinning. The PCL-CNP grafts were able to continuously release CNP at least 25 days in vitro. The results of scanning electron microscopy (SEM) and mechanical testing showed that the loading of CNP did not change the microstructure and mechanical properties of the PCL grafts. In vitro blood compatibility analysis displayed that PCL-CNP grafts could inhibit thrombin activity and reduce platelet adhesion and activation. In vitro cell experiments demonstrated that PCL-CNP grafts activated ERK1/2 and Akt signaling in human umbilical vein endothelial cells (HUVECs), as well as increased cyclin D1 expression, enhanced proliferation and migration, and increased vascular endothelial growth factor (VEGF) secretion and nitric oxide (NO) production. The rabbit arteriovenous (AV)-shunt ex vitro indicated that CNP loading significantly improved the antithrombogenicity of PCL grafts. The assessment of vascular grafts in rat abdominal aorta implantation model displayed that PCL-CNP grafts promoted the regeneration of ECs and contractile SMCs, modulated macrophage polarization toward M2 phenotype, and enhanced extracellular matrix remodeling. These findings confirmed for the first time that loading CNP is an effective approach to improve the hemocompatibility and vascular regeneration of synthetic vascular grafts. STATEMENT OF SIGNIFICANCE: Small-diameter (< 6 mm) vascular grafts (SDVGs) have not been made clinically available due to their prevalence of thrombosis, limited endothelial regeneration and intimal hyperplasia. The incorporation of bioactive molecules into SDVGs serves as an effective solution to improve hemocompatibility and endothelialization. In this study, for the first time, we loaded C-type natriuretic peptides (CNP) into PCL grafts by electrospunning and confirmed the effectiveness of loading CNP on improving the hemocompatibility and vascular regeneration of artificial vascular grafts. Regenerative advantages included enhancement of endothelialization, modulation of macrophage polarization toward M2 phenotypes, and improved contractile smooth muscle cell regeneration. Our investigation brings attention to CNP as a valuable bioactive molecule for modifying cardiovascular biomaterial.
Collapse
Affiliation(s)
- Jing Li
- Department of Ultrasound, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Na Zhuo
- Department of Ultrasound, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jingai Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiqi Sun
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jianghua Si
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dengke Zhi
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Su H, Li Q, Li D, Li H, Feng Q, Cao X, Dong H. A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels. MATERIALS HORIZONS 2022; 9:2393-2407. [PMID: 35789239 DOI: 10.1039/d2mh00314g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mimicking complex structures of natural blood vessels and constructing vascular networks in tissue engineering scaffolds are still challenging now. Herein we demonstrate a new and versatile strategy to fabricate free-standing multi-furcated vessels and complicated vascular networks in heterogeneous porous scaffolds by integrating stimuli-responsive hydrogels and 3D printing technology. Through the sol-gel transition of temperature-responsive gelatin and conversion between two physical crosslinking networks of pH-responsive chitosan (i.e., electrostatic network between protonated chitosan and sulfate ion, crystalline network of neutral chitosan), physiologically-stable gelatin/chitosan hydrogel tubes can be constructed. While stimuli-responsive hydrogels confer the formation mechanism of the hydrogel tube, 3D printing confers the feasibility to create a multi-furcated structure and interconnected network in various heterogeneous porous scaffolds. As a consequence, biomimetic multi-furcated vessels (MFVs) and heterogeneous porous scaffolds containing multi-furcated vessels (HPS-MFVs) can be constructed precisely. Our data further confirm that the artificial blood vessel (gelatin/chitosan hydrogel tube) shows good physiological stability, mechanical strength, semi-permeability, hemocompatibility, cytocompatibility and low in vivo inflammatory response. Co-culture of hepatocyte (L02 cells) and human umbilical vein endothelial cells (HUVECs) in HPS-MFVs indicates the successful construction of a liver model. We believe that our method offers a simple and easy-going way to achieve robust fabrication of free-standing multi-furcated blood vessels and prevascularization of porous scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hongxian Su
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Dingguo Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiaodong Cao
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
28
|
Small Diameter Cell-Free Tissue-Engineered Vascular Grafts: Biomaterials and Manufacture Techniques to Reach Suitable Mechanical Properties. Polymers (Basel) 2022; 14:polym14173440. [PMID: 36080517 PMCID: PMC9460130 DOI: 10.3390/polym14173440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Vascular grafts (VGs) are medical devices intended to replace the function of a blood vessel. Available VGs in the market present low patency rates for small diameter applications setting the VG failure. This event arises from the inadequate response of the cells interacting with the biomaterial in the context of operative conditions generating chronic inflammation and a lack of regenerative signals where stenosis or aneurysms can occur. Tissue Engineered Vascular grafts (TEVGs) aim to induce the regeneration of the native vessel to overcome these limitations. Besides the biochemical stimuli, the biomaterial and the particular micro and macrostructure of the graft will determine the specific behavior under pulsatile pressure. The TEVG must support blood flow withstanding the exerted pressure, allowing the proper compliance required for the biomechanical stimulation needed for regeneration. Although the international standards outline the specific requirements to evaluate vascular grafts, the challenge remains in choosing the proper biomaterial and manufacturing TEVGs with good quality features to perform satisfactorily. In this review, we aim to recognize the best strategies to reach suitable mechanical properties in cell-free TEVGs according to the reported success of different approaches in clinical trials and pre-clinical trials.
Collapse
|
29
|
van Kampen KA, Fernández-Pérez J, Baker M, Mota C, Moroni L. Fabrication of a mimetic vascular graft using melt spinning with tailorable fiber parameters. BIOMATERIALS ADVANCES 2022; 139:212972. [PMID: 35882129 DOI: 10.1016/j.bioadv.2022.212972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Smooth muscle cells play a pivotal role in maintaining blood pressure and remodeling of the extracellular matrix. These cells have a characteristic spindle shape and are aligned in the radial direction to aid in the constriction of any artery. Tissue engineered grafts have the potential to recreate this alignment and offer a viable alternative to non-resorbable or autologous grafts. Specifically, with melt spinning small diameter fibers can be created that can align circumferentially on the scaffolds. In this study, a set of simplified equations were formulated to predict the final fiber parameters. Smooth muscle cell alignment was monitored on the fabricated scaffolds. Finally, a co-culture of smooth muscle cells in direct contact with endothelial cells was performed to assess the influence of the smooth muscle cell alignment on the morphology of the endothelial cells. The results show that the equations were able to accurately predict the fiber diameter, distance and angle. Primary vascular smooth muscle cells aligned according to the fiber direction mimicking the native orientation. The co-culture with endothelial cells showed that the aligned smooth muscle cells did not have an influence on the morphology of the endothelial cells. In conclusion, we formulated a series of equations that can predict the fiber parameters during melt spinning. Furthermore, the method described here can create a vascular graft with smooth muscle cells aligned circumferentially that morphologically mimics the native orientation.
Collapse
Affiliation(s)
- Kenny A van Kampen
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Julia Fernández-Pérez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Matthew Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands.
| |
Collapse
|
30
|
Furdella KJ, Higuchi S, Kim K, Doetschman T, Wagner WR, Vande Geest JP. Acute Elution of TGFβ2 Affects the Smooth Muscle Cells in a Compliance-Matched Vascular Graft. Tissue Eng Part A 2022; 28:640-650. [PMID: 35521649 PMCID: PMC9354035 DOI: 10.1089/ten.tea.2021.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor beta 2 (TGFβ2) is a pleiotropic growth factor that plays a vital role in smooth muscle cell (SMC) function. Our prior in vitro work has shown that SMC response can be modulated with TGFβ2 stimulation in a dose dependent manner. In particular, we have shown that increasing concentrations of TGFβ2 shift SMCs from a migratory to a synthetic behavior. In this work, electrospun compliance-matched and hypocompliant TGFβ2-eluting tissue engineered vascular grafts (TEVGs) were implanted into Sprague Dawley rats for 5 days to observe SMC population and collagen production. TEVGs were fabricated using a combined computational and experimental approach that varied the ratio of gelatin:polycaprolactone to be either compliance matched or twice as stiff as rat aorta (hypocompliant). TGFβ2 concentrations of 0, 10, 100 ng/mg were added to both graft types (n = 3 in each group) and imaged in vivo using ultrasound. Histological markers (SMC, macrophage, collagen, and elastin) were evaluated following explanation at 5 days. In vivo ultrasound showed that compliance-matched TEVGs became stiffer as TGFβ2 increased (100 ng/mg TEVGs compared to rat aorta, p < 0.01), while all hypocompliant grafts remained stiffer than control rat aorta. In vivo velocity and diameter were also not significantly different than control vessels. The compliance-matched 10 ng/mg group had an elevated SMC signal (myosin heavy chain) compared to the 0 and 100 ng/mg grafts (p = 0.0009 and 0.0006). Compliance-matched TEVGs containing 100 ng/mg TGFβ2 had an increase in collagen production (p < 0.01), general immune response (p < 0.05), and a decrease in SMC population to the 0 and 10 ng/mg groups. All hypocompliant groups were found to be similar, suggesting a lower rate of TGFβ2 release in these TEVGs. Our results suggest that TGFβ2 can modulate in vivo SMC phenotype over an acute implantation period, which is consistent with our prior in vitro work. To the author's knowledge, this is the first in vivo rat study that evaluates a TGFβ2-eluting TEVG. Impact statement TGFβ2 affects the SMCs in a vascular graft.
Collapse
Affiliation(s)
- Kenneth J. Furdella
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shinichi Higuchi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tom Doetschman
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan P. Vande Geest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Yi B, Zhou B, Song Z, Yu L, Wang W, Liu W. Step-wise CAG@PLys@PDA-Cu2+ modification on micropatterned nanofibers for programmed endothelial healing. Bioact Mater 2022; 25:657-676. [PMID: 37056258 PMCID: PMC10086768 DOI: 10.1016/j.bioactmat.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Native-like endothelium regeneration is a prerequisite for material-guided small-diameter vascular regeneration. In this study, a novel strategy is proposed to achieve phase-adjusted endothelial healing by step-wise modification of parallel-microgroove-patterned (i.e., micropatterned) nanofibers with polydopamine-copper ion (PDA-Cu2+) complexes, polylysine (PLys) molecules, and Cys-Ala-Gly (CAG) peptides (CAG@PLys@PDA-Cu2+). Using electrospun poly(l-lactide-co-caprolactone) random nanofibers as the demonstrating biomaterial, step-wise modification of CAG@PLys@PDA-Cu2+ significantly enhanced substrate wettability and protein adsorption, exhibited an excellent antithrombotic surface and outstanding phase-adjusted capacity of endothelium regeneration involving cell adhesion, endothelial monolayer formation, and the regenerated endothelium maturation. Upon in vivo implantation for segmental replacement of rabbit carotid arteries, CAG@PLys@PDA-Cu2+ modified grafts (2 mm inner diameter) with micropatterns on inner surface effectively accelerated native-like endothelium regeneration within 1 week, with less platelet aggregates and inflammatory response compared to those on non-modified grafts. Prolonged observations at 6- and 12-weeks post-implantation demonstrated a positive vascular remodeling with almost fully covered endothelium and mature smooth muscle layer in the modified vascular grafts, accompanied with well-organized extracellular matrix. By contrast, non-modified vascular grafts induced a disorganized tissue formation with a high risk of thrombogenesis. In summary, step-wise modification of CAG@PLys@PDA-Cu2+ on micropatterned nanofibers can significantly promote endothelial healing without inflicting thrombosis, thus confirming a novel strategy for developing functional vascular grafts or other blood-contacting materials/devices.
Collapse
|
32
|
Zhang F, King MW. Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft. Adv Healthc Mater 2022; 11:e2200045. [PMID: 35286778 PMCID: PMC11468936 DOI: 10.1002/adhm.202200045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease leads to the highest morbidity worldwide. There is an urgent need to solve the lack of a viable arterial graft for patients requiring coronary artery bypass surgery. The current gold standard is to use the patient's own blood vessel, such as a saphenous vein graft. However, some patients do not have appropriate vessels to use because of systemic disease or secondary surgery. On the other hand, there is no commercially available synthetic vascular graft available on the market for small diameter (<6 mm) blood vessels like coronary, carotid, and peripheral popliteal arteries. Tissue-engineered vascular grafts (TEVGs) are studied in recent decades as a promising alternative to synthetic arterial prostheses. Yet only a few studies have proceeded to a clinical trial. Recent studies have uncovered that the host immune response can be directed toward increasing the success of a TEVG by shedding light on ways to modulate the macrophage response and improve the tissue regeneration outcome. In this review, the basic concepts of vascular tissue engineering and immunoengineering are considered. The state-of-art of TEVGs is summarized and the role of macrophages in TEVG regeneration is analyzed. Current immunomodulatory strategies based on biomaterials are also discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| |
Collapse
|
33
|
Potential of Biodegradable Synthetic Polymers for Use in Small-diameter Vascular Engineering. Macromol Res 2022. [DOI: 10.1007/s13233-022-0056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Li Q, Gao Y, Zhang J, Tang Y, Yangyong S, Wu L, Wu H, Shen M, Liu X, Han L, Xu Z. Crosslinking and functionalization of acellular patches via the self-assembly of copper@tea polyphenol nanoparticles. Regen Biomater 2022; 9:rbac030. [PMID: 35665201 PMCID: PMC9157057 DOI: 10.1093/rb/rbac030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
Decellularization is a promising technique to produce natural scaffolds for tissue engineering applications. However, non-crosslinked natural scaffolds disfavor application in cardiovascular surgery due to poor biomechanics and rapid degradation. Herein, we proposed a green strategy to crosslink and functionalize acellular scaffolds via the self-assembly of copper@tea polyphenol nanoparticles (Cu@TP NPs), and the resultant nanocomposite acellular scaffolds were named as Cu@TP-dBPs. The crosslinking degree, biomechanics, denaturation temperature and resistance to enzymatic degradation of Cu@TP-dBPs were comparable to those of glutaraldehyde crosslinked decellularized bovine pericardias (Glut-dBPs). Furthermore, Cu@TP-dBPs were biocompatible and had abilities to inhibit bacterial growth and promote the formation of capillary-like networks. Subcutaneous implantation models demonstrated that Cu@TP-dBPs were free of calcification and allowed for host cell infiltration at Day 21. Cardiac patch graft models confirmed that Cu@TP-dBP patches showed improved ingrowth of functional blood vessels and remodeling of extracellular matrix at Day 60. These results suggested that Cu@TP-dBPs not only had comparable biomechanics and biostability to Glut-dBPs, but also had several advantages over Glut-dBPs in terms of anticalcification, remodeling and integration capabilities. Particularly, they were functional patches possessing antibacterial and proangiogenic activities. These material properties and biological functions made Cu@TP-dBPs a promising functional acellular patch for cardiovascular applications.
Collapse
Affiliation(s)
- Qin Li
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Yuan Gao
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Jiajun Zhang
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Yangfeng Tang
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Shun Yangyong
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Lujia Wu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Hao Wu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Meifang Shen
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Xiaohong Liu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Lin Han
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Zhiyun Xu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
35
|
Marzi J, Munnig Schmidt EC, Brauchle EM, Wissing TB, Bauer H, Serrero A, Söntjens SHM, Bosman AW, Cox MAJ, Smits AIPM, Schenke-Layland K. Marker-Independent Monitoring of in vitro and in vivo Degradation of Supramolecular Polymers Applied in Cardiovascular in situ Tissue Engineering. Front Cardiovasc Med 2022; 9:885873. [PMID: 35656396 PMCID: PMC9152121 DOI: 10.3389/fcvm.2022.885873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
The equilibrium between scaffold degradation and neotissue formation, is highly essential for in situ tissue engineering. Herein, biodegradable grafts function as temporal roadmap to guide regeneration. The ability to monitor and understand the dynamics of degradation and tissue deposition in in situ cardiovascular graft materials is therefore of great value to accelerate the implementation of safe and sustainable tissue-engineered vascular grafts (TEVGs) as a substitute for conventional prosthetic grafts. In this study, we investigated the potential of Raman microspectroscopy and Raman imaging to monitor degradation kinetics of supramolecular polymers, which are employed as degradable scaffolds in in situ tissue engineering. Raman imaging was applied on in vitro degraded polymers, investigating two different polymer materials, subjected to oxidative and enzymatically-induced degradation. Furthermore, the method was transferred to analyze in vivo degradation of tissue-engineered carotid grafts after 6 and 12 months in a sheep model. Multivariate data analysis allowed to trace degradation and to compare the data from in vitro and in vivo degradation, indicating similar molecular observations in spectral signatures between implants and oxidative in vitro degradation. In vivo degradation appeared to be dominated by oxidative pathways. Furthermore, information on collagen deposition and composition could simultaneously be obtained from the same image scans. Our results demonstrate the sensitivity of Raman microspectroscopy to determine degradation stages and the assigned molecular changes non-destructively, encouraging future exploration of this techniques for time-resolved quality assessment of in situ tissue engineering processes.
Collapse
Affiliation(s)
- Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- *Correspondence: Julia Marzi
| | - Emma C. Munnig Schmidt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eva M. Brauchle
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tamar B. Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | | | | | | | | | | | - Anthal I. P. M. Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
36
|
Liu L, Ji X, Mao L, Wang L, Chen K, Shi Z, Ahmed AAQ, Thomas S, Vasilievich RV, Xiao L, Li X, Yang G. Hierarchical-structured bacterial cellulose/potato starch tubes as potential small-diameter vascular grafts. Carbohydr Polym 2022; 281:119034. [DOI: 10.1016/j.carbpol.2021.119034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/17/2023]
|
37
|
Tri-Layered Vascular Grafts Guide Vascular Cells’ Native-like Arrangement. Polymers (Basel) 2022; 14:polym14071370. [PMID: 35406244 PMCID: PMC9003212 DOI: 10.3390/polym14071370] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Bionic grafts hold great promise for directing tissue regeneration. In vascular tissue engineering, although a large number of synthetic grafts have been constructed, these substitutes only partially recapitulated the tri-layered structure of native arteries. Synthetic polymers such as poly(l-lactide-co-ε-caprolactone) (PLCL) possess good biocompatibility, controllable degradation, remarkable processability, and sufficient mechanical strength. These properties of PLCL show great promise for fabricating synthetic vascular substitutes. Here, tri-layered PLCL vascular grafts (TVGs) composed of a smooth inner layer, circumferentially aligned fibrous middle layer, and randomly distributed fibrous outer layer were prepared by sequentially using ink printing, wet spinning, and electrospinning techniques. TVGs possessed kink resistance and sufficient mechanical properties (tensile strength, elastic modulus, suture retention strength, and burst pressure) equivalent to the gold standard conduits of clinical application, i.e., human saphenous veins and human internal mammary arteries. The stratified structure of TVGs exhibited a visible guiding effect on specific vascular cells including enhancing endothelial cell (EC) monolayer formation, favoring vascular smooth muscle cells’ (VSMCs) arrangement and elongation, and facilitating fibroblasts’ proliferation and junction establishment. Our research provides a new avenue for designing synthetic vascular grafts with polymers.
Collapse
|
38
|
Zhi D, Cheng Q, Midgley AC, Zhang Q, Wei T, Li Y, Wang T, Ma T, Rafique M, Xia S, Cao Y, Li Y, Li J, Che Y, Zhu M, Wang K, Kong D. Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering. SCIENCE ADVANCES 2022; 8:eabl3888. [PMID: 35294246 PMCID: PMC8926343 DOI: 10.1126/sciadv.abl3888] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is a lack in clinically-suitable vascular grafts. Biotubes, prepared using in vivo tissue engineering, show potential for vascular regeneration. However, their mechanical strength is typically poor. Inspired by architectural design of steel fiber reinforcement of concrete for tunnel construction, poly(ε-caprolactone) (PCL) fiber skeletons (PSs) were fabricated by melt-spinning and heat treatment. The PSs were subcutaneously embedded to induce the assembly of host cells and extracellular matrix to obtain PS-reinforced biotubes (PBs). Heat-treated medium-fiber-angle PB (hMPB) demonstrated superior performance when evaluated by in vitro mechanical testing and following implantation in rat abdominal artery replacement models. hMPBs were further evaluated in canine peripheral arterial replacement and sheep arteriovenous graft models. Overall, hMPB demonstrated appropriate mechanics, puncture resistance, rapid hemostasis, vascular regeneration, and long-term patency, without incidence of luminal expansion or intimal hyperplasia. These optimized hMPB properties show promise as an alternatives to autologous vessels in clinical applications.
Collapse
Affiliation(s)
- Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qiuying Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yi Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Urban Transport Emission Control Research Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tengzhi Ma
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shuang Xia
- Department of Radiology, Tianjin Key Disciplines of Radiology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yuejuan Cao
- Department of Vascular Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yangchun Li
- Department of Vascular Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Jing Li
- Department of Ultrasound, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongzhe Che
- Department of Pathology and Anatomy, School of Medicine, Nankai University, Tianjin 300071, China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Corresponding author. (D.K.); (K.W.); (M.Z.)
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Corresponding author. (D.K.); (K.W.); (M.Z.)
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
- Corresponding author. (D.K.); (K.W.); (M.Z.)
| |
Collapse
|
39
|
Preparation of Poly(ε-caprolactone)/Poly(ester amide) Electrospun Membranes for Vascular Repair. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1480-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Controlling Pore Size of Electrospun Vascular Grafts by Electrospraying of Poly(Ethylene Oxide) Microparticles. Methods Mol Biol 2022; 2375:153-164. [PMID: 34591306 DOI: 10.1007/978-1-0716-1708-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electrospinning has become a popular polymer processing technique for application in vascular tissue engineering due to its unique capability to fabricate porous vascular grafts with fibrous morphology closely mimicking the natural extracellular matrix (ECMs). However, the inherently small pore sizes of electrospun vascular grafts often inhibit cell infiltration and impede vascular regeneration. Here we describe an effective and controllable method to increase the pore size of electrospun poly(ε-caprolactone) (PCL) vascular graft. With this method, composite grafts are prepared by turning on or off electrospraying of poly(ethylene oxide) (PEO) microparticles during the process of electrospinning PCL fibers. The PEO microparticles are used as a porogen agent and can be subsequently selectively removed to create a porogenic layer within the electrospun PCL grafts. Three types of porogenic PCL grafts were constructed using this method. The porogenic layer was either the inner layer, the middle one, or the outer one.
Collapse
|
41
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
42
|
Wang B, Chariyev-Prinz F, Burdis R, Eichholz K, Kelly DJ. Additive manufacturing of cartilage-mimetic scaffolds as off-the-shelf implants for joint regeneration. Biofabrication 2021; 14. [PMID: 34883477 DOI: 10.1088/1758-5090/ac41a0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
Biomimetic scaffolds that provide a tissue-specific environment to cells are particularly promising for tissue engineering and regenerative medicine applications. The goal of this study was to integrate emerging additive manufacturing and biomaterial design strategies to produce articular cartilage (AC) mimetic scaffolds that could be used as 'off-the-shelf' implants for joint regeneration. To this end alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize porous alginate-based scaffolds and to support the sustained release of transforming growth factor-β3 (TGF-β3). Covalent crosslinking dramatically improved the elasticity of the alginate/alginate sulfate scaffolds, while scaffold architecture could be tailored using a directional freezing technique. Introducing such an anisotropic architecture was found to promote mesenchymal stem cell (MSC) infiltration into the scaffold and to direct the orientation of the deposited extracellular matrix, leading to the development of cartilage tissue with a biomimetic zonal architecture. In vitro experiments also demonstrated the capacity of the sulfated scaffolds to both enhance chondrogenesis of MSCs and to control the release of TGF-β3, leading to the development of a tissue rich in sGAG and type II collagen. The scaffolds were further reinforced with a 3D printed PLCL framework, leading to composite implants that were more elastic than those reinforced with PCL, and which better mimicked the bulk mechanical properties of native cartilage tissue. The ability of this composite scaffold to support chondrogenesis was then confirmed within a dynamic culture system. Altogether, these findings demonstrate the potential of such biomimetic scaffolds as putative 'single-stage' or 'off-the-shelf' strategies for articular cartilage regeneration.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, IRELAND
| | - Farhad Chariyev-Prinz
- Trinity Biomedical Institute, Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - Ross Burdis
- Trinity Biomedical Institute, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - Kian Eichholz
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, IRELAND
| | - Daniel John Kelly
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, IRELAND
| |
Collapse
|
43
|
Bonito V, Koch SE, Krebber MM, Carvajal‐Berrio DA, Marzi J, Duijvelshoff R, Lurier EB, Buscone S, Dekker S, de Jong SMJ, Mes T, Vaessen KRD, Brauchle EM, Bosman AW, Schenke‐Layland K, Verhaar MC, Dankers PYW, Smits AIPM, Bouten CVC. Distinct Effects of Heparin and Interleukin-4 Functionalization on Macrophage Polarization and In Situ Arterial Tissue Regeneration Using Resorbable Supramolecular Vascular Grafts in Rats. Adv Healthc Mater 2021; 10:e2101103. [PMID: 34523263 PMCID: PMC11469141 DOI: 10.1002/adhm.202101103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Two of the greatest challenges for successful application of small-diameter in situ tissue-engineered vascular grafts are 1) preventing thrombus formation and 2) harnessing the inflammatory response to the graft to guide functional tissue regeneration. This study evaluates the in vivo performance of electrospun resorbable elastomeric vascular grafts, dual-functionalized with anti-thrombogenic heparin (hep) and anti-inflammatory interleukin 4 (IL-4) using a supramolecular approach. The regenerative capacity of IL-4/hep, hep-only, and bare grafts is investigated as interposition graft in the rat abdominal aorta, with follow-up at key timepoints in the healing cascade (1, 3, 7 days, and 3 months). Routine analyses are augmented with Raman microspectroscopy, in order to acquire the local molecular fingerprints of the resorbing scaffold and developing tissue. Thrombosis is found not to be a confounding factor in any of the groups. Hep-only-functionalized grafts resulted in adverse tissue remodeling, with cases of local intimal hyperplasia. This is negated with the addition of IL-4, which promoted M2 macrophage polarization and more mature neotissue formation. This study shows that with bioactive functionalization, the early inflammatory response can be modulated and affect the composition of neotissue. Nevertheless, variability between graft outcomes is observed within each group, warranting further evaluation in light of clinical translation.
Collapse
Affiliation(s)
- Valentina Bonito
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Suzanne E. Koch
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Merle M. Krebber
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Daniel A. Carvajal‐Berrio
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | - Julia Marzi
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | - Renee Duijvelshoff
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Department of CardiologyIsala Hospitalvan Heesweg 2Zwolle8025 ABThe Netherlands
| | - Emily B. Lurier
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Serena Buscone
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Sylvia Dekker
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Simone M. J. de Jong
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Tristan Mes
- SupraPolix BVEindhoven5612 AXThe Netherlands
| | - Koen R. D. Vaessen
- Central Laboratory Animal Research Facility (CLARF)Utrecht UniversityUtrecht3584 CXThe Netherlands
| | - Eva M. Brauchle
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | | | - Katja Schenke‐Layland
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | - Marianne C. Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Anthal I. P. M. Smits
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
44
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
45
|
Gupta P, Chaudhuri GR, Janani G, Agarwala M, Ghosh D, Nandi SK, Mandal BB. Functionalized Silk Vascular Grafts with Decellularized Human Wharton's Jelly Improves Remodeling via Immunomodulation in Rabbit Jugular Vein. Adv Healthc Mater 2021; 10:e2100750. [PMID: 34378360 DOI: 10.1002/adhm.202100750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Cell-free polymeric tissue-engineered vascular grafts (TEVGs) have shown great promise towards clinical translation; however, their limited bioactivity and remodeling ability challenge this cause. Here, a novel cell-free bioresorbable small diameter silk TEVG system functionalized with decellularized human Wharton's jelly (dWJ) matrix is developed and successfully implanted as interposition grafts into rabbit jugular vein. Implanted TEVGs remain patent for two months and integrate with host tissue, demonstrating neo-tissue formation and constructive remodeling. Mechanistic analysis reveals that dWJ matrix is a reservoir of various immunomodulatory cytokines (Interleukin-8, 6, 10, 4 and tumor necrosis factor alpha (TNF-α)), which aids in upregulating M2 macrophage-associated genes facilitating pro-remodeling behavior. Besides, dWJ treatment to human endothelial cells upregulates the expression of functional genes (cluster of differentiation 31 (CD31), endothelial nitric oxide synthase (eNOS), and vascular endothelial (VE)-cadherin), enables faster cell migration, and elevates nitric oxide (NO) production leading to the in situ development of endothelium. The dWJ functionalized silk TEVGs support increased host cell recruitment than control, including macrophages and vascular cells. It endows superior graft remodeling in terms of a dense medial layer comprising smooth muscle cells and elevates the production of extracellular matrix proteins (collagen and elastin). Altogether, these findings suggest that dWJ functionalization imitates the usefulness of cell seeding and enables graft remodeling.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Gaurab Ranjan Chaudhuri
- Department of Plastic Surgery R. G. Kar Medical College and Hospital Kolkata West Bengal 700004 India
| | - G. Janani
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Manoj Agarwala
- Department of ENT and Faciomaxillary Surgery GNRC Institute of Medical Sciences Guwahati Assam 781030 India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology West Bengal University of Animal and Fishery Sciences Kolkata West Bengal 700037 India
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology West Bengal University of Animal and Fishery Sciences Kolkata West Bengal 700037 India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Sciences and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
46
|
Xing Z, Wu S, Zhao C, Bai Y, Jin D, Yin M, Liu H, Fan Y. Vascular transplantation with dual-biofunctional ePTFE vascular grafts in a porcine model. J Mater Chem B 2021; 9:7409-7422. [PMID: 34551061 DOI: 10.1039/d1tb01398j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular disease (CVD) poses serious health concerns worldwide. The lack of transplantable vascular grafts is an unmet clinical need in the surgical treatment of CVD. Although expanded polytetrafluoroethylene (ePTFE) vascular grafts have been used in clinical practice, a low long-term patency rate in small-diameter transplantation application is still the biggest challenge. Thus, surface modification of ePTFE is sought after. In this study, polydopamine (PDA) was used to improve the hydrophilia and provide immobilization sites in ePTFE. Bivalirudin (BVLD), a direct thrombin inhibitor, was used to enhance the anti-thrombotic activity of ePTFE. The peptides derived from extracellular matrix proteins were used to elevate the bioactivity of ePTFE. The morphology, chemical composition, peptide modified strength, wettability, and hemocompatibility of modified ePTFE vascular grafts were investigated. Then, an endothelial cell proliferation assay was used to evaluate the best co-modification strategy of the ePTFE vascular graft in vitro. Since a large animal could relatively better mimic human physiology, we chose a porcine carotid artery replacement model in the current study. The results showed that the BVLD/REDV co-modified ePTFE vascular grafts had a satisfactory patency rate (66.7%) and a higher endothelial cell coverage ratio (70%) at 12 weeks after implantation. This may offer an opportunity to produce a multi-biofunctional ePTFE vascular graft, thereby yielding a potent product to meet the clinical needs.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yating Bai
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| |
Collapse
|
47
|
Yamanaka H, Mahara A, Morimoto N, Yamaoka T. REDV-modified decellularized microvascular grafts for arterial and venous reconstruction. J Biomed Mater Res A 2021; 110:547-558. [PMID: 34486215 DOI: 10.1002/jbm.a.37305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/02/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
Recently, a decellularized microvascular graft (inner diameter: 0.6 mm) modified with the integrin α4β1 ligand, REDV, was developed to provide an alternative to autologous-vein grafting in reconstructive microsurgery, showing good early-stage patency under arterial flow in rats. This consecutive study evaluated its potential utility not only as an arterial substitute, but also as a venous substitute, using a rat-tail replantation model. Graft remodeling depending on hemodynamic status was also investigated. ACI rat tail arteries were decellularized via ultra-high-hydrostatic pressure treatment and modified with REDV to induce antithrombogenic interfaces and promote endothelialization after implantation. Grafts were implanted into the tail artery and vein to re-establish blood circulation in amputated Lewis rat tails (n = 12). The primary endpoint was the survival of replants. Secondary endpoints were graft patency, remodeling, and regeneration for 6 months. In all but three cases with technical errors or postoperative self-mutilation, tails survived without any evidence of ischemia or congestion. Six-month Kaplan-Meier patency was 100% for tail-artery implanted grafts and 62% for tail-vein implanted grafts. At 6 months, the neo-tunica media (thickness: 95.0 μm in tail-artery implanted grafts, 9.3 μm in tail-vein implanted grafts) was regenerated inside the neo-intima. In conclusion, the microvascular grafts functioned well both as arterial and venous paths of replanted-rat tails, with different remodeling under arterial and venous conditions.
Collapse
Affiliation(s)
- Hiroki Yamanaka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
48
|
Wang Y, Fan Y, Liu H. Macrophage Polarization in Response to Biomaterials for Vascularization. Ann Biomed Eng 2021; 49:1992-2005. [PMID: 34282494 DOI: 10.1007/s10439-021-02832-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Vascularization of tissue engineering constructs is an urgent need for delivering oxygen and nutrients and promoting tissue remodeling. As we all know, almost all implanted biomaterials elicit immune responses. Interestingly, the immunomodulatory biomaterials can utilize the inherent regenerative capability of endogenous cells and stem cells recruited by the activated immune cells to facilitate anagenesis and tissue remodeling. Macrophages, as almost ones of the first responses upon the implantation of biomaterials, play a vital role in guiding vascular formation and tissue remodeling. The polarization of macrophages can be influenced by the physical and chemical properties of biomaterials and thus they display diverse function states. Here, this review focus on the macrophage polarization in response to biomaterials and the interactions between them. It also summarizes the current strategies to promote vascularization of tissue engineering constructs through macrophage responses.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
49
|
Zhang Q, Bosch-Rué È, Pérez RA, Truskey GA. Biofabrication of tissue engineering vascular systems. APL Bioeng 2021; 5:021507. [PMID: 33981941 PMCID: PMC8106537 DOI: 10.1063/5.0039628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death among persons aged 65 and older in the United States and many other developed countries. Tissue engineered vascular systems (TEVS) can serve as grafts for CVD treatment and be used as in vitro model systems to examine the role of various genetic factors during the CVD progressions. Current focus in the field is to fabricate TEVS that more closely resembles the mechanical properties and extracellular matrix environment of native vessels, which depends heavily on the advance in biofabrication techniques and discovery of novel biomaterials. In this review, we outline the mechanical and biological design requirements of TEVS and explore the history and recent advances in biofabrication methods and biomaterials for tissue engineered blood vessels and microvascular systems with special focus on in vitro applications. In vitro applications of TEVS for disease modeling are discussed.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Èlia Bosch-Rué
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - Román A. Pérez
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
50
|
Bai S, Zhang X, Zang L, Yang S, Chen X, Yuan X. Electrospinning of Biomaterials for Vascular Regeneration. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|