1
|
Diodati NG, Qu G, Mehrad B, Schaller MA. Cryopreservation of human lung tissue for 3D ex vivo analysis. Respir Res 2025; 26:187. [PMID: 40375251 DOI: 10.1186/s12931-025-03265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
Ex vivo culture techniques have assisted researchers in narrowing the translational gap between the lab and the clinic by allowing the study of biology in human tissues. In pulmonary biology, however, the availability of such tissues is a limiting factor in experimental design and constrains the reproducibility and replicability of these models as scientifically rigorous complements to in vitro or in vivo methods. Cryopreservation of human lung tissue is a strategy to address these limitations by generating cryopreserved biobanks of donors in the ex vivo study of pulmonary biology. Modern cryopreservation solutions, incorporating blends of cryoprotective extracellular macromolecules and cell-permeant non-toxic small molecules, have enabled the long-term storage of human lung tissue, allowing repeated experiments in the same donors and the simultaneous study of the same hypothesis across multiple donors, therefore granting the qualities of reproducibility and replicability to ex vivo systems. Specific considerations are required to properly maintain fundamental aspects of tissue structure, properties, and function throughout the cryopreservation process. The examples of existing cryopreservation systems successfully employed to amass cryobanks, and ex vivo culture techniques compatible with cryopreservation, are discussed herein, with the goal of indicating the potential of cryopreservation in ex vivo human lung tissue culture and highlighting opportunities for cryopreservation to expand the utility of ex vivo human lung culture systems in the pursuit of clinically relevant discoveries.
Collapse
Affiliation(s)
- Nickolas G Diodati
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, 1200 Newell Drive, Room MSB-M440, Gainesville, FL, 32610, USA.
| | - Ganlin Qu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, 1200 Newell Drive, Room MSB-M440, Gainesville, FL, 32610, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, 1200 Newell Drive, Room MSB-M440, Gainesville, FL, 32610, USA
| | - Matthew A Schaller
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, 1200 Newell Drive, Room MSB-M440, Gainesville, FL, 32610, USA
| |
Collapse
|
2
|
Hayashi Y, Bai H, Takahashi M, Mitani T, Kawahara M. Effect of introducing somatic mitochondria into an early embryo on zygotic gene activation†. Biol Reprod 2025; 112:614-627. [PMID: 39812326 DOI: 10.1093/biolre/ioaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025] Open
Abstract
Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear. In this study, we analyzed mouse embryos into which liver-derived somatic mitochondria were introduced (SM-embryos). Most SM-embryos were arrested at the two-cell stage. Some of the introduced somatic mitochondria became round, while others remained elongated and large. RNA-sequencing revealed a disruption of both minor and major zygotic gene activation (ZGA) in SM-embryos. Minor ZGA did not terminate before major ZGA, and the onset of major ZGA was inhibited, as shown by histone modification analyses of histone H3 lysine 4 trimethylation and histone H3 lysine 27 acetylation. Further analysis of metabolites involved in histone modification regulation in SM-embryos showed a significantly lower NAD+/NADH ratio in SM-embryos than in control embryos. Additionally, the mitochondrial membrane potential, an indicator of mitochondrial function, was lower in SM-embryos than in control embryos. Our results demonstrated that introducing somatic mitochondria into an embryo induces mitochondrial dysfunction, thereby disrupting metabolite production, leading to a disruption in ZGA and inducing developmental arrest. Our findings reveal that the alignment between cell differentiation and mitochondrial maturity is essential for early embryonic development.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Hokkaido, Japan
| | - Tomohiro Mitani
- Laboratory of Animal Production System, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
3
|
Qi K, Jia D, Zhou S, Zhang K, Guan F, Yao M, Sui X. Cryopreservation of Immune Cells: Recent Progress and Challenges Ahead. Adv Biol (Weinh) 2024; 8:e2400201. [PMID: 39113431 DOI: 10.1002/adbi.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/02/2024] [Indexed: 12/14/2024]
Abstract
Cryopreservation of immune cells is considered as a key enabling technology for adoptive cellular immunotherapy. However, current immune cell cryopreservation technologies face the challenges with poor biocompatibility of cryoprotection materials, low efficiency, and impaired post-thaw function, limiting their clinical translation. This review briefly introduces the adoptive cellular immunotherapy and the approved immune cell-based products, which involve T cells, natural killer cells and etc. The cryodamage mechanisms to these immune cells during cryopreservation process are described, including ice formation related mechanical and osmotic injuries, cryoprotectant induced toxic injuries, and other biochemical injuries. Meanwhile, the recent advances in the cryopreservation medium and freeze-thaw protocol for several representative immune cell type are summarized. Furthermore, the remaining challenges regarding on the cryoprotection materials, freeze-thaw protocol, and post-thaw functionality evaluation of current cryopreservation technologies are discussed. Finally, the future perspectives are proposed toward advancing highly efficient cryopreservation of immune cells.
Collapse
Affiliation(s)
- Kejun Qi
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Danqi Jia
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaojie Sui
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
4
|
Liu X, Li J, Zhu L, Huang J, Zhang Q, Wang J, Xie J, Dong Q, Zou Z, Huang G, Gu Q, Wang J, Li J. Mechanistic insights into zinc oxide nanoparticles induced embryotoxicity via H3K9me3 modulation. Biomaterials 2024; 311:122679. [PMID: 38943823 DOI: 10.1016/j.biomaterials.2024.122679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The widespread application of nanoparticles (NPs) in various fields has raised health concerns, especially in reproductive health. Our research has shown zinc oxide nanoparticles (ZnONPs) exhibit the most significant toxicity to pre-implantation embryos in mice compared to other common NPs. In patients undergoing assisted reproduction technology (ART), a significant negative correlation was observed between Zn concentration and clinical outcomes. Therefore, this study explores the impact of ZnONPs exposure on pre-implantation embryonic development and its underlying mechanisms. We revealed that both in vivo and in vitro exposure to ZnONPs impairs pre-implantation embryonic development. Moreover, ZnONPs were found to reduce the pluripotency of mouse embryonic stem cells (mESCs), as evidenced by teratoma and diploid chimera assays. Employing multi-omics approaches, including RNA-Seq, CUT&Tag, and ATAC-seq, the embryotoxicity mechanisms of ZnONPs were elucidated. The findings indicate that ZnONPs elevate H3K9me3 levels, leading to increased heterochromatin and consequent inhibition of gene expression related to development and pluripotency. Notably, Chaetocin, a H3K9me3 inhibitor, sucessfully reversed the embryotoxicity effects induced by ZnONPs. Additionally, the direct interaction between ZnONPs and H3K9me3 was verified through pull-down and immunoprecipitation assays. Collectively, these findings offer new insights into the epigenetic mechanisms of ZnONPs toxicity, enhancing our understanding of their impact on human reproductive health.
Collapse
Affiliation(s)
- Xuemei Liu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jie Li
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiayu Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jianwu Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qiang Dong
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Qi Gu
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Jianyu Wang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
5
|
Liu X, Zhang L, Li H, Yang J, Zhang L. The Inhibition of Interfacial Ice Formation and Stress Accumulation with Zwitterionic Betaine and Trehalose for High-Efficiency Skin Cryopreservation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0520. [PMID: 39545039 PMCID: PMC11561590 DOI: 10.34133/research.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/17/2024]
Abstract
Cryopreservation is a promising technique for the long-term storage of skin. However, the formation of ice crystals during cryopreservation unavoidably damages skin structure and functionality. Currently, the lack of thorough and systematic investigation into the internal mechanisms of skin cryoinjury obstructs the advancement of cryopreservation technology. In this study, we identified 3 primary contributors to skin cryoinjury: interfacial ice nucleation, stress accumulation, and thermal stress escalation. We emphasized the paramount role of interfacial ice nucleation in provoking ice growth within the skin during the cooling process. This progress subsequently leads to stress accumulation within the skin. During the rewarming process, the brittleness of skin, previously subjected to freezing, experienced a marked increase in thermal stress due to ice recrystallization. Based on these insights, we developed a novel zwitterionic betaine-based solution formulation designed for cryopreservation skin. This cryoprotective agent formulation exhibited superior capability in lowering ice nucleation temperatures and inhibiting ice formation at interfaces, while also facilitating the growth of smooth and rounded ice crystals compared to sharp-edged and cornered crystals formed in aqueous solutions. As a result, we successfully achieved prolonged cryopreservation of the skin for at least 6 months, while preserving 98.7% of structural integrity and 94.7% of Young's modulus. This work provides valuable insights into the mechanisms of ice crystal damage during organ cryopreservation and profoundly impacts the field of organ transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Xinmeng Liu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Liming Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Haoyue Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Sciorio R, Cantatore C, D'Amato G, Smith GD. Cryopreservation, cryoprotectants, and potential risk of epigenetic alteration. J Assist Reprod Genet 2024; 41:2953-2967. [PMID: 39436484 PMCID: PMC11621268 DOI: 10.1007/s10815-024-03287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
The cryopreservation of gametes and embryos has increased notably over the past 20 years and is now an essential part of assisted reproductive technologies (ARTs). However, because the cryopreservation process is un-physiological for human cells, gametes, and embryos, cryobiologists have suggested diverse methods to successfully cryopreserve human gametes and embryos in order to maintain their viability and assure successful pregnancy. During the first period of early development, major waves of epigenetic reprogramming-crucial for the fate of the embryo-occur. Recently, concerns relating to the increased incidence of epigenetic anomalies and genomic-imprinting disorders have been reported after ARTs and cryopreservation. Epigenetic reprogramming is particularly susceptible to environmental and un-physiological conditions such as ovarian stimulation, embryo culture, and cryopreservation that might collectively affect epigenetics dysregulation. Additionally, recent literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, osmotic shock, oxidative stress, rapid temperature and pH changes, and cryoprotectants; it is therefore critical to have a more comprehensive understanding of the potential induced perturbations of epigenetic modifications that may be associated with vitrification. The aim of this paper is to present a critical evaluation of the association of gamete and embryo cryopreservation, use of cryoprotectants, and epigenetic dysregulations with potential long-term consequences for offspring health.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Clementina Cantatore
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Giuseppe D'Amato
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Gary D Smith
- Departments of Obstetrics and Gynecology, Physiology, and Urology and Reproductive Sciences Program, University of Michigan, 4742F Medical Sciences II, 1301 E. Catherine Street, Ann Arbor, MI, 48109-056171500, USA.
| |
Collapse
|
7
|
Wang J, Li R. Effects, methods and limits of the cryopreservation on mesenchymal stem cells. Stem Cell Res Ther 2024; 15:337. [PMID: 39343920 PMCID: PMC11441116 DOI: 10.1186/s13287-024-03954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of cell capable of regulating the immune system, as well as exhibiting self-renewal and multi-lineage differentiation potential. Mesenchymal stem cells have emerged as an essential source of seed cells for therapeutic cell therapy. It is crucial to cryopreserve MSCs in liquid nitrogen prior to clinical application while preserving their functionality. Furthermore, efficient cryopreservation greatly enhances MSCs' potential in a range of biological domains. Nevertheless, there are several limits on the MSC cryopreservation methods now in use, necessitating thorough biosafety assessments before utilizing cryopreserved MSCs. Therefore, in order to improve the effectiveness of cryopreserved MSCs in clinical stem cell treatment procedures, new technological techniques must be developed immediately. The study offers an exhaustive analysis of the state-of-the-art MSC cryopreservation techniques, their effects on MSCs, and the difficulties encountered when using cryopreserved MSCs in clinical applications.
Collapse
Affiliation(s)
- Jialing Wang
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China
| | - Rui Li
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China.
| |
Collapse
|
8
|
Liang MY, Lin M, Qin X, Yang R, Hu KL, Li R. Long-term embryo vitrification is associated with reduced success rates in women undergoing frozen embryo transfer following a failed fresh cycle. Eur J Obstet Gynecol Reprod Biol 2024; 296:244-249. [PMID: 38484616 DOI: 10.1016/j.ejogrb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 03/02/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE To investigate the association of long-term embryo vitrification with the success rates and neonatal outcomes in frozen cycles. STUDY DESIGN A single-center, retrospective cohort study was performed in Peking University Third Hospital. We included women who had undergone their first vitrified-warmed cycles following an unsuccessful fresh embryo transfer cycle between January 2013 and December 2019. Restricted cubic splines with 4 knots (at min-3.0 months, 3.1-6.0 months, 6.1-12.0 months, 12.1-max months) were used to map the non-linear relationship between live birth and embryo storage time as a continuous variable after adjustment for covariates. Multiple logistic regression was used to calculate crude odds ratios (OR) and adjusted OR (aOR) with 95 % confidence intervals (CI). RESULTS A total of 10,167 women undergoing their first frozen cycle following an unsuccessful fresh embryo transfer cycle were included, among whom 3,708 resulted in a live birth (3,254 singleton live births). Restricted cubic splines, both before and after adjusting for covariates, showed that the predicted live birth rate (LBR) progressively decreased with an increase in the duration of embryo cryopreservation. This trend was also evident when women were categorized into four groups based on the length of cryopreservation. The live birth rate (LBR) was highest in the 0.8-3.0 months group (38 %) compared to the other groups. Multivariable logistic regression with the 0.8-3.0 months group as the reference, demonstrated that the 6.1-12.0 months group and >12.0 months group experienced lower live birth rates (aOR = 0.82 (0.72, 0.94) and aOR = 0.71 (0.57, 0.88), respectively). The LBR for the 3.1-6.0 months group was comparable to that of the 0.8-3.0 months group, with an aOR of 0.98 (0.90, 1.07). Sensitivity analyses in women who underwent single blastocyst transfer, in women with at least one good-quality embryo for transfer, and in women with age less than 36 at embryo transfer demonstrated a similar association between LBR and embryo frozen time. The neonatal outcomes were not significantly different among the four groups. CONCLUSIONS Embryo vitrification greater than six months is associated with a reduction in success rate but does not appear to alter neonatal outcome.
Collapse
Affiliation(s)
- Ming-Yu Liang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), 100191 Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191 Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191 Beijing, China
| | - Mingmei Lin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), 100191 Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191 Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191 Beijing, China
| | - Xunsi Qin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), 100191 Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191 Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191 Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), 100191 Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191 Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191 Beijing, China
| | - Kai-Lun Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), 100191 Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191 Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191 Beijing, China.
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), 100191 Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191 Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191 Beijing, China.
| |
Collapse
|
9
|
Ding Y, Liu S, Liu J, Jin S, Wang J. Cryopreservation with DMSO affects the DNA integrity, apoptosis, cell cycle and function of human bone mesenchymal stem cells. Cryobiology 2024; 114:104847. [PMID: 38246511 DOI: 10.1016/j.cryobiol.2024.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Cryopreservation (CP) enables pooling and long-term banking of various types of cells, which is indispensable for the cell therapeutics. Dimethyl sulfoxide (DMSO) is universally used as a cryoprotectant in basic and clinical research. Although, the use of DMSO has been under serious debate due to significant clinical side effects correlated with infusions of cellular therapy products containing DMSO, the effect of CP with DMSO on the cell properties and functions remains unknown. Here, we experimentally found that the CP of human bone mesenchymal stem cells (hBMSCs) with 10 % DMSO results 10-15 % of cells apoptosis upon immediate freeze-thaw, ca. 3.8 times of DNA damage/repair relative to the fresh ones after post-thaw cultured in 48 h, and cell cycle arrests at G0/G1 after post-thaw cultured in 24 h. Moreover, CP with 10 % DMSO significantly increases the reactive oxygen species (ROS) level of the frozen-thawed MSCs which may be one of the causes impair cellular properties and functions. Indeed, we found that the differentiation and migration ability of post-thaw cultured hBMSCs decrease as the expression of adipogenic, osteogenic genes and F-actin reduces in the comparison with those of the fresh cells.
Collapse
Affiliation(s)
- Yanqin Ding
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuo Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianting Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shenglin Jin
- Interdisciplinary Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| | - Jianjun Wang
- Interdisciplinary Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
10
|
Luo ZB, Yang LH, Han SZ, Chang SY, Liu H, An ZY, Zhang XL, Quan BH, Yin XJ, Kang JD. Cyclophosphamide reduces gene transcriptional activity and embryo in vitro development by inhibiting NF-κB expression through decreasing AcH4K12. Chem Biol Interact 2024; 387:110806. [PMID: 37980972 DOI: 10.1016/j.cbi.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Cyclophosphamide (CTX), a widely used chemotherapeutic agent for cancer treatment, has been associated with long-term toxicity and detrimental effects on oocytes and ovaries, resulting in female reproductive dysfunction. This study aimed to investigate the potential impact of CTX on in vitro maturation (IVM) injury of porcine oocytes and subsequent embryonic development, as well as its effects on epigenetic modification and gene activation during early embryonic development. The results demonstrated that CTX treatment caused aberrant spindle structure and mitochondrial dysfunction during oocyte maturation, inducing DNA damage and early apoptosis, which consequently disrupted meiotic maturation. Indeed, CTX significantly reduced the in vitro developmental capacity of porcine embryos, and induced DNA damage and apoptosis in in vitro fertilization (IVF) blastocysts. Importantly, CTX induced abnormal histone modification of AcH4K12 in early porcine embryos. Moreover, addition of LBH589 before zygotic genome activation (ZGA) effectively increased AcH4K12 levels and restored the protein expression of NF-κB, which can effectively enhance the in vitro developmental potential of IVF embryos. The DNA damage and apoptosis induced by CTX compromised the quality of the blastocysts, which were recovered by supplementation with LBH589. This restoration was accompanied by down-regulation of BAX mRNA expression and up-regulation of BCL2, POU5F1, SOX2 and SOD1 mRNA expression. These findings indicated that CTX caused abnormal histone modification of AcH4K12 in early porcine embryos and reduced the protein expression of NF-κB, a key regulator of early embryo development, which may block subsequent ZGA processes.
Collapse
Affiliation(s)
- Zhao-Bo Luo
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Hongye Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Biao-Hu Quan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
11
|
Dash S, Lamb MC, Lange JJ, McKinney MC, Tsuchiya D, Guo F, Zhao X, Corbin TJ, Kirkman M, Delventhal K, Moore EL, McKinney S, Shiang R, Trainor PA. rRNA transcription is integral to phase separation and maintenance of nucleolar structure. PLoS Genet 2023; 19:e1010854. [PMID: 37639467 PMCID: PMC10513380 DOI: 10.1371/journal.pgen.1010854] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 07/03/2023] [Indexed: 08/31/2023] Open
Abstract
Transcription of ribosomal RNA (rRNA) by RNA Polymerase (Pol) I in the nucleolus is necessary for ribosome biogenesis, which is intimately tied to cell growth and proliferation. Perturbation of ribosome biogenesis results in tissue specific disorders termed ribosomopathies in association with alterations in nucleolar structure. However, how rRNA transcription and ribosome biogenesis regulate nucleolar structure during normal development and in the pathogenesis of disease remains poorly understood. Here we show that homozygous null mutations in Pol I subunits required for rRNA transcription and ribosome biogenesis lead to preimplantation lethality. Moreover, we discovered that Polr1a-/-, Polr1b-/-, Polr1c-/- and Polr1d-/- mutants exhibit defects in the structure of their nucleoli, as evidenced by a decrease in number of nucleolar precursor bodies and a concomitant increase in nucleolar volume, which results in a single condensed nucleolus. Pharmacological inhibition of Pol I in preimplantation and midgestation embryos, as well as in hiPSCs, similarly results in a single condensed nucleolus or fragmented nucleoli. We find that when Pol I function and rRNA transcription is inhibited, the viscosity of the granular compartment of the nucleolus increases, which disrupts its phase separation properties, leading to a single condensed nucleolus. However, if a cell progresses through mitosis, the absence of rRNA transcription prevents reassembly of the nucleolus and manifests as fragmented nucleoli. Taken together, our data suggests that Pol I function and rRNA transcription are required for maintaining nucleolar structure and integrity during development and in the pathogenesis of disease.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Maureen C. Lamb
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mary C. McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Xia Zhao
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Timothy J. Corbin
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - MaryEllen Kirkman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kym Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Emma L. Moore
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
12
|
Jiang WJ, Sun MH, Li XH, Lee SH, Heo G, Zhou D, Cui XS. E2F4 regulates cell cycle to mediate embryonic development in pigs. Theriogenology 2023; 196:227-235. [PMID: 36427391 DOI: 10.1016/j.theriogenology.2022.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
In mammals, E2 factor (E2F) acts as a cell cycle regulator. E2F transcription factor 4 (E2F4) is a member of the E2F family of transcription factors and usually represents predominant E2F activity in cells. The E2F4 gene has been extensively studied in animals and is associated with multiple functions, such as cell cycle regulation and apoptosis; however, little is known about its role during embryonic development. In this study, we investigated the function of E2F4 and its mechanism of action in porcine embryo development. For this purpose, we knocked down E2F4 by microinjecting double-stranded RNA of E2F4 at the 1-cell stage. The results showed that E2F4 knockdown in porcine embryos led to a significant decrease in the blastocyst rate and total cell number. Defective E2F4 expression reduced the level of G1/S checkpoints (cyclin E-cyclin-dependent kinase 2) and cell cycle-related gene expression at the 4-cell embryo stage and blastocyst. Moreover, a decrease in E2F4 expression increased phosphorylated H2A.X variant histones and activated ataxia telangiectasia mutated (ATM) and p53-p21 pathway. In addition, E2F4 depletion caused a significant decrease in histone acetylation. Taken together, E2F4 plays a critical role as a transcriptional activator in the development of porcine embryos, an observation that contradicts its well-established role as a transcription repressor.
Collapse
Affiliation(s)
- Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
13
|
Tourzani DA, Yin Q, Jackson EA, Rando OJ, Visconti PE, Gervasi MG. Sperm Energy Restriction and Recovery (SER) Alters Epigenetic Marks during the First Cell Cycle of Development in Mice. Int J Mol Sci 2022; 24:640. [PMID: 36614081 PMCID: PMC9820464 DOI: 10.3390/ijms24010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
The sperm energy restriction and recovery (SER) treatment developed in our laboratory was shown to improve fertilization and blastocyst development following in vitro fertilization (IVF) in mice. Here, we investigated the effects of SER on early embryogenesis. Developmental events observed during the first cell cycle indicated that progression through the pronuclear stages of SER-generated embryos is advanced in comparison with control-generated embryos. These findings prompted further analysis of potential effects of SER on pronuclear chromatin dynamics, focusing on the key H3K4me3 and H3K27ac histone modifications. Nearly all the SER-generated embryos displayed H3K4me3 in the male pronuclei at 12 h post-insemination (HPI), while a subset of the control-generated embryos did not. Additionally, SER-generated embryos displayed a more homogenous intensity of H3K27ac at 8 and 12 HPI compared to control embryos. These changes in histone modifications during the first cell cycle were accompanied by differences in gene expression at the two-cell stage; both of these changes in early embryos could potentially play a role in the improved developmental outcomes of these embryos later in development. Our results indicate that sperm incubation conditions have an impact on early embryo development and can be useful for the improvement of assisted reproductive technology outcomes.
Collapse
Affiliation(s)
- Darya A. Tourzani
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Qiangzong Yin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erica A. Jackson
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Maria G. Gervasi
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Reader KL, Pilbrow BG, Zellhuber-McMillan S, Mitchell AJ, Juengel JL, Morbeck D. High pressure frozen oocytes have improved ultrastructure but reduced cleavage rates compared to conventionally fixed or vitrified oocytes. Reprod Fertil Dev 2022; 34:1135-1144. [DOI: 10.1071/rd22118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Context Live birth rates are lower for cryopreserved oocytes than for fresh IVF cycles, indicating a need for improved methodologies. Aims The aim of this study was to determine if high pressure freezing (HPF) could improve both ultrastructural preservation and cryopreserved oocyte quality when compared to conventional fixation and vitrification methods. Methods Sheep oocytes and embryos were prepared by HPF or vitrification, with or without cryoprotectants. Frozen oocytes were prepared for transmission electron microscopy or warmed, in vitro fertilised and the recovery and cleavage rates recorded. Key results Blastocyst rates were similar between fresh, HPF and vitrified embryos. HPF oocytes had improved ultrastructure compared to conventional fixation or vitrification, but had poorer survival and cleavage rates compared to vitrified oocytes. Freeze-substitution of cryopreserved oocytes and transmission electron microscopy demonstrated disruption of the oocyte ultrastructure in the presence of cryoprotectants. Conclusions Superior preservation of ultrastructure was observed in HPF oocytes compared to vitrification or conventional fixation methods. In the presence of CP, both embryos and oocytes could survive HPF and warming but oocytes had reduced development. Implications The HPF method has potential to be developed and lead to improved oocyte and embryo cryopreservation and outcomes for assisted reproduction.
Collapse
|
15
|
Dubois-Pot-Schneider H, Aninat C, Kattler K, Fekir K, Jarnouen K, Cerec V, Glaise D, Salhab A, Gasparoni G, Takashi K, Ishida S, Walter J, Corlu A. Transcriptional and Epigenetic Consequences of DMSO Treatment on HepaRG Cells. Cells 2022; 11:cells11152298. [PMID: 35892596 PMCID: PMC9331440 DOI: 10.3390/cells11152298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is used to sustain or favor hepatocyte differentiation in vitro. Thus, DMSO is used in the differentiation protocol of the HepaRG cells that present the closest drug-metabolizing enzyme activities to primary human hepatocytes in culture. The aim of our study is to clarify its influence on liver-specific gene expression. For that purpose, we performed a large-scale analysis (gene expression and histone modification) to determine the global role of DMSO exposure during the differentiation process of the HepaRG cells. The addition of DMSO drives the upregulation of genes mainly regulated by PXR and PPARα whereas genes not affected by this addition are regulated by HNF1α, HNF4α, and PPARα. DMSO-differentiated-HepaRG cells show a differential expression for genes regulated by histone acetylation, while differentiated-HepaRG cells without DMSO show gene signatures associated with histone deacetylases. In addition, we observed an interplay between cytoskeleton organization and EMC remodeling with hepatocyte maturation.
Collapse
Affiliation(s)
- Hélène Dubois-Pot-Schneider
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
- Correspondence: ; Tel.: +33-372746115
| | - Caroline Aninat
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathrin Kattler
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Karim Fekir
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathleen Jarnouen
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Virginie Cerec
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Denise Glaise
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Abdulrahman Salhab
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Kubo Takashi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Jörn Walter
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Anne Corlu
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| |
Collapse
|
16
|
Liu Z, Zheng X, Wang J. Bioinspired Ice-Binding Materials for Tissue and Organ Cryopreservation. J Am Chem Soc 2022; 144:5685-5701. [PMID: 35324185 DOI: 10.1021/jacs.2c00203] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryopreservation of tissues and organs can bring transformative changes to medicine and medical science. In the past decades, limited progress has been achieved, although cryopreservation of tissues and organs has long been intensively pursued. One key reason is that the cryoprotective agents (CPAs) currently used for cell cryopreservation cannot effectively preserve tissues and organs because of their cytotoxicity and tissue destructive effect as well as the low efficiency in controlling ice formation. In stark contrast, nature has its unique ways of controlling ice formation, and many living organisms can effectively prevent freezing damage. Ice-binding proteins (IBPs) are regarded as the essential materials identified in these living organisms for regulating ice nucleation and growth. Note that controversial results have been reported on the utilization of IBPs and their mimics for the cryopreservation of tissues and organs, that is, some groups revealed that IBPs and mimics exhibited unique superiorities in tissues cryopreservation, while other groups showed detrimental effects. In this perspective, we analyze possible reasons for the controversy and predict future research directions in the design and construction of IBP inspired ice-binding materials to be used as new CPAs for tissue cryopreservation after briefly introducing the cryo-injuries and the challenges of conventional CPAs in the cryopreservation of tissues and organs.
Collapse
Affiliation(s)
- Zhang Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xia Zheng
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
17
|
Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties. Carbohydr Polym 2022; 278:119003. [PMID: 34973803 DOI: 10.1016/j.carbpol.2021.119003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022]
Abstract
Physical gels from natural polysaccharides present the advantage of no toxic cross-linking agents and no chemical modification during preparation. Herein, novel physical gels, transparent organogels and opaque hydrogels from the microorganism-derived (1,3)-β-D-glucan of curdlan were prepared in dimethyl sulfoxide (DMSO) using the freeze-thaw technique, followed by a solvent-exchange strategy with water. The mechanical and structural properties of these gels were investigated by rheology, scanning electron microscopy, attenuated total reflection infrared spectroscopy, wide-angle X-ray diffraction and small-angle X-ray scattering. Gelation mechanisms and intermolecular interaction models have also been proposed. The good solvent DMSO serves as both a crosslinker and a pore-foaming agent in organogels. The reversible macromolecular conformation changes and phase separation of curdlan endow the gels with reversible transparency, volume change and tunable mechanical strength. The new design strategy of facile preparation and performance tuning provides a platform for developing new organogels and sterile hydrogels of curdlan.
Collapse
|
18
|
Zheng X, Liu J, Liu Z, Wang J. Bio-inspired Ice-controlling Materials for Cryopreservation of Cells and Tissues. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Effects of DMSO on the Pluripotency of Cultured Mouse Embryonic Stem Cells (mESCs). Stem Cells Int 2020; 2020:8835353. [PMID: 33123203 PMCID: PMC7584961 DOI: 10.1155/2020/8835353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
DMSO is a commonly used solvent in biological studies, as it is an amphipathic molecule soluble in both aqueous and organic media. For that reason, it is the vehicle of choice for several water-insoluble substances used in research. At the molecular and cellular level, DMSO is a hydrogen-bound disrupter, an intercellular electrical uncoupler, and a cryoprotectant, among other properties. Importantly, DMSO often has overlooked side effects. In stem cell research, the literature is scarce, but there are reports on the effect of DMSO in human embryoid body differentiation and on human pluripotent stem cell priming towards differentiation, via modulation of cell cycle. However, in mouse embryonic stem cell (mESC) culture, there is almost no available information. Taking into consideration the almost ubiquitous use of DMSO in experiments involving mESCs, we aimed to understand the effect of very low doses of DMSO (0.0001%-0.2%), usually used to introduce pharmacological inhibitors/modulators, in mESCs cultured in two different media (2i and FBS-based media). Our results show that in the E14Tg2a mESC line used in this study, even the smallest concentration of DMSO had minor effects on the total number of cells in serum-cultured mESCs. However, these effects could not be explained by alterations in cell cycle or apoptosis. Furthermore, DMSO did not affect pluripotency or differentiation potential. All things considered, and although control experiments should be carried out in each cell line that is used, it is reasonable to conclude that DMSO at the concentrations used here has a minimal effect on this particular mESC line.
Collapse
|
20
|
Kang MH, You SY, Hong K, Kim JH. RNA sequencing data of mouse 2-cell embryos treated with DMSO. Data Brief 2020; 28:105025. [PMID: 31909123 PMCID: PMC6940686 DOI: 10.1016/j.dib.2019.105025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/25/2022] Open
Abstract
To understand the effect of DMSO in preimplantation embryos, we have treated mouse 1 cell zygotes with DMSO and found that DMSO treatment caused 2 or 4 cell embryonic arrest and altered the acetylation levels of mouse preimplantation embryos To illustrate the mechanism of DMSO in mouse preimplantation embryos, fertilized zygotes have been treated with 2% of DMSO and then performed RNA-seq analyses. Differentially expressed genes were identified using DESeq2 after adjustment for false discovery rate (FDR q value < 0.05). Gene Set Enrichment Analysis (GSEA) was also performed to identify biological pathways significantly modulated by DMSO. Raw and processed RNA-seq data were deposited and made publicly available on the Gene Expression Omnibus (GEO; GSE124598). The data presented in this article are related to the research paper entitled “DMSO impairs the transcriptional program for maternal-to-embryonic transition by altering histone acetylation”, available in Biomaterials [1].
Collapse
Affiliation(s)
- Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Seong-Yeob You
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|