1
|
Wang Z, Zhao F, Lang H, Ren H, Zhang Q, Huang X, He C, Xu C, Tan C, Ma J, Duan S, Wang Z. Organoids in skin wound healing. BURNS & TRAUMA 2025; 13:tkae077. [PMID: 39759541 PMCID: PMC11697111 DOI: 10.1093/burnst/tkae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Stem cells (SCs) can self-replicate and differentiate into multiple lineages. Organoids, 3D cultures derived from SCs, can replicate the spatial structure and physiological characteristics of organs in vitro. Skin organoids can effectively simulate the physiological structure and function of skin tissue, reliably restoring the natural skin ecology in various in vitro environments. Skin organoids have been employed extensively in skin development and pathology research, offering valuable insights for drug screening. Moreover, they play crucial roles in skin regeneration and tissue repair. This in-depth review explores the construction and applications of skin organoids in wound healing, with a focus on their construction process, including skin appendage integration, and significant advancements in wound-healing research.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Haiyue Ren
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No. 1 Hospital), No. 215 Zhongshan Street, Wuhan, Hubei 430022, China
| | - Qiqi Zhang
- Department of Pathology, Chengdu Third People's Hospital, No. 82 Qinglong Street, Chengdu, Sichuan 610031, China
| | - Xing Huang
- Department of Anaesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yantaxi Road, Xi'an, Shanxi 710061, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chiyu Tan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Shu Duan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| |
Collapse
|
2
|
Xiang J, Chen H, Zhang H, Wu L, Li Y, Ji S, Pi W, Cui S, Dong L, Fu X, Sun X. Restoring sweat gland function in mice using regenerative sweat gland cells derived from chemically reprogrammed human epidermal keratinocytes. Sci Bull (Beijing) 2024; 69:3908-3924. [PMID: 39550273 DOI: 10.1016/j.scib.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 11/18/2024]
Abstract
The regeneration of sweat glands (SwGs) plays a pivotal role in the functional recovery of extensive skin wounds. Recent research has illuminated the possibility of reprogramming human epidermal keratinocytes (HEKs) into induced SwG cells through the ectopic expression of ectodysplasin A. However, the clinical application of this genetic manipulation approach is inherently limited. In this study, we present findings demonstrating that a combination of six compounds can effectively and speedily reprogram HEKs in culture into fully functional SwG cells. These chemically induced SwG-like cells (ciSGCs) closely resemble the morphology, phenotypes, and functional properties of human primary SwG ductal cells. Furthermore, ciSGCs can be stimulated to differentiate into mature SwG cell types in vitro. In a 3D culture system, they can also generate SwG organoids that exhibit structural and biological features akin to native SwGs. Upon transplantation into scalded mouse paw skin, ciSGCs significantly expedited cutaneous wound healing and completely restored the structural and functional aspects of the SwGs. In conclusion, the small molecule cocktail-directed SwG reprogramming offers a non-transgenic and controllable strategy for producing high-quality, clinical-grade SwG cells, showing immense potential for the treatment of burn patients.
Collapse
Affiliation(s)
- Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine Peking Union Medical College, Beijing 100730, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Lu Wu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Wei Pi
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine Peking Union Medical College, Beijing 100730, China
| | - Shaoyuan Cui
- Department of Nephrology, the First Medical Center of PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing 100730, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China.
| |
Collapse
|
3
|
Branch MC, Weber M, Li MY, Flora P, Ezhkova E. Overview of chromatin regulatory processes during surface ectodermal development and homeostasis. Dev Biol 2024; 515:30-45. [PMID: 38971398 PMCID: PMC11317222 DOI: 10.1016/j.ydbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.
Collapse
Affiliation(s)
- Meagan C Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng-Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
5
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
6
|
Pi W, Chen H, Liu Y, Xiang J, Zhang H, Yang X, Zhang M, Cao J, Chang T, Zheng Y, Liu S, Zhang H, Han Q, Liu K, Fu X, Shao Y, Sun X. Flexible Sono-Piezo Patch for Functional Sweat Gland Repair through Endogenous Microenvironmental Remodeling. ACS NANO 2024. [PMID: 39038113 DOI: 10.1021/acsnano.4c03974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Remodeling the endogenous regenerative microenvironment in wounds is crucial for achieving scarless, functional tissue regeneration, especially the functional recovery of skin appendages such as sweat glands in burn patients. However, current approaches mostly rely on the use of exogenous materials or chemicals to stimulate cell proliferation and migration, while the remodeling of a pro-regenerative microenvironment remains challenging. Herein, we developed a flexible sono-piezo patch (fSPP) that aims to create an endogenous regenerative microenvironment to promote the repair of sweat glands in burn wounds. This patch, composed of multifunctional fibers with embedded piezoelectric nanoparticles, utilized low-intensity pulsed ultrasound (LIPUS) to activate electrical stimulation of the target tissue, resulting in enhanced pro-regenerative behaviors of niche tissues and cells, including peripheral nerves, fibroblasts, and vasculatures. We further demonstrated the effective wound healing and regeneration of functional sweat glands in burn injuries solely through such physical stimulation. This noninvasive and drug-free therapeutic approach holds significant potential for the clinical treatment of burn injuries.
Collapse
Affiliation(s)
- Wei Pi
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Huating Chen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Xinling Yang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Meiru Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Jiawei Cao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Tie Chang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Yifan Zheng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Shiyi Liu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaobing Fu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Sun
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| |
Collapse
|
7
|
Nathans JF, Ayers JL, Shendure J, Simpson CL. Genetic Tools for Cell Lineage Tracing and Profiling Developmental Trajectories in the Skin. J Invest Dermatol 2024; 144:936-949. [PMID: 38643988 PMCID: PMC11034889 DOI: 10.1016/j.jid.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 04/23/2024]
Abstract
The epidermis is the body's first line of protection against dehydration and pathogens, continually regenerating the outermost protective skin layers throughout life. During both embryonic development and wound healing, epidermal stem and progenitor cells must respond to external stimuli and insults to build, maintain, and repair the cutaneous barrier. Recent advances in CRISPR-based methods for cell lineage tracing have remarkably expanded the potential for experiments that track stem and progenitor cell proliferation and differentiation over the course of tissue and even organismal development. Additional tools for DNA-based recording of cellular signaling cues promise to deepen our understanding of the mechanisms driving normal skin morphogenesis and response to stressors as well as the dysregulation of cell proliferation and differentiation in skin diseases and cancer. In this review, we highlight cutting-edge methods for cell lineage tracing, including in organoids and model organisms, and explore how cutaneous biology researchers might leverage these techniques to elucidate the developmental programs that support the regenerative capacity and plasticity of the skin.
Collapse
Affiliation(s)
- Jenny F Nathans
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA; Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jessica L Ayers
- Molecular Medicine and Mechanisms of Disease PhD Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Cory L Simpson
- Department of Dermatology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
8
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
9
|
Yang X, Xiong M, Fu X, Sun X. Bioactive materials for in vivo sweat gland regeneration. Bioact Mater 2024; 31:247-271. [PMID: 37637080 PMCID: PMC10457517 DOI: 10.1016/j.bioactmat.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Loss of sweat glands (SwGs) commonly associated with extensive skin defects is a leading cause of hyperthermia and heat stroke. In vivo tissue engineering possesses the potential to take use of the body natural ability to regenerate SwGs, making it more conducive to clinical translation. Despite recent advances in regenerative medicine, reconstructing SwG tissue with the same structure and function as native tissue remains challenging. Elucidating the SwG generation mechanism and developing biomaterials for in vivo tissue engineering is essential for understanding and developing in vivo SwG regenerative strategies. Here, we outline the cell biology associated with functional wound healing and the characteristics of bioactive materials. We critically summarize the recent progress in bioactive material-based cell modulation approaches for in vivo SwG regeneration, including the recruitment of endogenous cells to the skin lesion for SwG regeneration and in vivo cellular reprogramming for SwG regeneration. We discussed the re-establishment of microenvironment via bioactive material-mediated regulators. Besides, we offer promising perspectives for directing in situ SwG regeneration via bioactive material-based cell-free strategy, which is a simple and effective approach to regenerate SwG tissue with both fidelity of structure and function. Finally, we discuss the opportunities and challenges of in vivo SwG regeneration in detail. The molecular mechanisms and cell fate modulation of in vivo SwG regeneration will provide further insights into the regeneration of patient-specific SwGs and the development of potential intervention strategies for gland-derived diseases.
Collapse
Affiliation(s)
- Xinling Yang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
10
|
Ali N, Rahat ST, Mäkelä M, Nasserinejad M, Jaako T, Kinnunen M, Schroderus J, Tulppo M, Nieminen AI, Vainio S. Metabolic patterns of sweat-extracellular vesicles during exercise and recovery states using clinical grade patches. Front Physiol 2023; 14:1295852. [PMID: 38143912 PMCID: PMC10748597 DOI: 10.3389/fphys.2023.1295852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Background: Metabolite-based sensors are attractive and highly valued for monitoring physiological parameters during rest and/or during physical activities. Owing to their molecular composition consisting of nucleic acids, proteins, and metabolites, extracellular vesicles (EVs) have become acknowledged as a novel tool for disease diagnosis. However, the evidence for sweat related EVs delivering information of physical and recovery states remains to be addressed. Methods: Taking advantage of our recently published methodology allowing the enrichment and isolation of sweat EVs from clinical patches, we investigated the metabolic load of sweat EVs in healthy participants exposed to exercise test or recovery condition. -Ten healthy volunteers (-three females and -seven males) were recruited to participate in this study. During exercise test and recovery condition, clinical patches were attached to participants' skin, on their back. Following exercise test or recovery condition, the patches were carefully removed and proceed for sweat EVs isolation. To explore the metabolic composition of sweat EVs, a targeted global metabolomics profiling of 41 metabolites was performed. Results: Our results identified seventeen metabolites in sweat EVs. These are associated with amino acids, glutamate, glutathione, fatty acids, creatine, and glycolysis pathways. Furthermore, when comparing the metabolites' levels in sweat EVs isolated during exercise to the metabolite levels in sweat EVs collected after recovery, our findings revealed a distinct metabolic profiling of sweat EVs. Furthermore, the level of these metabolites, mainly myristate, may reflect an inverse correlation with blood glucose, heart rate, and respiratory rate levels. Conclusion: Our data demonstrated that sweat EVs can be purified using routinely used clinical patches during physical activity, setting the foundations for larger-scale clinical cohort work. Furthermore, the metabolites identified in sweat EVs also offer a realistic means to identify relevant sport performance biomarkers. This study thus provides proof-of-concept towards a novel methodology that will focus on the use of sweat EVs and their metabolic composition as a non-invasive approach for developing the next-generation of sport wearable sensors.
Collapse
Affiliation(s)
- Nsrein Ali
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
- Infotech Oulu, Oulu, Finland
- Flagship GeneCellNano, University of Oulu, Oulu, Finland
- Netskinmodels Cost Action CA21108, Oulu, Finland
| | - Syeda Tayyiba Rahat
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Mira Mäkelä
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Maryam Nasserinejad
- Infotech Oulu, Oulu, Finland
- Research Unit of Population Health Research, Research Center, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | | | - Mikko Tulppo
- Edical Research Center Oulu, Faculty of Medicine, University of Oulu, Oulu, Finland
- Resaerch Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anni I. Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Oulu, Finland
| | - Seppo Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
- Infotech Oulu, Oulu, Finland
- Flagship GeneCellNano, University of Oulu, Oulu, Finland
- Netskinmodels Cost Action CA21108, Oulu, Finland
- Kvantum Institute, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Ji SF, Zhou LX, Li YY, Xiang JB, Chen HT, Liu YQ, Fu XB, Sun XY. Human urinary cells for functional wound healing with sweat gland restoration. Mil Med Res 2023; 10:57. [PMID: 38012752 PMCID: PMC10683131 DOI: 10.1186/s40779-023-00492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
- Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital and PLA Medical College/PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration/Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Lai-Xian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital and PLA Medical College/PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration/Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital and PLA Medical College/PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration/Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Jiang-Bing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital and PLA Medical College/PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration/Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Hua-Ting Chen
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital and PLA Medical College/PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration/Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Yi-Qiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital and PLA Medical College/PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration/Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital and PLA Medical College/PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration/Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital and PLA Medical College/PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration/Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China.
| |
Collapse
|
12
|
Liu Y, Li X, Yang H, Zhang P, Wang P, Sun Y, Yang F, Liu W, Li Y, Tian Y, Qian S, Chen S, Cheng H, Wang X. Skin-Interfaced Superhydrophobic Insensible Sweat Sensors for Evaluating Body Thermoregulation and Skin Barrier Functions. ACS NANO 2023; 17:5588-5599. [PMID: 36745638 DOI: 10.1021/acsnano.2c11267] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Monitoring sweat rate is vital for estimating sweat loss and accurately measuring biomarkers of interest. Although various optical or electrical sensors have been developed to monitor the sensible sweat rate, the quantification of the insensible sweat rate that is directly related to body thermoregulation and skin barrier functions still remains a challenge. This work introduces a superhydrophobic sweat sensor based on a polyacrylate sodium/MXene composite sandwiched between two superhydrophobic textile layers to continuously measure sweat vapor from insensible sweat with high sensitivity and rapid response. The superhydrophobic textile on a holey thin substrate with reduced stiffness and excellent breathability allows the permeation of sweat vapor, while preventing the sensor from being affected by the external water droplets and internal sensible sweat. Integrating the insensible sweat sensor with a flexible wireless communication and powering module further yields a standalone sensing system to continuously monitor insensible sweat rates at different body locations for diverse application scenarios. Proof-of-concept demonstrations on human subjects showcase the feasibility to continuously evaluate the body's thermoregulation and skin barrier functions for the assessment of thermal comfort, disease conditions, and nervous system activity. The results presented in this work also provide a low-cost device platform to detect other health-relevant biomarkers in the sweat (vapor) as the next-generation sweat sensor for smart healthcare and personalized medicine.
Collapse
Affiliation(s)
- Yangchengyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaofeng Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hanlin Yang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ping Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Peihe Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yi Sun
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Fengzhen Yang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yujing Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yao Tian
- School of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Shun Qian
- School of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Shangda Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
13
|
Wang Z, Hu W, Wang W, Xiao Y, Chen Y, Wang X. Antibacterial Electrospun Nanofibrous Materials for Wound Healing. ADVANCED FIBER MATERIALS 2023; 5:107-129. [DOI: 10.1007/s42765-022-00223-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 08/25/2024]
|
14
|
Zhu Z, Zhang X, Hao H, Xu H, Shu J, Hou Q, Wang M. Exosomes Derived From Umbilical Cord Mesenchymal Stem Cells Treat Cutaneous Nerve Damage and Promote Wound Healing. Front Cell Neurosci 2022; 16:913009. [PMID: 35846563 PMCID: PMC9279568 DOI: 10.3389/fncel.2022.913009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Wound repair is a key step in the treatment of skin injury caused by burn, surgery, and trauma. Various stem cells have been proven to promote wound healing and skin regeneration as candidate seed cells. Therefore, exosomes derived from stem cells are emerging as a promising method for wound repair. However, the mechanism by which exosomes promote wound repair is still unclear. In this study, we reported that exosomes derived from umbilical cord mesenchymal stem cells (UC-MSCs) promote wound healing and skin regeneration by treating cutaneous nerve damage. The results revealed that UC-MSCs exosomes (UC-MSC-Exo) promote the growth and migration of dermal fibroblast cells. In in vitro culture, dermal fibroblasts could promote to nerve cells and secrete nerve growth factors when stimulated by exosomes. During the repair process UC-MSC-Exo accelerated the recruitment of fibroblasts at the site of trauma and significantly enhanced cutaneous nerve regeneration in vivo. Interestingly, it was found that UC-MSC-Exo could promote wound healing and skin regeneration by recruiting fibroblasts, stimulating them to secrete nerve growth factors (NGFs) and promoting skin nerve regeneration. Therefore, we concluded that UC-MSC-Exo promote cutaneous nerve repair, which may play an important role in wound repair and skin regeneration.
Collapse
Affiliation(s)
- Ziying Zhu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Ziying Zhu,
| | - Xiaona Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Heran Xu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Jun Shu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qian Hou
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Medical Innovation Research Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Qian Hou,
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- Min Wang,
| |
Collapse
|
15
|
Yang S, Jiang H, Qian M, Ji G, Wei Y, He J, Tian H, Zhao Q. MSC-derived sEV-loaded hyaluronan hydrogel promotes scarless skin healing by immunomodulation in a large skin wound model. Biomed Mater 2022; 17. [PMID: 35443238 DOI: 10.1088/1748-605x/ac68bc] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/20/2022] [Indexed: 11/11/2022]
Abstract
Designing hydrogel-based constructs capable of adjusting immune cell functions holds promise for skin tissue regeneration. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention owing to their anti-inflammatory and proangiogenic effects. Herein, we constructed a biofunctional hydrogel in which MSC-derived sEVs were incorporated into the injectable hyaluronic acid (HA) hydrogel, thus endowing the hydrogel with immunomodulatory effects. When implanted onto the wound site in a mouse large skin injury model, this functional hydrogel facilitates wound healing and inhibits scar tissue formation by driving macrophages towards an anti-inflammatory and anti-fibrotic (M2c) phenotype. Further investigation showed that the M2c-like phenotype induced by MSC-derived sEVs markedly inhibited the activation of fibroblasts, which could result in scarless skin wound healing. Taken together, these results suggest that modulation of the immune response is a promising and efficient approach to prevent fibrotic scar formation.
Collapse
Affiliation(s)
- Sen Yang
- Xi'an Jiaotong University, Xi'an, Shaanxi Province, Xi'an, Shaanxi, 710049, CHINA
| | - Huan Jiang
- Nankai University College of Life Sciences, Weijin Road 94, Nankai District, Tianjin, Tianjin, 300071, CHINA
| | - Meng Qian
- Nankai University College of Life Sciences, Weijin Road, Tianjin, Tianjin, 300071, CHINA
| | - Guangbo Ji
- Nankai University College of Life Sciences, Weijin Road, Tianjin, Tianjin, 300071, CHINA
| | - Yongzhen Wei
- Nankai University State Key Laboratory of Medicinal Chemical Biology, Weijin Road, Tianjin, 300071, CHINA
| | - Ju He
- Nankai University, Nankai District, Tianjin, Tianjin, 300190, CHINA
| | - Hongyan Tian
- Xi'an Jiaotong University, Xi'an, Shaanxi Province, Xi'an, Shaanxi, 710049, CHINA
| | - Qiang Zhao
- Nankai University College of Life Sciences, We, Tianjin, 300071, CHINA
| |
Collapse
|
16
|
Ji SF, Zhou LX, Sun ZF, Xiang JB, Cui SY, Li Y, Chen HT, Liu YQ, Gao HH, Fu XB, Sun XY. Small molecules facilitate single factor-mediated sweat gland cell reprogramming. Mil Med Res 2022; 9:13. [PMID: 35351192 PMCID: PMC8962256 DOI: 10.1186/s40779-022-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Large skin defects severely disrupt the overall skin structure and can irreversibly damage sweat glands (SG), thus impairing the skin's physiological function. This study aims to develop a stepwise reprogramming strategy to convert fibroblasts into SG lineages, which may provide a promising method to obtain desirable cell types for the functional repair and regeneration of damaged skin. METHODS The expression of the SG markers cytokeratin 5 (CK5), cytokeratin 10 (CK10), cytokeratin 18 (CK18), carcino-embryonic antigen (CEA), aquaporin 5 (AQP5) and α-smooth muscle actin (α-SMA) was assessed with quantitative PCR (qPCR), immunofluorescence and flow cytometry. Calcium activity analysis was conducted to test the function of induced SG-like cells (iSGCs). Mouse xenograft models were also used to evaluate the in vivo regeneration of iSGCs. BALB/c nude mice were randomly divided into a normal group, SGM treatment group and iSGC transplantation group. Immunocytochemical analyses and starch-iodine sweat tests were used to confirm the in vivo regeneration of iSGCs. RESULTS EDA overexpression drove HDF conversion into iSGCs in SG culture medium (SGM). qPCR indicated significantly increased mRNA levels of the SG markers CK5, CK18 and CEA in iSGCs, and flow cytometry data demonstrated (4.18 ± 0.04)% of iSGCs were CK5 positive and (4.36 ± 0.25)% of iSGCs were CK18 positive. The addition of chemical cocktails greatly accelerated the SG fate program. qPCR results revealed significantly increased mRNA expression of CK5, CK18 and CEA in iSGCs, as well as activation of the duct marker CK10 and luminal functional marker AQP5. Flow cytometry indicated, after the treatment of chemical cocktails, (23.05 ± 2.49)% of iSGCs expressed CK5+ and (55.79 ± 3.18)% of iSGCs expressed CK18+, respectively. Calcium activity analysis indicated that the reactivity of iSGCs to acetylcholine was close to that of primary SG cells [(60.79 ± 7.71)% vs. (70.59 ± 0.34)%, ns]. In vivo transplantation experiments showed approximately (5.2 ± 1.1)% of the mice were sweat test positive, and the histological analysis results indicated that regenerated SG structures were present in iSGCs-treated mice. CONCLUSION We developed a SG reprogramming strategy to generate functional iSGCs from HDFs by using the single factor EDA in combination with SGM and small molecules. The generation of iSGCs has important implications for future in situ skin regeneration with SG restoration.
Collapse
Affiliation(s)
- Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Lai-Xian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Zhi-Feng Sun
- Department of Respiratory, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100036, China
| | - Jiang-Bing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.,Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Shao-Yuan Cui
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, 100048, China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Hua-Ting Chen
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Yi-Qiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Huan-Huan Gao
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
17
|
Lu Y, Fujita Y, Honda S, Yang S, Xuan Y, Xu K, Arie T, Akita S, Takei K. Wireless and Flexible Skin Moisture and Temperature Sensor Sheets toward the Study of Thermoregulator Center. Adv Healthc Mater 2021; 10:e2100103. [PMID: 33955182 DOI: 10.1002/adhm.202100103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/14/2021] [Indexed: 12/25/2022]
Abstract
A disorder in the thermoregulator center in a human body leads to some potential diseases such as fever and hyperthyroidism. To predict these diseases early, monitoring the health condition of the human body due to the influence of thermoregulation disorders is important. Although extensive works are performed on sweat-rate detection by constructing microfluidic channels, skin-moisture evaporation before sweating remains unknown. This work proposes a wireless and flexible sensor sheet to investigate the thermoregulatory responses of different people under cold stimulation and exercise by measuring the temperature and moisture variations on the finger skin. An integrated flexible sensor system consists of a ZnIn2 S4 nanosheet-based humidity sensor and carbon nanotube/SnO2 temperature sensor. The results exhibit distinct thermoregulation abilities of five volunteers. Interestingly, the sudden increase in finger moisture that results from the excitation by the sympathetic nerve is observed during the cold-stimulus test. Although further studies are required to predict the potential diseases resulted from thermoregulation disorders in human body, this study provides a possibility of continuous and real-time monitoring of thermoregulatory activities via skin moisture and temperature detection using a flexible sensor sheet.
Collapse
Affiliation(s)
- Yuyao Lu
- Department of Physics and Electronics Osaka Prefecture University Sakai Osaka 599‐8531 Japan
| | - Yusuke Fujita
- Department of Physics and Electronics Osaka Prefecture University Sakai Osaka 599‐8531 Japan
| | - Satoko Honda
- Department of Physics and Electronics Osaka Prefecture University Sakai Osaka 599‐8531 Japan
| | - Shin‐Hsin Yang
- Department of Physics and Electronics Osaka Prefecture University Sakai Osaka 599‐8531 Japan
| | - Yan Xuan
- Department of Physics and Electronics Osaka Prefecture University Sakai Osaka 599‐8531 Japan
| | - Kaichen Xu
- Department of Physics and Electronics Osaka Prefecture University Sakai Osaka 599‐8531 Japan
| | - Takayuki Arie
- Department of Physics and Electronics Osaka Prefecture University Sakai Osaka 599‐8531 Japan
| | - Seiji Akita
- Department of Physics and Electronics Osaka Prefecture University Sakai Osaka 599‐8531 Japan
| | - Kuniharu Takei
- Department of Physics and Electronics Osaka Prefecture University Sakai Osaka 599‐8531 Japan
- JST PRESTO Kawaguchi Saitama 332‐0012 Japan
| |
Collapse
|
18
|
Zhang Y, Enhejirigala, Yao B, Li Z, Song W, Li J, Zhu D, Wang Y, Duan X, Yuan X, Huang S, Fu X. Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles. BURNS & TRAUMA 2021; 9:tkab013. [PMID: 34213515 PMCID: PMC8240535 DOI: 10.1093/burnst/tkab013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Background Sweat glands (SGs) and hair follicles (HFs) are two important cutaneous appendages that play crucial roles in homeostatic maintenance and thermoregulation, and their interaction is involved in wound healing. SGs can be regenerated from mesenchymal stem cell-laden 3D bioprinted scaffolds, based on our previous studies, whereas regeneration of HFs could not be achieved in the same model. Due to the lack of an in vitro model, the underlying molecular mechanism of the interaction between SGs and HFs in regeneration could not be fully understood. The purpose of the present study was to establish an in vitro model of skin constructs with SGs and HFs and explore the interaction between these two appendages in regeneration. Methods To investigate the interaction effects between SGs and HFs during their regeneration processes, a combined model was created by seeding HF spheroids on 3D printed SG scaffolds. The interaction between SG scaffolds and HF spheroids was detected using RNA expression and immunofluorescence staining. The effects of microenvironmental cues on SG and HF regeneration were analysed by altering seed cell types and plantar dermis homogenate in the scaffold. Results According to this model, we overcame the difficulties in simultaneously inducing SG and HF regeneration and explored the interaction effects between SG scaffolds and HF spheroids. Surprisingly, HF spheroids promoted both SG and HF differentiation in SG scaffolds, while SG scaffolds promoted SG differentiation but had little effect on HF potency in HF spheroids. Specifically, microenvironmental factors (plantar dermis homogenate) in SG scaffolds effectively promoted SG and HF genesis in HF spheroids, no matter what the seed cell type in SG scaffolds was, and the promotion effects were persistent. Conclusions Our approach elucidated a new model for SG and HF formation in vitro and provided an applicable platform to investigate the interaction between SGs and HFs in vitro. This platform might facilitate 3D skin constructs with multiple appendages and unveil the spatiotemporal molecular program of multiple appendage regeneration.
Collapse
Affiliation(s)
- Yijie Zhang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China
| | - Enhejirigala
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,College of Graduate, Tianjin Medical University, Tianjin 300070, China.,Institute of Basic Medical Research, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China
| | - Jianjun Li
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,Department of General Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Dongzhen Zhu
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China
| | - Yuzhen Wang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, Datong 037000, Shanxi, China
| | - Xianlan Duan
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| |
Collapse
|