1
|
Das R, Cabaniss TL, Pineda-Castillo SA, Bohnstedt BN, Liu Y, Lee CH. Design of thermally programmable 3D shape memory polymer-based devices tailored for endovascular treatment of intracranial aneurysms. J Mech Behav Biomed Mater 2024; 160:106784. [PMID: 39437590 DOI: 10.1016/j.jmbbm.2024.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Despite recent technological advancements in endovascular embolization devices for treating intracranial aneurysms (ICAs), incomplete occlusion and aneurysm recanalization remain critical challenges. Shape memory polymer (SMP)-based devices, which can be manufactured and tailored to patient-specific aneurysm geometries, possess the potential to overcome the suboptimal treatment outcome of the gold standard: endovascular coiling. In this work, we propose a highly porous patient-specific SMP embolic device fabricated via 3D printing to optimize aneurysm occlusion, and thus, improve the long-term efficacy of endovascular treatment. To facilitate device deployment at the aneurysm via Joule-heating, we introduce a stable, homogeneous coating of poly-pyrrole (PPy) to enhance the electrical conductivity in the SMP material. Using an in-house pulse width modulation circuit, we induced Joule-heating and characterized the shape recovery of the PPy-coated SMP embolic devices. We found that the employed PPy coating enables enhanced electrical and thermal conductivity while only slightly altering the glass transition temperature of the SMP material. Additionally, from a series of parametric studies, we identified the combination of catalyst concentration and pyrrole polymerization time that yielded the shape recovery properties ideal for ICA endovascular therapy. Collectively, these findings highlight a promising material coating for a future coil-free, personalized shape memory polymer (SMP) embolic device, designed to achieve long-lasting, complete occlusion of aneurysms.
Collapse
Affiliation(s)
- Rakesh Das
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Tanner L Cabaniss
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
| | | | - Bradley N Bohnstedt
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yingtao Liu
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Chung-Hao Lee
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA; Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
2
|
Khoury M, Mekler T, Epshtein M, Kreinin Y, Korneyev D, Abezgauz L, Anagnostakou V, Ramon GZ, Sznitman J, Gounis M, Korin N. Isolation and focal treatment of brain aneurysms using interfacial fluid trapping. SCIENCE ADVANCES 2024; 10:eadp4579. [PMID: 39365869 PMCID: PMC11451524 DOI: 10.1126/sciadv.adp4579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Current approaches for localized intravascular treatments rely on using solid implants, such as metallic coils for embolizing aneurysms, or on direct injection of a therapeutic agent that can disperse from the required site of action. Here, we present a fluid-based strategy for localizing intravascular therapeutics that leverages surface tension and immiscible fluid interactions, to allow confined and focal treatment at brain aneurysm sites. We first show, computationally and experimentally, that an immiscible phase can be robustly positioned at the neck of human aneurysm models to seal and isolate the aneurysm's cavity for further treatment, including in wide-neck aneurysms. We then demonstrate localized delivery and confined treatment, by selective staining of cell nuclei within the aneurysm cavity as well as by hydrogel-based embolization in patient-specific aneurysm models. Altogether, our interfacial flow-driven strategy offers a potential approach for intravascular localized treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- Maria Khoury
- Department of Biomedical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Tirosh Mekler
- Department of Biomedical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion - IIT, Haifa 32000, Israel
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Yevgeniy Kreinin
- Department of Biomedical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Dmitry Korneyev
- Department of Biomedical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Ludmila Abezgauz
- Department of Environmental, Water and Agricultural Engineering, Technion - IIT, Haifa 32000, Israel
| | - Vania Anagnostakou
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Guy Z. Ramon
- Department of Environmental, Water and Agricultural Engineering, Technion - IIT, Haifa 32000, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Matthew Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Netanel Korin
- Department of Biomedical Engineering, Technion - IIT, Haifa 32000, Israel
| |
Collapse
|
3
|
Zhang S, Lv R, Zhang Z, Wang Z, Jin Z. Advancements in hydrogel-based embolic agents: Categorized by therapeutic mechanisms. Cancer Med 2024; 13:e70183. [PMID: 39440706 PMCID: PMC11497111 DOI: 10.1002/cam4.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Transcatheter arterial embolization (TAE) is a crucial technique in interventional radiology. Hydrogel-based embolic agents show promise due to their phase transition and drug-loading capabilities. However, existing categorizations of these agents are confusing. AIMS This review tackles the challenge of categorizing hydrogel-based embolic agents based on their therapeutic mechanisms, including transportation, accumulation, interaction, and elimination. It also addresses current challenges and controversies in the field while highlighting future directions for hydrogel-based embolicagents. MATERIALS AND METHODS We conducted a systematic review of papers published in PUBMED from 2004 to 2024, focusing primarily on preclinical trials. RESULTS Various kinds of hydrogel embolic agents were introduced according to their therapeutic mechanisms. DISCUSSION Most hydrogel embolic agents were specifically designed for effective accumulation and interaction. Recent advancement highlight the potential of multifunctional hydrogel embolic agents. CONCLUSION This new categorizations provided valuable insights into hydrogel embolic agents, potentially guiding material scientists and interventional radiologists in the development of novel hydrogel embolic agents in transarterial embolization.
Collapse
Affiliation(s)
- Shenbo Zhang
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Rui Lv
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Zhe Zhang
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
4
|
Liang D. Endovascular treatment of intracranial aneurysms: Past and present. J Cerebrovasc Endovasc Neurosurg 2024; 26:249-259. [PMID: 38247034 PMCID: PMC11449534 DOI: 10.7461/jcen.2024.e2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Intracranial aneurysm is common in stroke and, once rupturing, will cause disaster to patients. Nowadays, endovascular treatment has become a routine to reduce the risk of intracranial aneurysms rupture. Successive endovascular methods, like balloon-assisted coiling, stent-assisted coiling, and flow diversion, have become new choices for doctors. More and more doctors have been entering this field. Understanding the current general situation is crucial for more medical workers to learn the endovascular treatment of intracranial aneurysms. In the past, many devices and ideas about the treatment of intracranial aneurysms appeared. Although developing unceasingly, endovascular treatment still has some deficiencies to overcome. The advantages and drawbacks of current endovascular methods are discussed.
Collapse
Affiliation(s)
- Dongming Liang
- Department of Neurosurgery, Sun Yet-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
5
|
Wang J, Zhou Q, Dong Q, Shen J, Hao J, Li D, Xu T, Cai X, Bai W, Ying T, Li Y, Zhang L, Zhu Y, Wang L, Wu J, Zheng Y. Nanoarchitectonic Engineering of Thermal-Responsive Magnetic Nanorobot Collectives for Intracranial Aneurysm Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400408. [PMID: 38709208 DOI: 10.1002/smll.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Stent-assisted coiling is a main treatment modality for intracranial aneurysms (IAs) in clinics, but critical challenges remain to be overcome, such as exogenous implant-induced stenosis and reliance on antiplatelet agents. Herein, an endovascular approach is reported for IA therapy without stent grafting or microcatheter shaping, enabled by active delivery of thrombin (Th) to target aneurysms using innovative phase-change material (PCM)-coated magnetite-thrombin (Fe3O4-Th@PCM) FTP nanorobots. The nanorobots are controlled by an integrated actuation system of dynamic torque-force hybrid magnetic fields. With robust intravascular navigation guided by real-time ultrasound imaging, nanorobotic collectives can effectively accumulate and retain in model aneurysms constructed in vivo, followed by controlled release of the encapsulated Th for rapid occlusion of the aneurysm upon melting the protective PCM (thermally responsive in a tunable manner) through focused magnetic hyperthermia. Complete and stable aneurysm embolization is confirmed by postoperative examination and 2-week postembolization follow-up using digital subtraction angiography (DSA), contrast-enhanced ultrasound (CEUS), and histological analysis. The safety of the embolization therapy is assessed through biocompatibility evaluation and histopathology assays. This strategy, seamlessly integrating secure drug packaging, agile magnetic actuation, and clinical interventional imaging, avoids possible exogenous implant rejection, circumvents cumbersome microcatheter shaping, and offers a promising option for IA therapy.
Collapse
Affiliation(s)
- Jienan Wang
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Qi Zhou
- School of Engineering, The University of Edinburgh, Edinburgh, EH9 3FB, UK
| | - Qi Dong
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200002, P. R. China
| | - Jian Shen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Junnian Hao
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Dong Li
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuehua Li
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
6
|
Kim S, Nowicki KW, Kohyama K, Mittal A, Ye S, Wang K, Fujii T, Rajesh S, Cao C, Mantena R, Barbuto M, Jung Y, Gross BA, Friedlander RM, Wagner WR. Development of an Injectable, ECM-Derivative Embolic for the Treatment of Cerebral Saccular Aneurysms. Biomacromolecules 2024; 25:4879-4890. [PMID: 39001820 PMCID: PMC11323012 DOI: 10.1021/acs.biomac.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Cerebral aneurysms are a source of neurological morbidity and mortality, most often as a result of rupture. The most common approach for treating aneurysms involves endovascular embolization using nonbiodegradable medical devices, such as platinum coils. However, the need for retreatment due to the recanalization of coil-treated aneurysms highlights the importance of exploring alternative solutions. In this study, we propose an injectable extracellular matrix-derived embolic formed in situ by Michael addition of gelatin-thiol (Gel-SH) and hyaluronic acid vinyl sulfone (HA-VS) that may be delivered with a therapeutic agent (here, RADA-SP) to fill and remodel aneurysmal tissue without leaving behind permanent foreign bodies. The injectable embolic material demonstrated rapid gelation under physiological conditions, forming a highly porous structure and allowing for cellular infiltration. The injectable embolic exhibited thrombogenic behavior in vitro that was comparable to that of alginate injectables. Furthermore, in vivo studies in a murine carotid aneurysm model demonstrated the successful embolization of a saccular aneurysm and extensive cellular infiltration both with and without RADA-SP at 3 weeks, with some evidence of increased vascular or fibrosis markers with RADA-SP incorporation. The results indicate that the developed embolic has inherent potential for acutely filling cerebrovascular aneurysms and encouraging the cellular infiltration that would be necessary for stable, chronic remodeling.
Collapse
Affiliation(s)
- Seungil Kim
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kamil W. Nowicki
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Neurosurgery, School of Medicine, Yale, New
Haven, Connecticut 06520, United States
| | - Keishi Kohyama
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Aditya Mittal
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sangho Ye
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kai Wang
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02115, United States
- Department
of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Taro Fujii
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shivbaskar Rajesh
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Catherine Cao
- Division
of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Rohit Mantena
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Marianna Barbuto
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Ri.MED
Foundation, Cardiac Tissue Engineering Laboratory, Ri.MED Foundation, Palermo 90133, Italy
- Department
of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo, Palermo 90133, Italy
| | - Youngmee Jung
- Center
for Biomaterials, Biomedical Research Institute, Korea Institute of
Science and Technology (KIST), Seoul 130-650, Republic
of Korea
- School of
Electrical and Electronic Engineering, YU-KIST
Institute, Yonsei University, Seoul 130-650 Republic of Korea
| | - Bradley A. Gross
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Robert M. Friedlander
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - William R. Wagner
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
7
|
Yu H, Liu Q, Xie M, Fan J, Luo J, Huang J, Chen L. Nesfatin-1 inhibits cerebral aneurysms by activating Nrf2 and inhibiting NF-κB signaling. CNS Neurosci Ther 2024; 30:e14864. [PMID: 39097921 PMCID: PMC11298201 DOI: 10.1111/cns.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
AIMS Cerebral aneurysm (CA) has been considered one of the most common cerebrovascular diseases, affecting millions of people worldwide. A therapeutic agent is currently missing for the treatment of CA. Nesfatin-1 (Nes-1) is an 82-amino acid adipokine which possesses a wide range of biological functions. However, the physiological function of Nes-1 in CA is still unknown. Here, we aimed to assess the preventive effects of Nes-1 in the pathological development of CA and elucidate the mechanisms behind this. METHODS We used an elastase-induced CA model, accompanied by a high-salt diet to induce hypertension. Additionally, diverse experimental techniques, including Verhoeff-Van Gieson staining, real time PCR, enzyme-linked immuno sorbent assay (ELISA), and immunofluorescence staining, were employed to assess CA formation, gene and protein expression, as well as the macrophage infiltration. RESULTS Our results indicate that administration of Nes-1 significantly decreased the aneurysm size. Additionally, Nes-1 prevented inflammatory response by inhibiting the expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein 1 (MCP-1) at both the mRNA and protein levels in the Circle of Willis (COW) region. Also, the increased levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in the COW region were reduced by Nes-1. We found that Nes-1 administration suppressed the invasion of macrophages. Mechanistically, Nes-1 activated Nrf-2 by promoting its nuclear translocation but prevented the activation of the IκBα/NF-κB signaling pathway. CONCLUSION These findings suggest that Nes-1 might be used as a promising agent for the prevention of CA.
Collapse
Affiliation(s)
- Huimin Yu
- Department of Neurology, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
| | - Minghong Xie
- Department of Neurosurgery, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| | - Junquan Fan
- Department of Neurosurgery, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| | - Jiajia Luo
- Department of Neurosurgery, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| | - Junping Huang
- Department of NeurosurgeryMinzu Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Lei Chen
- Department of Neurosurgery, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| |
Collapse
|
8
|
Li M, Jin M, Yang H. Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. Int J Biol Macromol 2024; 264:130764. [PMID: 38462100 DOI: 10.1016/j.ijbiomac.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.
Collapse
Affiliation(s)
- Minhao Li
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
9
|
Chen X, Xia Y, Shen S, Wang C, Zan R, Yu H, Yang S, Zheng X, Yang J, Suo T, Gu Y, Zhang X. Research on the Current Application Status of Magnesium Metal Stents in Human Luminal Cavities. J Funct Biomater 2023; 14:462. [PMID: 37754876 PMCID: PMC10532415 DOI: 10.3390/jfb14090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The human body comprises various tubular structures that have essential functions in different bodily systems. These structures are responsible for transporting food, liquids, waste, and other substances throughout the body. However, factors such as inflammation, tumors, stones, infections, or the accumulation of substances can lead to the narrowing or blockage of these tubular structures, which can impair the normal function of the corresponding organs or tissues. To address luminal obstructions, stenting is a commonly used treatment. However, to minimize complications associated with the long-term implantation of permanent stents, there is an increasing demand for biodegradable stents (BDS). Magnesium (Mg) metal is an exceptional choice for creating BDS due to its degradability, good mechanical properties, and biocompatibility. Currently, the Magmaris® coronary stents and UNITY-BTM biliary stent have obtained Conformité Européene (CE) certification. Moreover, there are several other types of stents undergoing research and development as well as clinical trials. In this review, we discuss the required degradation cycle and the specific properties (anti-inflammatory effect, antibacterial effect, etc.) of BDS in different lumen areas based on the biocompatibility and degradability of currently available magnesium-based scaffolds. We also offer potential insights into the future development of BDS.
Collapse
Affiliation(s)
- Xiang Chen
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
| | - Yan Xia
- School of Stomatology, Anhui Medical College, Hefei 230601, China;
| | - Sheng Shen
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Chunyan Wang
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
- Department of General Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Rui Zan
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Xiaohong Zheng
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Jiankang Yang
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Yaqi Gu
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| |
Collapse
|
10
|
Bioabsorbable, elastomer-coated magnesium alloy coils for treating saccular cerebrovascular aneurysms. Biomaterials 2022; 290:121857. [DOI: 10.1016/j.biomaterials.2022.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022]
|
11
|
Gluing blood into gel by electrostatic interaction using a water-soluble polymer as an embolic agent. Proc Natl Acad Sci U S A 2022; 119:e2206685119. [PMID: 36215508 PMCID: PMC9586266 DOI: 10.1073/pnas.2206685119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Liquid embolic agents are widely used for the endovascular embolization of vascular conditions. However, embolization based on phase transition is limited by the adhesion of the microcatheter to the embolic agent, use of an organic solvent, unintentional catheter retention, and other complications. By mimicking thrombus formation, a water-soluble polymer that rapidly glues blood into a gel without triggering coagulation was developed. The polymer, which consists of cationic and aromatic residues with adjacent sequences, shows electrostatic adhesion with negatively charged blood substances in a physiological environment, while common polycations cannot. Aqueous polymer solutions are injectable through clinical microcatheters and needles. The formed blood gel neither adhered to the catheter nor blocked the port. Postoperative computed tomography imaging showed that the polymer can block the rat femoral artery in vivo and remain at the injection site without nontarget embolization. This study provides an alternative for the development of waterborne embolic agents.
Collapse
|
12
|
Baidya A, Haghniaz R, Tom G, Edalati M, Kaneko N, Alizadeh P, Tavafoghi M, Khademhosseini A, Sheikhi A. A Cohesive Shear-Thinning Biomaterial for Catheter-Based Minimally Invasive Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42852-42863. [PMID: 36121372 DOI: 10.1021/acsami.2c08799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shear-thinning hydrogels are suitable biomaterials for catheter-based minimally invasive therapies; however, the tradeoff between injectability and mechanical integrity has limited their applications, particularly at high external shear stress such as that during endovascular procedures. Extensive molecular crosslinking often results in stiff, hard-to-inject hydrogels that may block catheters, whereas weak crosslinking renders hydrogels mechanically weak and susceptible to shear-induced fragmentation. Thus, controlling molecular interactions is necessary to improve the cohesion of catheter-deployable hydrogels. To address this material design challenge, we have developed an easily injectable, nonhemolytic, and noncytotoxic shear-thinning hydrogel with significantly enhanced cohesion via controlling noncovalent interactions. We show that enhancing the electrostatic interactions between weakly bound biopolymers (gelatin) and nanoparticles (silicate nanoplatelets) using a highly charged polycation at an optimum concentration increases cohesion without compromising injectability, whereas introducing excessive charge to the system leads to phase separation and loss of function. The cohesive biomaterial is successfully injected with a neuroendovascular catheter and retained without fragmentation in patient-derived three-dimensionally printed cerebral aneurysm models under a physiologically relevant pulsatile fluid flow, which would otherwise be impossible using the noncohesive hydrogel counterpart. This work sheds light on how charge-driven molecular and colloidal interactions in shear-thinning physical hydrogels improve cohesion, enabling complex minimally invasive procedures under flow, which may open new opportunities for developing the next generation of injectable biomaterials.
Collapse
Affiliation(s)
- Avijit Baidya
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California 90024, United States
| | - Gregory Tom
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Masoud Edalati
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Parvin Alizadeh
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Maryam Tavafoghi
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California 90024, United States
| | - Amir Sheikhi
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Chen S, Song Y, Yan X, Dong L, Xu Y, Xuan S, Shu Q, Cao B, Hu J, Xing H, Wu W, Zha Z, Lu Y. Injectable magnetic montmorillonite colloidal gel for the postoperative treatment of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:381. [PMID: 35986283 PMCID: PMC9392261 DOI: 10.1186/s12951-022-01559-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Bioactive materials have been extensively developed for the adjuvant therapy of cancer. However, few materials can meet the requirements for the postoperative resection of hepatocellular carcinoma (HCC) due to massive bleeding and high recurrence. In particular, combination therapy for HCC has been highly recommended in clinical practice, including surgical resection, interventional therapy, ablation therapy and chemotherapy. Herein, an injectable magnetic colloidal gel (MCG) was developed by controllable electrostatic attraction between clinically available magnetic montmorillonites and amphoteric gelatin nanoparticles. The optimized MCG exhibited an effective magnetic heating effect, remarkable rheological properties, and high gel network stability, realizing the synergistic treatment of postoperative HCC by stimuli-responsive drug delivery, hemostasis and magnetic hyperthermia. Furthermore, a minimal invasive MCG-induced interventional magnetic hyperthermia therapy (MHT) under ultrasound guidance was realized on hepatic tumor rabbits, providing an alternative therapeutics to treat the postoperative recurrence. Overall, MCG is a clinically available injectable formulation for adjuvant therapy after HCC surgical resection.
Collapse
|
14
|
Efficacy and Safety of Different Bioactive Coils in Intracranial Aneurysm Interventional Treatment, a Systematic Review and Bayesian Network Meta-Analysis. Brain Sci 2022; 12:brainsci12081062. [PMID: 36009125 PMCID: PMC9405728 DOI: 10.3390/brainsci12081062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Bioactive coils have been used for nearly 20 years to improve aneurysm treatments. Previous studies are inadequate for comparing the efficacy and safety between different coils. The aim of this study was to investigate the safety and efficacy of different coils by comparing the percentage of people with different modified Raymond scale grades, re-rupture rates, and mortality in patients with intracranial aneurysms embolized with different coils. Method: Randomized controlled trials (RCTs) containing coils for aneurysm interventional treatment were collected from Web of Science, PubMed, and the Cochrane Library up to December 2021. Bayesian network meta-analysis with a randomized or fixed model was performed to compare the efficacy and safety among different bioactive coils and bare platinum coils. Results: We pooled 3362 patients from eight RCTs. No significant differences were found between coils in the proportion of patients with a three-grade classification assessed with the modified Raymond scale immediately after surgery. Hydrogel coils did not show a significant difference in the percentage of patients with a modified Raymond scale grade I postoperatively compared with bare platinum coils (OR, −0.1080; 95% CI, −0.4201–0.2423), but at follow-up, the percentage of patients with modified Raymond scale grade I was significantly higher with hydrogel coils than with bare platinum coils (OR, 0.4957; 95% CI, 0.0060–0.9442). There were no statistical differences between these four coils in terms of aneurysm rupture or re-rupture rate and mortality. Conclusion: Though there was no significant difference in the embolization effect between the several coils in the postoperative period, complete embolization was more likely to be achieved with hydrogel coils compared to bare platinum coils at follow-up. There were no significant differences in safety between the several coil materials.
Collapse
|
15
|
Emerging Polymer Materials in Trackable Endovascular Embolization and Cell Delivery: From Hype to Hope. Biomimetics (Basel) 2022; 7:biomimetics7020077. [PMID: 35735593 PMCID: PMC9221114 DOI: 10.3390/biomimetics7020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Minimally invasive endovascular embolization is a widely used clinical technique used for the occlusion of blood vessels to treat various diseases. Different occlusive agents ranging from gelatin foam to synthetic polymers such as poly(vinyl alcohol) (PVA) have been commercially used for embolization. However, these agents have some drawbacks, such as undesired toxicity and unintended and uncontrolled occlusion. To overcome these issues, several polymer-based embolic systems are under investigation including biocompatible and biodegradable microspheres, gelling liquid embolic with controlled occlusive features, and trackable microspheres with enhanced safety profiles. This review aims to summarize recent advances in current and emerging polymeric materials as embolization agents with varying material architectures. Furthermore, this review also explores the potential of combining injectable embolic agents and cell therapy to achieve more effective embolization with the promise of outstanding results in treating various devastating diseases. Finally, limitations and challenges in developing next-generation multifunctional embolic agents are discussed to promote advancement in this emerging field.
Collapse
|
16
|
Xie R, Chen YC, Zhao Y, Yodsanit N, Wang Y, Yamamoto N, Yamanouchi D, Gong S. Injectable Hydrogel Capable of In Situ Covalent Crosslinking for Permanent Embolization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56988-56999. [PMID: 34806359 DOI: 10.1021/acsami.1c18250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vascular embolization provides an effective approach for the treatment of hemorrhage, aneurysms, and other vascular abnormalities. However, current embolic materials, such as metallic coils and liquid embolic agents, are limited by their inability to provide safe, consistent, and controlled embolization. Here, we report an injectable hydrogel that can remain at the injection site and subsequently undergo in situ covalent crosslinking, leading to the formation of a dual-crosslinking network (DCN) hydrogel for endovascular embolization. The DCN hydrogel is simple to prepare, easy to deploy via needles and catheters, and mechanically stable at the target injection site, thereby avoiding embolization of nontarget vessels. It possesses efficient hemostatic activity and good biocompatibility. The DCN hydrogel is also clearly visible under X-ray imaging, thereby allowing for targeted embolization. In vivo tests in a rabbit artery model demonstrates that the DCN hydrogel is effective in achieving immediate embolization of the target artery with long-term occlusion by inducing luminal fibrosis. Collectively, the DCN hydrogel provides a viable, biocompatible, and cost-effective alternative to existing embolic materials with clinical translation potential for endovascular embolization.
Collapse
Affiliation(s)
- Ruosen Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Yu-Chung Chen
- Research and Development Division, SB-Kawasumi Laboratories, Inc., 3-25-4, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8602, Japan
| | - Yi Zhao
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Nisakorn Yodsanit
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Yuyuan Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Naoaki Yamamoto
- Research and Development Division, SB-Kawasumi Laboratories, Inc., 3-25-4, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8602, Japan
| | - Dai Yamanouchi
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53792, United States
| | - Shaoqin Gong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|