1
|
Yu Y, Cui Z, Zhou T, Wang Y, Chen P, Wang S, Zhu Y, Liu J, Jiang S, Liu Y. Umami peptide synergy unveiled: A comprehensive study from molecular simulation to practical validation of sensing strategy. Biosens Bioelectron 2025; 278:117331. [PMID: 40043636 DOI: 10.1016/j.bios.2025.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/30/2025]
Abstract
Synergistic effect is one of the main properties of umami substances, as a new natural umami agent, umami peptide synergy has not been systematically explored. Presently, conventional methods relying on human sensory evaluation and intelligent instrument analysis pose challenges due to their time-consuming and lack of high throughput. This research provides a detailed molecular-level understanding of multiple umami peptides interact with T1R1-VFT simultaneous, revealing that multiple umami peptides promotes stronger binding affinity and more effective receptor activation (from -7.3 kcal mol-1 to -11.19 kcal mol-1). The kinetic simulations demonstrated a significant reduction in the average fluctuation of protein amino acid residues during the binding process. Moreover, the hydrophobic regions on the protein surface were diminished following binding, and the resultant complex structure was more tightly packed, these phenomena may collectively represent the manifestation of synergistic effects. To validate the simulation results, biolayer interferometry sensing strategies were developed to measure the interaction process, indicating that umami peptides and T1R1-VFT could association and dissociation in solution without significant interactions with other proteins. When multiple umami peptides interacted with T1R1-VFT, the kinetic equilibrium constant decreased and affinity increased (from 1.2 e-6 M to 8.3 e-7 M), showing significant synergistic effect. Furthermore, the practical application ability of this sensing strategy was verified in a complex matrix with multiple real samples. Overall, this comprehensive study combined micro-molecular simulation and biological experiment verification, offering a deeper understanding of umami peptide synergy and paving the way for innovative approaches in flavor science and food product development.
Collapse
Affiliation(s)
- Yanyang Yu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianxing Zhou
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueming Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengnan Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Shui Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
2
|
Cui Z, Yu Y, Zhou T, Qi C, Gu J, Zhang N, Feng X, Zhang Z, Zhu Y, Zhang Y, Wang W, Liu Y. Cyclization: A potential effective modification strategy for umami peptides. Food Chem 2025; 469:142457. [PMID: 39721445 DOI: 10.1016/j.foodchem.2024.142457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Cyclization enhances various properties of peptides and has been widely used in life sciences, but it has not been explored in taste peptides. Our study found that cyclization of the N/C termini of the peptides (head-to-tail) via amide bond is a potentially effective modification strategy for umami peptides to improve their properties. This is the first report on umami cyclic peptides. Umami peptides were downloaded from TastePeptidesDB and linear/cyclic structures were generated for docking with umami receptors, of which 138 groups completed docking. The lower-scoring group was chosen for contact matrix analysis, yielding three representative umami peptides after dimensionality reduction and clustering. Sensory evaluation of the three groups (chemically synthesized linear and cyclic peptides) revealed that the umami intensity of DPLRGGY was significantly increased after cyclization, with recognition threshold dropped from 0.186 to 0.051 mM; while the umami intensity of RGEPNND decreased. Applying molecular fingerprints and descriptors analysis, it was found that polarity and threshold differences were correlated (|Corr| ≥0.5). DFT calculations were applied to analyze the electron cloud structure and found that electrostatic rearrangement was the main reason for the difference in umami intensity after cyclization. This study proposed a potential cyclization strategy for the development of novel umami peptides and explained the essential reasons for the cyclization effect, providing a new strategy for further expanding the application to explore more efficient umami peptide structural derivatives.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanyang Yu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Tianxing Zhou
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Bioinformatics, Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Chengliang Qi
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiaming Gu
- College of Humanities and Development Studies, China Agricultural University, Beijing, China
| | - Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhiwei Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Ji S, Wu J, An F, Lou M, Zhang T, Guo J, Wu P, Zhu Y, Wu R. Umami-gcForest: Construction of a predictive model for umami peptides based on deep forest. Food Chem 2025; 464:141826. [PMID: 39522377 DOI: 10.1016/j.foodchem.2024.141826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Umami peptides have recently gained attention for their ability to enhance umami flavor, reduce salt content, and provide nutritional benefits. However, traditional wet laboratory methods to identify them are time-consuming, laborious, and costly. Therefore, we developed the Umami-gcForest model using the deep forest algorithm. It constructs amino acid feature matrices using ProtBERT, amino acid composition, composition-transition-distribution, and pseudo amino acid composition, applying mutual information for feature selection to optimize dimensions. Compared to other machine learning baseline, umami peptide prediction, and composite models, the validation results of Umami-gcForest on different test sets demonstrated outstanding predictive accuracy. Using SHapley Additive exPlanations to calculate feature contributions, we found that the key features of Umami-gcForest were hydrophobicity, charge, and polarity. Based on this, an online platform was developed to facilitate its user application. In conclusion, Umami-gcForest serves as a powerful tool, providing a solid foundation for the efficient and accurate screening of umami peptides.
Collapse
Affiliation(s)
- Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, PR China
| | - Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Taowei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Jiawei Guo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Penggong Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, PR China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, PR China.
| |
Collapse
|
4
|
Ye J, Fan M, Zhang X, Liang Q, Zhang Y, Zhao X, Lin CT, Zhang D. A novel biomimetic electrochemical taste-biosensor based on conformational changes of the taste receptor. Biosens Bioelectron 2024; 249:116001. [PMID: 38199084 DOI: 10.1016/j.bios.2024.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Taste sensor, a useful tool which could detect and identify thousands of different chemical substances in liquid environments, has attracted continuous concern from beverage and foodstuff industry and its consumers. Although many taste sensing methods have been extensively developed, the assessment of tastant content remains challenging due to the limitations of sensor selectivity and sensitivity. Here we present a novel biomimetic electrochemical taste-biosensor based on bioactive sensing elements and immune amplification with nanomaterials carrier to address above concerns, while taking sweet taste perception as a model. The proposed biosensor based on ligand binding domain (T1R2 VFT) of human sweet taste receptor protein showed human mimicking character and initiated the application of immune recognition in gustation biosensor, which can precisely and sensitively distinguish sweet substances against other related gustation substances with detection limit of 5.1 pM, far less than that of taste sensors without immune amplification whose detection limit was 0.48 nM. The performance test demonstrated the biosensor has the capacity of monitoring the response of sweet substances in real food environments, which is crucial in practical. This biomimetic electrochemical taste-biosensor can work as a new screening platform for newly developed tastants and disclose sweet perception mechanism.
Collapse
Affiliation(s)
- Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Qi Liang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Cheng-Te Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Zhang X, Dai Y, Sun J, Shen J, Lin M, Xia F. Solid-State Nanopore/Nanochannel Sensors with Enhanced Selectivity through Pore-in Modification. Anal Chem 2024; 96:2277-2285. [PMID: 38285919 DOI: 10.1021/acs.analchem.3c05228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Nanopore sensing technology, as an emerging analytical method, has the advantages of simple operation, fast output, and label-free and has been widely used in fields such as protein analysis, gene sequencing, and biomarker detection. Inspired by biological ion channels, scientists have prepared various artificial solid-state nanopores/nanochannels. Biological ion channels have extremely high ion transport selectivity, while solid-state nanopores/nanochannels have poor selectivity. The selectivity of solid-state nanopores and nanochannels can be enhanced by modifying channel charge, varying pore size, incorporating specific chemical functionality, and adjusting operating (or solution) conditions. This Perspective highlights pore-in modification strategies for enhancing the selectivity of solid-state nanopore/nanochannel sensors by summarizing the articles published in the last 10 years. The future development prospects and challenges of pore-in modification in solid-state nanopore and nanochannel sensors are discussed. This Perspective helps readers better understand nanopore sensing technology, especially the importance of detection selectivity. We believe that solid-state nanopore/nanochannel sensors will soon enter our homes after various challenges.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
6
|
Li M, Xiong Y, Qing G. Innovative Chemical Tools to Address Analytical Challenges of Protein Phosphorylation and Glycosylation. Acc Chem Res 2023; 56:2514-2525. [PMID: 37638729 DOI: 10.1021/acs.accounts.3c00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
7
|
Huang Y, Liu L, Luo C, Liu W, Lou X, Jiang L, Xia F. Solid-state nanochannels for bio-marker analysis. Chem Soc Rev 2023; 52:6270-6293. [PMID: 37581902 DOI: 10.1039/d2cs00865c] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Bio-markers, such as ions, small molecules, nucleic acids, peptides, proteins and cells, participate in the construction of living organisms and play important roles in biological processes. It is of great significance to accurately detect these bio-markers for studying their basic functions, the development of molecular diagnosis and to better understand life processes. Solid-state nanochannel-based sensing systems have been demonstrated for the detection of bio-markers, due to their rapid, label-free and high-throughput screening, with high sensitivity and specificity. Generally, studies on solid-state nanochannels have focused on probes on the inner-wall (PIW), ignoring probes on the outer-surface (POS). As a result, the direct detection of cells is difficult to realize by these inner-wall focused nanochannels. Moreover, the sensitivity for detecting ions, small molecules, nucleic acids, peptides and proteins requires further improvement. Recent research has focused on artificial solid-state nanochannels with POS, which have demonstrated the ability to independently regulate ion transport. This design not only contributes to the in situ detection of large analytes, such as cells, but also provides promising opportunities for ultra-high sensitivity detection with a clear mechanism. In this tutorial review, we present an overview of the detection principle used for solid-state nanochannels, inner-wall focused nanochannels and outer-surface focused nanochannels. Furthermore, we discuss the remaining challenges faced by current nanochannel technologies and provide insights into their prospects.
Collapse
Affiliation(s)
- Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Lingxiao Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Wei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| |
Collapse
|
8
|
Li M, Zhang X, Zhu Y, Zhang X, Cui Z, Zhang N, Sun Y, Yang Z, Wang W, Wang C, Zhang Y, Liu Y, Qing G. Identifying Umami Peptides Specific to the T1R1/T1R3 Receptor via Phage Display. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12004-12014. [PMID: 37523494 DOI: 10.1021/acs.jafc.3c02471] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Umami peptides are small molecular weight oligopeptides that play a role in umami taste attributes. However, the identification of umami peptides is easily limited by environmental conditions, and the abundant source and high chromatographic separation efficiency remain difficult. Herein, we report a robust strategy based on a phage random linear heptapeptide library that targets the T1R1-Venus flytrap domain (T1R1-VFT). Two candidate peptides (MTLERPW and MNLHLSF) were readily identified with high affinity for T1R1-VFT binding (KD of MW-7 and MF-7 were 790 and 630 nM, respectively). The two peptides exhibited umami taste and significantly enhanced the umami intensity when added to the monosodium glutamate solution. Overall, this strategy shows that umami peptides could be developed via phage display technology for the first time. The phage display platform has a promising application to discover other taste peptides with affinity for taste receptors of interest and has more room for improvement in the future.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiancheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yue Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Zhiying Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
9
|
Yu Y, Jiang S, Cui Z, Zhang N, Li M, Liu J, Meng H, Wang S, Zhang Y, Han J, Sun X, Zhao W, Liu Y. Bimetallic bionic taste sensor for perception of the synergistic effect of umami substances. Biosens Bioelectron 2023; 234:115357. [PMID: 37149968 DOI: 10.1016/j.bios.2023.115357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Synergistic effect is one of the main properties of umami substances, elucidating the synergistic effect of umami is of great significance in the food industry. In this study, a bimetallic bionic taste sensor was developed to evaluate the synergistic effect of umami substances based on the perceptual mechanism of the human taste system. The Venus flytrap domain of T1R1 which is in charge of recognizing umami ligands was employed as the sensing element and self-assembled on the bimetallic nanomaterial (MoS2-PtPd) by Au-S bonding, the binding of receptors and ligands is characterized by changes of electrical signals. The sensor had good linearity (R2 > 0.99) and wide detection range in the detection of different kinds of umami substances (amino acids, nucleotides, organic acids, umami peptides) with detection limits as low as 0.03 pM. Comparing with electronic tongues, the sensor owned multiple characteristics of human taste system and could recognize the presence of synergistic effect of umami substances in a variety of real samples. Moreover, the differences in synergistic effect at different concentrations and ratios were also explored, the findings showed that the synergistic effect was more obvious at lower concentrations and balanced ratios of multiple umami substances added. The strategy would afford a promising platform for in-depth research on the mechanism of synergistic effect and multifunctional industrial applications.
Collapse
Affiliation(s)
- Yanyang Yu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, 255049, China
| | - Shui Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingyang Li
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, 255049, China
| | - Hengli Meng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengnan Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, 255049, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, 255049, China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, 255049, China.
| |
Collapse
|
10
|
Zhang N, Cui Z, Li M, Fan Y, Liu J, Wang W, Zhang Y, Liu Y. Typical Umami Ligand-Induced Binding Interaction and Conformational Change of T1R1-VFT. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11652-11666. [PMID: 36098631 DOI: 10.1021/acs.jafc.2c05559] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Umami taste receptor type 1 member 1/3 (T1R1/T1R3) heterodimer has multiple ligand-binding sites, most of which are located in T1R1-Venus flytrap domain (T1R1-VFT). However, the critical binding process of T1R1-VFT/umami ligands remains largely unknown. Herein, T1R1-VFT was prepared with a sufficient amount and functional activity, and its binding characteristics with typical umami molecules (monosodium l-glutamate, disodium succinate, beefy meaty peptide, and inosine-5'-monophosphate) were explored via multispectroscopic techniques and molecular dynamics simulation. The results showed that, driven mainly by hydrogen bond, van der Waals forces, and electrostatic interactions, T1R1-VFT bound to umami compound at 1:1 (stoichiometric interaction) and formed T1R1-VFT/ligand complex (static fluorescence quenching) with a weak binding affinity (Ka values: 252 ± 19 to 1169 ± 112 M-1). The binding process was spontaneous and exothermic (ΔG, -17.72 to -14.26 kJ mol-1; ΔH, -23.86 to -12.11 kJ mol-1) and induced conformational changes of T1R1-VFT, which was mainly reflected in slight unfolding of α-helix (Δα-helix < 0) and polypeptide chain backbone structure. Meanwhile, the binding of the four ligands stabilized the active conformation of the T1R1-VFT pocket. This work provides insight into the binding interaction between T1R1-VFT/umami ligands and improves understanding of how umami receptor recognizes specific ligand molecules.
Collapse
Affiliation(s)
- Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Mingyang Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuxia Fan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, P. R. China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, P. R. China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
11
|
Shimada K. Artificial Tongue Embedded with Conceptual Receptor for Rubber Gustatory Sensor by Electrolytic Polymerization Technique with Utilizing Hybrid Fluid (HF). SENSORS (BASEL, SWITZERLAND) 2022; 22:6979. [PMID: 36146328 PMCID: PMC9502859 DOI: 10.3390/s22186979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The development of gustatory sensors is essential for the development of smart materials for use in robotics, and in the food, beverage, and pharmaceutical industries. We therefore designed a prototype of a rubber tongue embedded with a gustatory receptor mimicking a human tongue using our previously proposed hybrid fluid rubber (HF rubber) and an electrolytic polymerization technique. The fabricated gustatory receptor was composed of Pacinian corpuscles, which are well known and have already been elucidated as effective haptic and auditory receptors in previous studies. Moreover, the receptor has self-powered voltage generated as built-in electricity as a result of the ionized particles and molecules in the HF rubber. The utilization of a layered structure for the Pacinian corpuscles induced a typical response not only to normal and shear forces but to thermal variations. Typical gustatory characteristics, including the initial response voltage and the cyclic voltammogram form, were clearly varied by five tastes: saltiness, sourness, sweetness, bitterness, and umami. These results were due to ORP, pH, and conductivity.
Collapse
Affiliation(s)
- Kunio Shimada
- Faculty of Symbiotic Systems Sciences, Fukushima University, Fukushima 960-1296, Japan
| |
Collapse
|
12
|
Tian Y, Wang P, Du L, Wu C. Advances in gustatory biomimetic biosensing technologies: In vitro and in vivo bioelectronic tongue. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Lu W, Cao Y, Qing G. Recent advance in solid state nanopores modification and characterization. Chem Asian J 2022; 17:e202200675. [PMID: 35974427 DOI: 10.1002/asia.202200675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Indexed: 11/08/2022]
Abstract
Nanopore, due to its advantages of modifiable, controllability and sensitivity, has made a splash in recent years in the fields of biomolecular sequencing, small molecule detection, salt differential power generation, and biomimetic ion channels, etc. In these applications, the role of chemical or biological modification is indispensable. Compared with small molecules, the modification of polymers is more difficult and the methods are more diverse. Choosing appropriate modification method directly determines the success or not of the research, therefore, it is necessary to summarize the polymer modification methods toward nanopores. In addition, it is also important to provide clear and convincing evidence that the nanopore modification is successful, the corresponding characterization methods are also indispensable. Therefore, this review will summarize the methods of polymer modification of nanopores and efficient characterization methods. And we hope that this review will provide some reference value for like-minded researchers.
Collapse
Affiliation(s)
- Wenqi Lu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, 116023, Dalian, CHINA
| | - Yuchen Cao
- Chinese Academy of Sciences Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, 116023, Dalian, CHINA
| | - Guangyan Qing
- Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, 457 Zhongshan Road, 116023, Dalian, CHINA
| |
Collapse
|