1
|
Broer T, Tsintolas N, Hammond S, Helfer A, Lee J, Purkey K, DeLuca S, Khodabukus A, Bursac N. Human Myobundle Platform for Studying the Role of Notch Signaling in Satellite Cell Phenotype and Function. Adv Healthc Mater 2025:e2404695. [PMID: 40123310 DOI: 10.1002/adhm.202404695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Notch signaling plays a pivotal role in regulating satellite cell (SC) behavior during skeletal muscle development, homeostasis, and repair. While well-characterized in mouse models, the impact of Notch signaling in human muscle tissues remains largely underexplored. Here, a 3D tissue-engineered model of human skeletal muscle ("myobundles") is utilized as an in vitro platform for temporal control and studies of Notch singaling. Myofiber-specific overexpression of the Notch ligand, DLL1, early in myobundle differentiation increases the abundance of 3D SCs and shifts their phenotype to a more quiescent-like state, along with decreasing muscle mass and function. In contrast, myofiber-specific DLL1 overexpression after one week of myobundle differentiation does not affect 3D SC abundance or muscle function, but increases transcriptomic markers of SC quiescence, confirming the temporal dependence of SC activation and self-renewal on Notch signaling activity. Finally, for the first time these studies show that even after a transient, myofiber-specific upregulation of Notch signaling in myobundles, 3D SCs expanded from these tissues can re-form functional "secondary" myobundles containing an amplified SC pool. Future studies in the described human myobundle platform are expected to aid the development of novel Notch-targeted therapies for muscular dystrophies and aging.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joonbum Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
2
|
Covert LT, Osman A, Truskey GA. Interferon-β-Induced Injury During Pediatric Muscle Differentiation: Insight Into Juvenile Dermatomyositis Pathogenesis. ACR Open Rheumatol 2025; 7:e11760. [PMID: 39439064 DOI: 10.1002/acr2.11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Juvenile dermatomyositis (JDM) involves up-regulated type I interferons (IFNs), including IFNβ, yet pathologic mechanisms remain poorly understood. We aimed to characterize the functional and structural effects of IFNβ on in vitro human pediatric myoblast growth and differentiation in a three-dimensional skeletal muscle model (myobundles). METHODS Myobundles fabricated from myoblasts of a healthy pediatric donor were exposed to IFNβ at 0 to 5,600 IU/mL during growth (days 1-4), differentiation (days 4-11), and/or mature (days 11-18) periods. To assess myobundle structure and function, contractile force, kinetics, and fatigue were measured at day 18 with subsequent immunohistochemistry. RESULTS Myobundles were not functionally affected by IFNβ exposure during growth period alone. However, when IFNβ exposure continued through differentiation, myobundles became dysfunctional (P < 0.0001). IFNβ during differentiation or mature periods alone resulted in dose-dependent decreases in contractility, with greater decrease in the differentiation alone group (P < 0.0001). Twitch kinetics and fatigue remained largely unchanged when myobundles were exposed to IFNβ only during growth, yet twitch time slowed (P < 0.005) and fatigue decreased (P < 0.002) when myobundles were exposed during differentiation or mature stages alone. Nuclei density and myofiber size and organization also decreased when IFNβ was added during differentiation period alone. CONCLUSION IFNβ decreases pediatric myobundle contractile function most significantly during differentiation of myoblasts to myotubes. Function is not affected when IFNβ exposure is limited to myoblast proliferation alone. These findings implicate a pathologic role for IFNβ in JDM by impairing myoblast differentiation, leading to subsequent loss of function and ongoing need for muscle regeneration and repair.
Collapse
|
3
|
Broer T, Tsintolas N, Purkey K, Hammond S, DeLuca S, Wu T, Gupta I, Khodabukus A, Bursac N. Engineered myovascular tissues for studies of endothelial/satellite cell interactions. Acta Biomater 2024; 188:65-78. [PMID: 39299621 PMCID: PMC11486565 DOI: 10.1016/j.actbio.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In native skeletal muscle, capillaries reside in close proximity to muscle stem cells (satellite cells, SCs) and regulate SC numbers and quiescence through partially understood mechanisms that are difficult to study in vivo. This challenge could be addressed by the development of a 3-dimensional (3D) in vitro model of vascularized skeletal muscle harboring both a pool of quiescent SCs and a robust network of capillaries. Still, studying interactions between SCs and endothelial cells (ECs) within a tissue-engineered muscle environment has been hampered by the incompatibility of commercially available EC media with skeletal muscle differentiation. In this study, we first optimized co-culture media and cellular ratios to generate highly functional vascularized human skeletal muscle tissues ("myovascular bundles") with contractile properties (∼10 mN/mm2) equaling those of avascular, muscle-only tissues ("myobundles"). Within one week of muscle differentiation, ECs in these tissues formed a dense network of capillaries that co-aligned with muscle fibers and underwent initial lumenization. Incorporating vasculature within myobundles increased the total SC number by 82%, with SC density and quiescent signature being increased proximal (≤20μm) to EC networks. In vivo, at two weeks post-implantation into dorsal window chambers in nude mice, vascularized myobundles exhibited improved calcium handling compared to avascular implants. In summary, we engineered highly functional myovascular tissues that enable studies of the roles of EC-SC crosstalk in human muscle development, physiology, and disease. STATEMENT OF SIGNIFICANCE: In native skeletal muscle, intricate relationships between vascular cells and muscle stem cells ("satellite cells") play critical roles in muscle growth and regeneration. Current methods for in vitro engineering of contractile skeletal muscle do not recreate capillary networks present in vivo. Our study for the first time generates in vitro robustly vascularized, highly functional engineered human skeletal muscle tissues. Within these tissues, satellite cells are more abundant and, similar to in vivo, they are more dense and less proliferative proximal to endothelial cells. Upon implantation in mice, vascularized engineered muscles show improved calcium handling compared to muscle-only implants. We expect that this versatile in vitro system will enable studies of muscle-vasculature crosstalk in human development and disease.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC 27708, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Ishika Gupta
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
4
|
Price FD, Matyas MN, Gehrke AR, Chen W, Wolin EA, Holton KM, Gibbs RM, Lee A, Singu PS, Sakakeeny JS, Poteracki JM, Goune K, Pfeiffer IT, Boswell SA, Sorger PK, Srivastava M, Pfaff KL, Gussoni E, Buchanan SM, Rubin LL. Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration. Nat Biotechnol 2024:10.1038/s41587-024-02344-7. [PMID: 39261590 DOI: 10.1038/s41587-024-02344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.
Collapse
Affiliation(s)
- Feodor D Price
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Mark N Matyas
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrew R Gehrke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - William Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Erica A Wolin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca M Gibbs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alice Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pooja S Singu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jeffrey S Sakakeeny
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - James M Poteracki
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kelsey Goune
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Isabella T Pfeiffer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sarah A Boswell
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kathleen Lindahl Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics and the Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Francescato R, Moretti M, Bersini S. Endothelial-mesenchymal transition in skeletal muscle: Opportunities and challenges from 3D microphysiological systems. Bioeng Transl Med 2024; 9:e10644. [PMID: 39553431 PMCID: PMC11561840 DOI: 10.1002/btm2.10644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 11/19/2024] Open
Abstract
Fibrosis is a pathological condition that in the muscular context is linked to primary diseases such as dystrophies, laminopathies, neuromuscular disorders, and volumetric muscle loss following traumas, accidents, and surgeries. Although some basic mechanisms regarding the role of myofibroblasts in the progression of muscle fibrosis have been discovered, our knowledge of the complex cell-cell, and cell-matrix interactions occurring in the fibrotic microenvironment is still rudimentary. Recently, vascular dysfunction has been emerging as a key hallmark of fibrosis through a process called endothelial-mesenchymal transition (EndoMT). Nevertheless, no effective therapeutic options are currently available for the treatment of muscle fibrosis. This lack is partially due to the absence of advanced in vitro models that can recapitulate the 3D architecture and functionality of a vascularized muscle microenvironment in a human context. These models could be employed for the identification of novel targets and for the screening of potential drugs blocking the progression of the disease. In this review, we explore the potential of 3D human muscle models in studying the role of endothelial cells and EndoMT in muscle fibrotic tissues and identify limitations and opportunities for optimizing the next generation of these microphysiological systems. Starting from the biology of muscle fibrosis and EndoMT, we highlight the synergistic links between different cell populations of the fibrotic microenvironment and how to recapitulate them through microphysiological systems.
Collapse
Affiliation(s)
- Riccardo Francescato
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT)Ente Ospedaliero Cantonale (EOC)BellinzonaSwitzerland
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Department of ElectronicsInformation and Bioengineering, Politecnico di MilanoMilanoItaly
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT)Ente Ospedaliero Cantonale (EOC)BellinzonaSwitzerland
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Cell and Tissue Engineering LaboratoryIRCCS Ospedale Galeazzi ‐ Sant'AmbrogioMilanoItaly
- Euler Institute, Faculty of Biomedical SciencesUniversità della Svizzera italiana (USI)LuganoSwitzerland
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT)Ente Ospedaliero Cantonale (EOC)BellinzonaSwitzerland
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Euler Institute, Faculty of Biomedical SciencesUniversità della Svizzera italiana (USI)LuganoSwitzerland
| |
Collapse
|
6
|
Gulati N, Davoudi S, Xu B, Rjaibi ST, Jacques E, Pham J, Fard A, McGuigan AP, Gilbert PM. Mini-MEndR: a miniaturized 96-well predictive assay to evaluate muscle stem cell-mediated repair. BMC METHODS 2024; 1:5. [PMID: 38872952 PMCID: PMC11173370 DOI: 10.1186/s44330-024-00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Background Functional evaluation of molecules that are predicted to promote stem cell mediated endogenous repair often requires in vivo transplant studies that are low throughput and hinder the rate of discovery. To offer greater throughput for functional validation studies, we miniaturized, simplified and expanded the functionality of a previously developed muscle endogenous repair (MEndR) in vitro assay that was shown to capture significant events of in vivo muscle endogenous repair. Methods The mini-MEndR assay consists of miniaturized cellulose scaffolds designed to fit in 96-well plates, the pores of which are infiltrated with human myoblasts encapsulated in a fibrin-based hydrogel to form engineered skeletal muscle tissues. Pre-adsorbing thrombin to the cellulose scaffolds facilitates in situ tissue polymerization, a critical modification that enables new users to rapidly acquire assay expertise. Following the generation of the 3D myotube template, muscle stem cells (MuSCs), enriched from digested mouse skeletal muscle tissue using an improved magnetic-activated cell sorting protocol, are engrafted within the engineered template. Murine MuSCs are fluorescently labeled, enabling co-evaluation of human and mouse Pax7+ cell responses to drug treatments. A regenerative milieu is introduced by injuring the muscle tissue with a myotoxin to initiate endogenous repair "in a dish". Phenotypic data is collected at endpoints with a high-content imaging system and is analyzed using ImageJ-based image analysis pipelines. Results The miniaturized format and modified manufacturing protocol cuts reagent costs in half and hands-on seeding time ~ threefold, while the image analysis pipelines save 40 h of labour. By evaluating multiple commercially available human primary myoblast lines in 2D and 3D culture, we establish quality assurance metrics for cell line selection that standardizes myotube template quality. In vivo outcomes (enhanced muscle production and Pax7+ cell expansion) to a known modulator of MuSC mediated repair (p38/β MAPK inhibition) are recapitulated in the miniaturized culture assay, but only in the presence of stem cells and the regenerative milieu. Discussion The miniaturized predictive assay offers a simple, scaled platform to co-investigate human and mouse skeletal muscle endogenous repair molecular modulators, and thus is a promising strategy to accelerate the muscle endogenous repair discovery pipeline. Supplementary Information The online version contains supplementary material available at 10.1186/s44330-024-00005-4.
Collapse
Affiliation(s)
- Nitya Gulati
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
| | - Sadegh Davoudi
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Bin Xu
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Saifedine T. Rjaibi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Erik Jacques
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Justin Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
| | - Amir Fard
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Penney M. Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5 Canada
| |
Collapse
|
7
|
Bersini S, Arrigoni C, Talò G, Candrian C, Moretti M. Complex or not too complex? One size does not fit all in next generation microphysiological systems. iScience 2024; 27:109199. [PMID: 38433912 PMCID: PMC10904982 DOI: 10.1016/j.isci.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
In the attempt to overcome the increasingly recognized shortcomings of existing in vitro and in vivo models, researchers have started to implement alternative models, including microphysiological systems. First examples were represented by 2.5D systems, such as microfluidic channels covered by cell monolayers as blood vessel replicates. In recent years, increasingly complex microphysiological systems have been developed, up to multi-organ on chip systems, connecting different 3D tissues in the same device. However, such an increase in model complexity raises several questions about their exploitation and implementation into industrial and clinical applications, ranging from how to improve their reproducibility, robustness, and reliability to how to meaningfully and efficiently analyze the huge amount of heterogeneous datasets emerging from these devices. Considering the multitude of envisaged applications for microphysiological systems, it appears now necessary to tailor their complexity on the intended purpose, being academic or industrial, and possibly combine results deriving from differently complex stages to increase their predictive power.
Collapse
Affiliation(s)
- Simone Bersini
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Ospedale Galeazzi – Sant’Ambrogio, via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Christian Candrian
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Matteo Moretti
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
- Cell and Tissue Engineering Laboratory, IRCCS Ospedale Galeazzi – Sant’Ambrogio, via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
8
|
Lee JH, Kim TK, Kang MC, Park M, Choi YS. Methods to Isolate Muscle Stem Cells for Cell-Based Cultured Meat Production: A Review. Animals (Basel) 2024; 14:819. [PMID: 38473203 DOI: 10.3390/ani14050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Cultured meat production relies on various cell types, including muscle stem cells (MuSCs), embryonic stem cell lines, induced pluripotent cell lines, and naturally immortalized cell lines. MuSCs possess superior muscle differentiation capabilities compared to the other three cell lines, making them key for cultured meat development. Therefore, to produce cultured meat using MuSCs, they must first be effectively separated from muscles. At present, the methods used to isolate MuSCs from muscles include (1) the pre-plating method, using the ability of cells to adhere differently, which is a biological characteristic of MuSCs; (2) the density gradient centrifugation method, using the intrinsic density difference of cells, which is a physical characteristic of MuSCs; and (3) fluorescence- and magnetic-activated cell sorting methods, using the surface marker protein on the cell surface of MuSCs, which is a molecular characteristic of MuSCs. Further efficient and valuable methods for separating MuSCs are expected to be required as the cell-based cultured meat industry develops. Thus, we take a closer look at the four methods currently in use and discuss future development directions in this review.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minkyung Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
9
|
Lim S, Lee DE, Morena da Silva F, Koopmans PJ, Vechetti IJ, von Walden F, Greene NP, Murach KA. MicroRNA control of the myogenic cell transcriptome and proteome: the role of miR-16. Am J Physiol Cell Physiol 2023; 324:C1101-C1109. [PMID: 36971422 PMCID: PMC10191132 DOI: 10.1152/ajpcell.00071.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
MicroRNAs (miRs) control stem cell biology and fate. Ubiquitously expressed and conserved miR-16 was the first miR implicated in tumorigenesis. miR-16 is low in muscle during developmental hypertrophy and regeneration. It is enriched in proliferating myogenic progenitor cells but is repressed during differentiation. The induction of miR-16 blocks myoblast differentiation and myotube formation, whereas knockdown enhances these processes. Despite a central role for miR-16 in myogenic cell biology, how it mediates its potent effects is incompletely defined. In this investigation, global transcriptomic and proteomic analyses after miR-16 knockdown in proliferating C2C12 myoblasts revealed how miR-16 influences myogenic cell fate. Eighteen hours after miR-16 inhibition, ribosomal protein gene expression levels were higher relative to control myoblasts and p53 pathway-related gene abundance was lower. At the protein level at this same time point, miR-16 knockdown globally upregulated tricarboxylic acid (TCA) cycle proteins while downregulating RNA metabolism-related proteins. miR-16 inhibition induced specific proteins associated with myogenic differentiation such as ACTA2, EEF1A2, and OPA1. We extend prior work in hypertrophic muscle tissue and show that miR-16 is lower in mechanically overloaded muscle in vivo. Our data collectively point to how miR-16 is implicated in aspects of myogenic cell differentiation. A deeper understanding of the role of miR-16 in myogenic cells has consequences for muscle developmental growth, exercise-induced hypertrophy, and regenerative repair after injury, all of which involve myogenic progenitors.
Collapse
Affiliation(s)
- Seongkyun Lim
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - David E Lee
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Pieter J Koopmans
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Ferdinand von Walden
- Neuropediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Greene
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
10
|
Jacques E, Kuang Y, Kann AP, Le Grand F, Krauss RS, Gilbert PM. The mini-IDLE 3D biomimetic culture assay enables interrogation of mechanisms governing muscle stem cell quiescence and niche repopulation. eLife 2022; 11:81738. [PMID: 36537758 PMCID: PMC9904761 DOI: 10.7554/elife.81738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Adult skeletal muscle harbours a population of muscle stem cells (MuSCs) that are required for repair after tissue injury. In youth, MuSCs return to a reversible state of cell-cycle arrest termed 'quiescence' after injury resolution. Conversely, some MuSCs in aged muscle remain semi-activated, causing a premature response to injuries that results in incomplete repair and eventual stem cell depletion. Regulating this balance between MuSC quiescence and activation may hold the key to restoring tissue homeostasis with age, but is incompletely understood. To fill this gap, we developed a simple and tractable in vitro method, to rapidly inactivate MuSCs freshly isolated from young murine skeletal muscle, and return them to a quiescent-like state for at least 1-week, which we name mini-IDLE (Inactivation and Dormancy LEveraged in vitro). This was achieved by introducing MuSCs into a 3D bioartificial niche comprised of a thin sheet of mouse myotubes, which we demonstrate provides the minimal cues necessary to induce quiescence. With different starting numbers of MuSCs, the assay revealed cellular heterogeneity and population-level adaptations that converged on a common niche repopulation density; behaviours previously observed only in vivo. Quiescence-associated hallmarks included a Pax7+CalcR+DDX6+MyoD-c-FOS- signature, quiescent-like morphologies, and polarized niche markers. Leveraging high-content bioimaging pipelines, we demonstrate a relationship between morphology and cell fate signatures for possible real-time morphology-based screening. When using MuSCs from aged muscle, they displayed aberrant proliferative activities and delayed inactivation kinetics, among other quiescence-associated defects that we show are partially rescued by wortmannin treatment. Thus, the assay offers an unprecedented opportunity to systematically investigate long-standing queries in areas such as regulation of pool size and functional heterogeneity within the MuSC population, and to uncover quiescence regulators in youth and age.
Collapse
Affiliation(s)
- Erik Jacques
- Institute of Biomedical Engineering, University of TorontoTorontoCanada,Donnelly Centre, University of TorontoTorontoCanada
| | - Yinni Kuang
- Donnelly Centre, University of TorontoTorontoCanada,Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States,Black Family Stem Cell Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Fabien Le Grand
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and MuscleLyonFrance
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States,Black Family Stem Cell Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of TorontoTorontoCanada,Donnelly Centre, University of TorontoTorontoCanada,Department of Cell and Systems Biology, University of TorontoTorontoCanada
| |
Collapse
|