1
|
Zhu H, Zhang M, Wang C, Yu J, Copeland L, Wang S. A Novel, Multifunctional Resistant Starch-Phenol Complex with Potential for Better Glycemic Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40263306 DOI: 10.1021/acs.jafc.5c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Resistant starch (RS) with added functional properties, for example, starch-phenol complex, has considerable promise for reducing the risks of diet-related diseases such as type 2 diabetes (T2D). In this study, a novel starch-phenol complex was prepared with amylose (AM) and 10-gingerol (10G) to study the potential beneficial effects on blood glucose control. The AM and 10G self-assembled into an AM-10G complex with V6- and V7-type crystallites. The rate of amylolysis of the AM-10G complex was much slower than that of the AM-lauric acid (LA) complex. During enzymic digestion of the AM-10G complex, the α-amylase activity was inhibited greatly and approached zero at 45 min. In separate experiments, 10G suppressed glucose transport rate by 60% across a Caco-2 cell monolayer and also downregulated the expression of mRNA for the two glucose transporter genes, GLUT2 and SGLT1. In vitro fecal fermentation analyses showed that AM-10G complex promoted the proliferation of Lachnospiraceae_NK4A136_group and Lachnospiraceae_UCG_004 associated with improved postprandial glycemia. The present study demonstrates that AM-10G complex has potential for glycemic control due to the inhibitory effects on the amylolytic process and glucose transporters involved in uptake of glucose into the bloodstream, as well as the modulation of gut microbiota associated with glycemic control.
Collapse
Affiliation(s)
- Huilan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mingyan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Cuiping Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Dong Y, Lan T, Liu Z, Xu Z, Jiang L, Zhang Y, Sui X. Shear, extensional rheology, and tribology of polysaccharide-thickened soy protein-based liquid systems for dysphagia management. Food Chem 2025; 463:141145. [PMID: 39260176 DOI: 10.1016/j.foodchem.2024.141145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Modifying food texture is a valuable approach to enhancing the quality of life for patients with dysphagia. Incorporating thickened soy protein-based liquid systems (SPLS) into their diet not only improves protein intake but also promotes safer swallowing. However, the properties of thickened SPLS are crucial for safe swallowing, may vary depending on the conformation of the thickened polysaccharides used. In this study, SPLS with different levels of thickening were prepared using xanthan gum, pectin and guar gum. The influence of polysaccharide conformation on the rheological (shear and extensional) and tribological properties of thickened SPLS was investigated. The results revealed that xanthan gum-thickened SPLS exhibiting the highest shear viscosity (110.073 Pa.s) and extensional viscosity (7.405 Pa.s), which increased with polysaccharide concentration. Meanwhile, xanthan gum possessed the strongest lubricating properties. These results shed light on the development of plant protein-based solutions for dysphagia management.
Collapse
Affiliation(s)
- Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Wang Q, An J, Xia Q, Pan D, Du L, He J, Sun Y, Wang Y, Cao J, Zhou C. Insights into the fabrication and antibacterial effect of fibrinogen hydrolysate-carrageenan loading apigenin and quercetin composite hydrogels. Int J Biol Macromol 2024; 279:135517. [PMID: 39260642 DOI: 10.1016/j.ijbiomac.2024.135517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Escherichia coli and Staphylococcus aureus are the most prevalent pathogenic bacteria, often resulting in the foodborne disease outbreaks through food spoilage and foodborne infections. To prevent and control food spoilage and foodborne infections induced by Escherichia coli and Staphylococcus aureus, the antibacterial hydrogels were fabricated using fibrinogen hydrolysate-carrageenan (AHs-C) and flavonoids (apigenin and quercetin), and the antibacterial effect of the composite hydrogels against Escherichia coli and Staphylococcus aureus was further investigated. The results of mechanical property exhibited that the composite hydrogels with 0.2 % of apigenin and quercetin (AHs-C-Ap/Que) showed the highest hardness and swelling property compared with the separate addition of apigenin or quercetin. Scanning electron microscopy and atomic force microscopy showed that the dense networks were formed in the hydrogels of AHs-C-Ap/Que., and the average roughness of AHs-C-Ap/Que. significantly increased to 30.70 nm compared with AHs-C. 1H NMR and FTIR spectra demonstrated that apigenin and quercetin were bound to AHs-C by hydrogen bond, hydrophobic interaction and Schiff base, where the interactions between Ap/Que. and AHs-C was stronger compared with the separate addition of apigenin or quercetin. The hydrogels of AHs-C-Ap/Que. showed the highest antibacterial capacity and antibacterial adhesion against Escherichia coli and Staphylococcus aureus. The antibacterial adhesion assay showed that 99 % removal ratios for E. coli and S. aureus were observed in AHs-C-Ap/Que. hydrogels, which showed a great potential to prevent food spoilage and foodborne infections.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jie An
- Faculty of Engineering, The University of Hong Kong (HKU), Hong Kong 999077, China
| | - Qiang Xia
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lihui Du
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jun He
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, Beijing 100048, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, Beijing 100048, China
| | - Changyu Zhou
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Zhou R, Wang S, Li J, Yang M, Liu C, Qi Z, Xu C, Wu X, Chen Q, Zhao Y. Transcriptional and Metabolomic Analyses Reveal That GmESR1 Increases Soybean Seed Protein Content Through the Phenylpropanoid Biosynthesis Pathway. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39483062 DOI: 10.1111/pce.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Soybeans are an economically vital food crop, which is employed as a key source of oil and plant protein globally. This study identified an EREBP-type transcription factor, GmESR1 (Enhance of Shot Regeneration). GmESR1 overexpression has been observed to significantly increase seed protein content. Furthermore, the molecular mechanism by which GmESR1 affects protein accumulation through transcriptome and metabolomics was also identified. The transcriptomic and metabolomic analyses identified 95 differentially expressed genes and 83 differentially abundant metabolites during the seed mid-maturity stage. Co-analysis strategies revealed that GmESR1 overexpression inhibited the biosynthesis of lignin, cellulose, hemicellulose, and pectin via the phenylpropane biosynthetic pathway, thereby redistributing biomass within cells. The key genes and metabolites impacted by this biochemical process included Gm4CL-like, GmCCR, Syringin, and Coniferin. Moreover, it was also found that GmESR1 binds to (AATATTATCATTAAGTACGGAC) during seed development and inhibits the transcription of GmCCR. GmESR1 overexpression also enhanced sucrose transporter gene expression during seed development and increased the sucrose transport rate. These results offer new insight into the molecular mechanisms whereby GmESR1 increases protein levels within soybean seeds, guiding future molecular-assisted breeding efforts aimed at establishing high-protein soybean varieties.
Collapse
Affiliation(s)
- Runnan Zhou
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Sihui Wang
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jianwei Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Chang Xu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xiaoxia Wu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Ying Zhao
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
5
|
Xu Y, Zhang Y, Tian H, Zhong Q, Yi K, Li F, Xue T, Wang H, Lao Y, Xu Y, Li Y, Long L, Li K, Tao Y, Li M. Smart Microneedle Arrays Integrating Cell-Free Therapy and Nanocatalysis to Treat Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309940. [PMID: 38874114 PMCID: PMC11336984 DOI: 10.1002/advs.202309940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Liver fibrosis is a chronic pathological condition lacking specific clinical treatments. Stem cells, with notable potential in regenerative medicine, offer promise in treating liver fibrosis. However, stem cell therapy is hindered by potential immunological rejection, carcinogenesis risk, efficacy variation, and high cost. Stem cell secretome-based cell-free therapy offers potential solutions to address these challenges, but it is limited by low delivery efficiency and rapid clearance. Herein, an innovative approach for in situ implantation of smart microneedle (MN) arrays enabling precisely controlled delivery of multiple therapeutic agents directly into fibrotic liver tissues is developed. By integrating cell-free and platinum-based nanocatalytic combination therapy, the MN arrays can deactivate hepatic stellate cells. Moreover, they promote excessive extracellular matrix degradation by more than 75%, approaching normal levels. Additionally, the smart MN arrays can provide hepatocyte protection while reducing inflammation levels by ≈70-90%. They can also exhibit remarkable capability in scavenging almost 100% of reactive oxygen species and alleviating hypoxia. Ultimately, this treatment strategy can effectively restrain fibrosis progression. The comprehensive in vitro and in vivo experiments, supplemented by proteome and transcriptome analyses, substantiate the effectiveness of the approach in treating liver fibrosis, holding immense promise for clinical applications.
Collapse
Affiliation(s)
- Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Yixin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Hao Tian
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Department of NeurologyThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Yeh‐Hsing Lao
- Department of Pharmaceutical SciencesUniversity at BuffaloThe State University of New YorkBuffaloNY14214USA
| | - Yingying Xu
- Center for Health ResearchGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of China Academy of SciencesBeijing100049China
| | - Yinxiong Li
- Center for Health ResearchGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of China Academy of SciencesBeijing100049China
| | - Ling Long
- Department of NeurologyThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Kai Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Department of UltrasoundThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| |
Collapse
|
6
|
Shan G, Cui M, Wang X, Liang X, Xu Z, Zhang Y, Sui X. Fabrication of enhanced aerogel template oleogels with enzyme-hydrolyzed soy protein isolate and covalent cross-linking. Int J Biol Macromol 2024; 275:133674. [PMID: 38971290 DOI: 10.1016/j.ijbiomac.2024.133674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In recent years, the utilization of aerogel templates in oleogels to replace animal fats has garnered considerable attention due to health concerns. This study employed a "fiber-particle core-shell nanostructure model" to combine sodium carboxymethylcellulose (CMCNa) and soy protein isolate (SPI) or SPI hydrolysate (SPIH), and freeze-dried to form aerogel template, which was then dipped into oil to induce oleogels. The results showed that adding SPIH significantly improved the physicochemical properties of oleogels. The results of ζ-potential, FTIR, and rheology demonstrated a stronger binding of SPIH to CMC-Na compared to SPI. The CMC-Na-SPIH aerogels exhibited a coarser surface and denser network structure in contrast to CMC-Na-SPI aerogels, with an oil holding capacity (OHC) of up to 84.6 % and oil absorption capacity (OAC) of 47.4 g/g. The mechanical strength of oleogels was further enhanced through chemical crosslinking. Both CMC-Na-SPI and CMC-Na-SPIH oleogels displayed excellent elasticity and reversible compressibility, with CMC-Na-SPIH oleogels demonstrating superior mechanical strength. Additionally, CMC-Na-SPIH oleogels exhibited enhanced slow release of antimicrobial substances and antioxidant properties. Increasing the content of SPI/SPIH significantly improved the mechanical strength, antioxidant capacity, and OHC of the oleogels. This research presents a straightforward and promising approach to enhance the performance of aerogel template oleogels.
Collapse
Affiliation(s)
- Guancheng Shan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Cui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoshuai Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Zeng G, Wang Z, Tian G, Xia L, Zhang Y. Multilevel Micronanoscale Texture Effects on Fly Wing Membrane-Water Droplet Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17007-17015. [PMID: 38528767 DOI: 10.1021/acsami.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The wettable surface or nonwettable surface that is derived from a multilevel micronanoscale structure is abundant in nature and biomimetic commodities. Those hoverflies with the seta-coated wing membrane detached from impacting free-falling raindrops were observed in static states. A hoverfly wing membrane with well-ordered setae was identified as a robust nonwettable surface, and the static water contact angle θ on the wing membrane at the microscopic scale is 136.84 ± 0.98°. Hoverfly wing membrane-water droplet interaction with the actual truth and the theoretical models was discussed and indicated that the theoretical calculation might not state the actual situation, arising from the membrane or seta-drop-bubble interaction and those multilevel micronanoscale structure characteristics on the wing membrane. Detailed investigation on nonwettable surface-wettable surface transformation with surface CaCO3 accumulation in a carbonization reaction and the characteristic transformation toward the hoverfly wing membrane with the multilevel micronanoscale structure was carried out. Then, the CaCO3 accumulation on PDMS texture films was carried out and the static water contact angle θ was tested. Those observations offer ideas to fabricate artificial films with a multilevel micronanoscale structure that could obtain some characteristics, i.e., nonwettable surface-wettable surface transformation.
Collapse
Affiliation(s)
- Gaofei Zeng
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhou Wang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Guangjian Tian
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Dai C, Sharma G, Liu G, Shen J, Shao B, Hao Z. Therapeutic detoxification of quercetin for aflatoxin B1-related toxicity: Roles of oxidative stress, inflammation, and metabolic enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123474. [PMID: 38309422 DOI: 10.1016/j.envpol.2024.123474] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gaoyi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|