2
|
Wang G, Jiang N, Ma Y, Chen D, Wu J, Li G, Liang D, Yan T. Connectional-style-guided contextual representation learning for brain disease diagnosis. Neural Netw 2024; 175:106296. [PMID: 38653077 DOI: 10.1016/j.neunet.2024.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Structural magnetic resonance imaging (sMRI) has shown great clinical value and has been widely used in deep learning (DL) based computer-aided brain disease diagnosis. Previous DL-based approaches focused on local shapes and textures in brain sMRI that may be significant only within a particular domain. The learned representations are likely to contain spurious information and have poor generalization ability in other diseases and datasets. To facilitate capturing meaningful and robust features, it is necessary to first comprehensively understand the intrinsic pattern of the brain that is not restricted within a single data/task domain. Considering that the brain is a complex connectome of interlinked neurons, the connectional properties in the brain have strong biological significance, which is shared across multiple domains and covers most pathological information. In this work, we propose a connectional style contextual representation learning model (CS-CRL) to capture the intrinsic pattern of the brain, used for multiple brain disease diagnosis. Specifically, it has a vision transformer (ViT) encoder and leverages mask reconstruction as the proxy task and Gram matrices to guide the representation of connectional information. It facilitates the capture of global context and the aggregation of features with biological plausibility. The results indicate that CS-CRL achieves superior accuracy in multiple brain disease diagnosis tasks across six datasets and three diseases and outperforms state-of-the-art models. Furthermore, we demonstrate that CS-CRL captures more brain-network-like properties, and better aggregates features, is easier to optimize, and is more robust to noise, which explains its superiority in theory.
Collapse
Affiliation(s)
- Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Ning Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Yunxiao Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Duanduan Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Guoqi Li
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Dong Liang
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
4
|
Di Biase MA, Geaghan MP, Reay WR, Seidlitz J, Weickert CS, Pébay A, Green MJ, Quidé Y, Atkins JR, Coleman MJ, Bouix S, Knyazhanskaya EE, Lyall AE, Pasternak O, Kubicki M, Rathi Y, Visco A, Gaunnac M, Lv J, Mesholam-Gately RI, Lewandowski KE, Holt DJ, Keshavan MS, Pantelis C, Öngür D, Breier A, Cairns MJ, Shenton ME, Zalesky A. Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia. Mol Psychiatry 2022; 27:2052-2060. [PMID: 35145230 PMCID: PMC9126812 DOI: 10.1038/s41380-022-01460-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Brain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = -0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = -0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts.
Collapse
Affiliation(s)
- Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael P Geaghan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Alice Pébay
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa J Green
- Neuroscience Research Australia, Randwick, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Yann Quidé
- Neuroscience Research Australia, Randwick, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Michael J Coleman
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Amanda E Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Visco
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Megan Gaunnac
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jinglei Lv
- School of Biomedical Engineering & Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | - Kathryn E Lewandowski
- Division of Psychotic Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Daphne J Holt
- Massachusetts General Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Matcheri S Keshavan
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Dost Öngür
- Division of Psychotic Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Cui LB, Zhang YJ, Lu HL, Liu L, Zhang HJ, Fu YF, Wu XS, Xu YQ, Li XS, Qiao YT, Qin W, Yin H, Cao F. Thalamus Radiomics-Based Disease Identification and Prediction of Early Treatment Response for Schizophrenia. Front Neurosci 2021; 15:682777. [PMID: 34290581 PMCID: PMC8289251 DOI: 10.3389/fnins.2021.682777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Emerging evidence suggests structural and functional disruptions of the thalamus in schizophrenia, but whether thalamus abnormalities are able to be used for disease identification and prediction of early treatment response in schizophrenia remains to be determined. This study aims at developing and validating a method of disease identification and prediction of treatment response by multi-dimensional thalamic features derived from magnetic resonance imaging in schizophrenia patients using radiomics approaches. Methods A total of 390 subjects, including patients with schizophrenia and healthy controls, participated in this study, among which 109 out of 191 patients had clinical characteristics of early outcome (61 responders and 48 non-responders). Thalamus-based radiomics features were extracted and selected. The diagnostic and predictive capacity of multi-dimensional thalamic features was evaluated using radiomics approach. Results Using radiomics features, the classifier accurately discriminated patients from healthy controls, with an accuracy of 68%. The features were further confirmed in prediction and random forest of treatment response, with an accuracy of 75%. Conclusion Our study demonstrates a radiomics approach by multiple thalamic features to identify schizophrenia and predict early treatment response. Thalamus-based classification could be promising to apply in schizophrenia definition and treatment selection.
Collapse
Affiliation(s)
- Long-Biao Cui
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ya-Juan Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Hong-Liang Lu
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Hai-Jun Zhang
- Department of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Qiang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Sa Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Cui LB, Fu YF, Liu L, Wu XS, Xi YB, Wang HN, Qin W, Yin H. Baseline structural and functional magnetic resonance imaging predicts early treatment response in schizophrenia with radiomics strategy. Eur J Neurosci 2020; 53:1961-1975. [PMID: 33206423 DOI: 10.1111/ejn.15046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Multimodal neuroimaging features provide opportunities for accurate classification and personalized treatment options in the psychiatric domain. This study aimed to investigate whether brain features predict responses to the overall treatment of schizophrenia at the end of the first or a single hospitalization. Structural and functional magnetic resonance imaging (MRI) data from two independent samples (N = 85 and 63, separately) of schizophrenia patients at baseline were included. After treatment, patients were classified as responders and non-responders. Radiomics features of gray matter morphology and functional connectivity were extracted using Least Absolute Shrinkage and Selection Operator. Support vector machine was used to explore the predictive performance. Prediction models were based on structural features (cortical thickness, surface area, gray matter regional volume, mean curvature, metric distortion, and sulcal depth), functional features (functional connectivity), and combined features. There were 12 features after dimensionality reduction. The structural features involved the right precuneus, cuneus, and inferior parietal lobule. The functional features predominately included inter-hemispheric connectivity. We observed a prediction accuracy of 80.38% (sensitivity: 87.28%; specificity 82.47%) for the model using functional features, and 69.68% (sensitivity: 83.96%; specificity: 72.41%) for the one using structural features. Our model combining both structural and functional features achieved a higher accuracy of 85.03%, with 92.04% responder and 80.23% non-responders to the overall treatment to be correctly predicted. These results highlight the power of structural and functional MRI-derived radiomics features to predict early response to treatment in schizophrenia. Prediction models of the very early treatment response in schizophrenia could augment effective therapeutic strategies.
Collapse
Affiliation(s)
- Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|