1
|
Costa LEC, Brito TV, Damasceno ROS, Sousa WM, Barros FCN, Sombra VG, Júnior JSC, Magalhães DA, Souza MHLP, Medeiros JVR, de Paula RCM, Barbosa ALR, Freitas ALP. Chemical structure, anti-inflammatory and antinociceptive activities of a sulfated polysaccharide from Gracilaria intermedia algae. Int J Biol Macromol 2020; 159:966-975. [PMID: 32450322 DOI: 10.1016/j.ijbiomac.2020.05.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The present work aimed at carrying out the isolation and biochemical characterization of a sulfated polysaccharide fraction (PLS) from the marine algae Gracilaria intermedia and investigating its anti-inflammatory and antinociceptive potential. PLS was obtained through enzymatic digestion with papain and analyzed by means of gel permeation chromatography and Nuclear Magnetic Resonance to 1H and 13C. In order to evaluate the potential of anti-inflammatory action of PLS, we performed paw edema induced by carrageenan, dextran, compound 48/80, histamine and serotonin. In addition, we also measured the concentration of myeloperoxidase, cytokines, the count of inflammatory cells and performed tests of the nociception. The PLS isolated was of high purity and free of contaminants such as proteins, and had molecular weight of 410 kDa. The same macromolecule was able to decrease the paw edema induced by all inflammatory agents (P < 0.05), myeloperoxidase (MPO) activity, neutrophil migration and IL-1β levels. It also decreased acetic acid-induced writhing (P < 0.05) and formalin-induced paw licking time (P < 0.05), but no in hot plate test. In summary, the PLS decreased the inflammatory response by reducing neutrophil migration and modulating IL-1β production and antinociceptive effects by a peripheral mechanism dependent on the down-modulation of the inflammatory mediators.
Collapse
Affiliation(s)
- Luís Eduardo C Costa
- Laboratory of Proteins and Carbohydrates of Marine Algae, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tarcisio Vieira Brito
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Renan O Silva Damasceno
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Willer M Sousa
- Laboratory of Proteins and Carbohydrates of Marine Algae, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisco Clark N Barros
- Federal Institute of Education, Science and Technology of Ceará, Juazeiro do Norte, Ceará 63.040-540, Brazil
| | - Venicios G Sombra
- Laboratory of Polymer, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - José Simião C Júnior
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Diva A Magalhães
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Marcellus H L P Souza
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jand-Venes R Medeiros
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Regina Célia M de Paula
- Laboratory of Polymer, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Luiz Reis Barbosa
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Ana Lúcia P Freitas
- Laboratory of Proteins and Carbohydrates of Marine Algae, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
2
|
Torres P, Santos JP, Chow F, dos Santos DY. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Mechanisms involved in antinociception induced by a polysulfated fraction from seaweed Gracilaria cornea in the temporomandibular joint of rats. Int J Biol Macromol 2017; 97:76-84. [PMID: 28065754 DOI: 10.1016/j.ijbiomac.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/17/2016] [Accepted: 01/04/2017] [Indexed: 01/28/2023]
Abstract
Temporomandibular disorder is a common clinical condition involving pain in the temporomandibular joint (TMJ) region. This study assessed the antinociceptive effects of a polysulfated fraction from the red seaweed Gracilaria cornea (Gc-FI) on the formalin-induced TMJ hypernociception in rats and investigated the involvement of different mechanisms. Male Wistar rats were pretreated with injection (sc) of saline or Gc-FI 1h before intra- TMJ injection of formalin to evaluate the nociception. The results showed that pretreatment with Gc-FI significantly reduced formalin-induced nociceptive behavior. Moreover, the antinociceptive effect of the Gc-FI was blocked by naloxone (a non-selective opioid antagonist), suggesting the involvement of opioids selective receptors. Thus, the pretreatment with selective opioids receptors antagonists, reversed the antinociceptive effect of the Gc-FI in the TMJ. The Gc-FI antinociceptive effect depends on the nitric oxide/cyclic GMP/protein kinase G/ATP-sensitive potassium channel (NO/cGMP/PKG/K+ATP) pathway because it was prevented by pretreatment with inhibitors of nitric oxide synthase, guanylate cyclase enzyme, PKG and a K+ATP blocker. In addition, after inhibition with a specific heme oxygenase-1 (HO-1) inhibitor, the antinociceptive effect of the Gc-FI was not observed. Collectively, these data suggest that the antinociceptive effect induced by Gc-FI is mediated by μ/δ/κ-opioid receptors and by activation NO/cGMP/PKG/K+ATP channel pathway, besides of HO-1.
Collapse
|