1
|
Zhang W, Turney T, Surjancev I, Serianni AS. Enzymatic synthesis of ribo- and 2'-deoxyribonucleosides from glycofuranosyl phosphates: An approach to facilitate isotopic labeling. Carbohydr Res 2017; 449:125-133. [PMID: 28780317 DOI: 10.1016/j.carres.2017.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/25/2023]
Abstract
Milligram quantities of α-D-ribofuranosyl 1-phosphate (sodium salt) (αR1P) were prepared by the phosphorolysis of inosine, catalyzed by purine nucleoside phosphorylase (PNPase). The αR1P was isolated by chromatography in >95% purity and characterized by 1H and 13C NMR spectroscopy. Aqueous solutions of αR1P were stable at pH 6.4 and 4 °C for several months. The isolated αR1P was N-glycosylated with different nitrogen bases (adenine, guanine and uracil) using PNPase or uridine phosphorylase (UPase) to give the corresponding ribonucleosides in high yield based on the glycosyl phosphate. This methodology is attractive for the preparation of stable isotopically labeled ribo- and 2'-deoxyribonucleosides because of the ease of product purification and convenient use and recycling of nitrogen bases. The approach eliminates the need for separate reactions to prepare individual furanose-labeled ribonucleosides, since only one ribonucleoside (inosine) needs to be labeled, if desired, in the furanose ring, the latter achieved by a high-yield chemical N-glycosylation. 2'-Deoxyribonucleosides were prepared from 2'-deoxyinosine using the same methodology with minor modifications.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA.
| | - Toby Turney
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA
| | - Ivana Surjancev
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA.
| |
Collapse
|
2
|
Lopez-Zavala AA, Sotelo-Mundo RR, Hernandez-Flores JM, Lugo-Sanchez ME, Sugich-Miranda R, Garcia-Orozco KD. Arginine kinase shows nucleoside diphosphate kinase-like activity toward deoxythymidine diphosphate. J Bioenerg Biomembr 2016; 48:301-8. [PMID: 27072556 DOI: 10.1007/s10863-016-9660-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme.
Collapse
Affiliation(s)
- Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Rogerio R Sotelo-Mundo
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Jose M Hernandez-Flores
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Maria E Lugo-Sanchez
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Rocio Sugich-Miranda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Karina D Garcia-Orozco
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
3
|
Longhini AP, LeBlanc RM, Becette O, Salguero C, Wunderlich CH, Johnson BA, D'Souza VM, Kreutz C, Dayie TK. Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations. Nucleic Acids Res 2015; 44:e52. [PMID: 26657632 PMCID: PMC4824079 DOI: 10.1093/nar/gkv1333] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/16/2015] [Indexed: 11/12/2022] Open
Abstract
Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis (48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure μs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.
Collapse
Affiliation(s)
- Andrew P Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Regan M LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Owen Becette
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Carolina Salguero
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christoph H Wunderlich
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031, USA One Moon Scientific, Inc., 839 Grant Avenue, Westfield, NJ 07090-2322, USA
| | - Victoria M D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - T Kwaku Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| |
Collapse
|
4
|
Varga A, Gráczer E, Chaloin L, Liliom K, Závodszky P, Lionne C, Vas M. Selectivity of kinases on the activation of tenofovir, an anti-HIV agent. Eur J Pharm Sci 2012. [PMID: 23201309 DOI: 10.1016/j.ejps.2012.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleoside analogues, used in HIV-therapy, need to be phosphorylated by cellular enzymes in order to become potential substrates for HIV reverse transcriptase. After incorporation into the viral DNA chain, because of lacking of their 3'-hydroxyl groups, they stop the elongation process and lead to the death of the virus. Phosphorylation of the HIV-drug derivative, tenofovir monophosphate was tested with the recombinant mammalian nucleoside diphosphate kinase (NDPK), 3-phosphoglycerate kinase (PGK), creatine kinase (CK) and pyruvate kinase (PK). Among them, only CK was found to phosphorylate tenofovir monophosphate with a reasonable rate (about 45-fold lower than with its natural substrate, ADP), while PK exhibits even lower, but still detectable activity (about 1000-fold lower compared to the value with ADP). On the other hand, neither NDPK nor PGK has any detectable activity on tenofovir monophosphate. The absence of activity with PGK is surprising, since the drug tenofovir competitively inhibits both CK and PGK towards their nucleotide substrates, with similar inhibitory constants, K(I) of 2.9 and 4.8mM, respectively. Computer modelling (docking) of tenofovir mono- or diphosphate forms to these four kinases suggests that the requirement of large-scale domain closure for functioning (as for PGK) may largely restrict their applicability for phosphorylation/activation of pro-drugs having a structure similar to tenofovir monophosphate.
Collapse
Affiliation(s)
- Andrea Varga
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhou J, Sayre DA, Wang J, Pahadi N, Sintim HO. Endo-S-c-di-GMP analogues-polymorphism and binding studies with class I riboswitch. Molecules 2012; 17:13376-89. [PMID: 23143150 PMCID: PMC6269045 DOI: 10.3390/molecules171113376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 11/17/2022] Open
Abstract
C-di-GMP, a cyclic guanine dinucleotide, has been shown to regulate biofilm formation as well as virulence gene expression in a variety of bacteria. Analogues of c-di-GMP have the potential to be used as chemical probes to study c-di-GMP signaling and could even become drug leads for the development of anti-biofilm compounds. Herein we report the synthesis and biophysical studies of a series of c-di-GMP analogues, which have both phosphate and sugar moieties simultaneously modified (called endo-S-c-di-GMP analogues). We used computational methods to predict the relative orientation of the guanine nucleobases in c-di-GMP and analogues. DOSY NMR of the endo-S-c-di-GMP series showed that the polymorphism of c-di-GMP can be tuned with conservative modifications to the phosphate and sugar moieties (conformational steering). Binding studies with Vc2 RNA (a class I c-di-GMP riboswitch) revealed that conservative modifications to the phosphate and 2'-positions of c-di-GMP dramatically affected binding to class I riboswitch.
Collapse
Affiliation(s)
| | | | | | | | - Herman O. Sintim
- Author to whom correspondence should be addressed; ; Tel.: +1-301-405-0633; Fax: +1-301-314-9121
| |
Collapse
|
6
|
Varga A, Chaloin L, Sági G, Sendula R, Gráczer E, Liliom K, Závodszky P, Lionne C, Vas M. Nucleotide promiscuity of 3-phosphoglycerate kinase is in focus: implications for the design of better anti-HIV analogues. MOLECULAR BIOSYSTEMS 2011; 7:1863-73. [PMID: 21505655 DOI: 10.1039/c1mb05051f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The wide specificity of 3-phosphoglycerate kinase (PGK) towards its nucleotide substrate is a property that allows contribution of this enzyme to the effective phosphorylation (i.e. activation) of nucleotide-based pro-drugs against HIV. Here, the structural basis of the nucleotide-PGK interaction is characterised in comparison to other kinases, namely pyruvate kinase (PK) and creatine kinase (CK), by enzyme kinetic analysis and structural modelling (docking) studies. The results provided evidence for favouring the purine vs. pyrimidine base containing nucleotides for PGK rather than for PK or CK. This is due to the exceptional ability of PGK in forming the hydrophobic contacts of the nucleotide rings that assures the appropriate positioning of the connected phosphate-chain for catalysis. As for the D-/L-configurations of the nucleotides, the L-forms (both purine and pyrimidine) are well accepted by PGK rather than either by PK or CK. Here again the dominance of the hydrophobic interactions of the L-form of pyrimidines with PGK is underlined in comparison with those of PK or CK. Furthermore, for the l-forms, the absence of the ribose OH-groups with PGK is better tolerated for the purine than for the pyrimidine containing compounds. On the other hand, the positioning of the phosphate-chain is an even more important term for PGK in the case of both purines and pyrimidines with an L-configuration, as deduced from the present kinetic studies with various nucleotide-site mutants of PGK. These characteristics of the kinase-nucleotide interactions can provide a guideline for designing new drugs.
Collapse
Affiliation(s)
- Andrea Varga
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P O Box 7, H-1518 Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|