1
|
Huang J, Ma C, Sun J, Gao W, Lv Y, Yue H, Yi D, Wei W. Oxyphosphorodithiolation of Vinyl Azides with P 4S 10 and Alcohols Leading to β-Keto Phosphorodithioates. J Org Chem 2024; 89:18384-18392. [PMID: 39654500 DOI: 10.1021/acs.joc.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A simple strategy for the synthesis of β-keto phosphorodithioates has been developed through the direct oxyphosphorodithiolation of vinyl azides with P4S10 and alcohols in the presence of water. The reaction is conducted at room temperature to provide a number of β-keto phosphorodithioates in moderate to good yields. This methodology has the advantages of simple operation, mild condition, broad substrate scope, and favorable group compatibility.
Collapse
Affiliation(s)
- Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jian Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Wenhui Gao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R.China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
2
|
Mahdavimehr M, Kaboudin B, Alaie S, Tondkar F, Eshkaftaki ZM, Ebrahim-Habibi MB, Ghashghaee M, Tahmasebi E, Zhang T, Gu Y, Meratan AA. Inhibition of cytotoxic self-assembly of HEWL through promoting fibrillation by new synthesized α-hydroxycarbamoylphosphinic acids. RSC Adv 2024; 14:31227-31242. [PMID: 39355328 PMCID: PMC11443501 DOI: 10.1039/d4ra02969k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
The main objective of the present study is to investigate the potency of new synthesized hydroxycarbamoyl phosphinic acid derivatives in modulating cytotoxic fibrillogenesis of hen egg white lysozyme (HEWL), as a common model in protein aggregation studies. Hydroxycarbamoyl phosphinic acid derivatives were prepared by the reaction of α-hydroxyalkylphosphinic acids with isocyanates (or isothiocyanates) in the presence of trimethylsilyl chloride (TMSCl). The designed process involves the condensation reaction leading to formation of new C sp2-P bond formation. The synthesis and purity of novel designed compounds were confirmed by NMR, LC-MS, and HPLC techniques. A range of experiments, including thioflavin T (ThT) and 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence assays, Congo red binding measurement, atomic force microscopy imaging, MTT-based cell viability and hemolysis assays were employed to investigate anti-amyloidogenic effects of tested compounds. The obtained results demonstrate that these compounds are able to significantly modulate the self-assembly process of HEWL via shortening of nucleation phase leading to the acceleration of fibrillation and appearance of very large and thick fibrils with decreased surface hydrophobicity and cytotoxicity. Based on ANS binding data, we suggest that increased exposure of hydrophobic patches of oligomeric species is the possible mechanism by which tested compounds promote self-assembly process of HEWL. Fluorescence anisotropy and molecular docking studies indicate the interaction of both synthesized compounds with HEWL, and more specifically with residues that are situated in the highly aggregation-prone β-domain region of protein. This study unveils the potential of hydroxyalkylphosphinic acids as modulators of amyloid fibrillation highlighting these compounds as a promising approach for targeting protein aggregates associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohsen Mahdavimehr
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Saied Alaie
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Farimah Tondkar
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Zahra Mahmoudi Eshkaftaki
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | | | - Mojtaba Ghashghaee
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Elham Tahmasebi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Tianjian Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan 430074 China
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan 430074 China
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| |
Collapse
|
3
|
Shi S, Chen H, Yang S, Dong H, Zhu J, Zheng B, Wang X, Liang Z, Ren H, Gao Y. Photoredox/Copper Dual-Catalyzed Phosphorothiolation of Propargylic Derivatives for the Switchable Synthesis of S-Alkyl, S-Vinyl and S-Allenyl Phosphorothioates. Org Lett 2024; 26:7049-7054. [PMID: 39119922 DOI: 10.1021/acs.orglett.4c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Herein, we report a photoredox/copper dual-catalyzed selective phosphorothiolation of propargylic derivatives from easily accessible [P(O)SH] compounds. This reaction provides a general, mild and versatile procedure to synthesize a variety of synthetically useful S-alkyl, S-vinyl and S-allenyl phosphorothioates selectively from the same set of simple starting materials.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Hu Chen
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Shiwei Yang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Huaze Dong
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Jinmiao Zhu
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Bin Zheng
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Xiaohong Wang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Zhaoyang Liang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Hongyu Ren
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
4
|
Sarkar B, Hajra A. Hydro-phosphorothiolation of Styrene and Cyclopropane with S-Hydrogen Phosphorothioates under Ambient Conditions. Org Lett 2024; 26:5141-5145. [PMID: 38848455 DOI: 10.1021/acs.orglett.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
A metal-free hexafluoroisopropanol-mediated hydro-phosphorothiolation of styrenes and donor-acceptor cyclopropanes with S-hydrogen phosphorothioates in a Markovnikov fashion has been developed under ambient reaction conditions to afford a library of S-alkyl phosphorothioates. Notably, this strategy provides a simple and efficient way to produce biologically significant kitazin and iprobenfos derivatives. Mechanistic studies disclose that the reaction proceeds through a carbocation intermediate.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
5
|
Chen XM, Huang J, Pan J, Xie Y, Zeng F, Wei W, Yi D. Construction of β-Oximino Phosphorodithioates via (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl-Promoted Difunctionalization of Alkenes with tert-Butyl Nitrite, P 4S 10, and Alcohols. Org Lett 2024; 26:3883-3888. [PMID: 38683041 DOI: 10.1021/acs.orglett.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-mediated difunctionalization of alkenes with tert-butyl nitrite, P4S10, and alcohols has been developed for the synthesis of β-oximino phosphorodithioates. The reaction goes through a radical pathway with the successive installation of phosphorodithioate and an oxime group. This four-component protocol offers a practical approach to constructing a variety of β-oximino phosphorodithioates in moderate to good yields with favorable functional group tolerance.
Collapse
Affiliation(s)
- Xiao-Ming Chen
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Jun Pan
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Yi Xie
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Fei Zeng
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
6
|
Zhang P, Li W, Yang S, Qu W, Wang L, Lin J, Gao X. Construction of Phosphorothiolated 2-Pyrrolidinones via Photoredox/Copper-Catalyzed Cascade Radical Cyclization/Phosphorothiolation. J Org Chem 2024; 89:4947-4957. [PMID: 38498700 DOI: 10.1021/acs.joc.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A photoredox/copper-catalyzed cascade radical cyclization/phosphorothiolation reaction of N-allylbromoacetamides and P(O)SH compounds has been established. A broad range of novel nonfluorine- or difluoro-substituted 2-pyrrolidinones bearing the C(sp3)-SP(O)(OR)2 moiety can be conveniently constructed in moderate to good yields under mild conditions. Importantly, most of the tested phosphorothiolated 2-pyrrolidinones showed potent inhibitory effects toward both AChE and BChE.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuai Yang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weilong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Longyu Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinming Lin
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
7
|
Wu LY, Tian Huang, Tian ZY, Xu XQ, Peng S, Xie LY. TsCl promoted deoxygenative phosphorothiolation of quinoline N-oxides towards S-quinolyl phosphorothioates. Org Biomol Chem 2024; 22:2409-2413. [PMID: 38411219 DOI: 10.1039/d4ob00111g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A convenient, efficient and practical approach for the synthesis of S-quinolyl phosphorothioates via cheap TsCl promoted deoxygenative C2-H phosphorothiolation of quinoline N-oxides with readily available triethylammonium O,O-dialkylphosphorothioates was developed. The reaction performed well under transition-metal-free conditions at room temperature with a very short reaction time (10-20 min). Preliminary studies showed that the current transformation underwent a nucleophilic substitution process.
Collapse
Affiliation(s)
- Li-Yao Wu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Tian Huang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Zhong-Ying Tian
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Xiang-Qin Xu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| |
Collapse
|
8
|
Zhang Y, Guo Y, Zhao Y, Cao S. NaOAc-Assisted Aerobic Oxidation Protocol for the Synthesis of Pentacoordinate Chalcogenyl Spirophosphoranes with P-Se/P-S Bonds under Open Air. J Org Chem 2024; 89:3259-3270. [PMID: 38380616 DOI: 10.1021/acs.joc.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The NaOAc-assisted aerobic oxidation reaction of pentacoordinate hydrospirophosphoranes and dichalcogenyl compounds with open air as a green oxidant has been developed under mild conditions. A series of novel pentacoordinate spirophosphoranes with P-Se/P-S bonds were synthesized in excellent yields. The reaction mechanism was determined by 31P nuclear magnetic resonance tracing experiments, high-resolution mass spectrometry tracing experiments, and X-ray diffraction analysis. The method features a broad substrate scope, good functional group tolerance, and a high degree of atomic utilization and is meaningful for the synthesis of bioactive chalcogenphosphate compounds with chalcogen and phosphorus moieties.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yanchun Guo
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yufen Zhao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Shuxia Cao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Yan Q, Lu X, Wang J, Zhang Z, Gao R, Pei C, Wang H. Synthesis, biological evaluation and molecular docking of novel nereistoxin derivatives containing phosphonates as insecticidal/AChE inhibitory agents. RSC Adv 2024; 14:3996-4004. [PMID: 38288150 PMCID: PMC10823423 DOI: 10.1039/d3ra08004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024] Open
Abstract
In continuation of our program aimed at the discovery and development of natural product-based insecticidal agents, a series of novel nereistoxin derivatives containing phosphonate were synthesized and characterized by 31P, 1H, 13C NMR and HRMS. The bioactivities of the derivatives were evaluated for the acetylcholinesterase (AChE) inhibition potency and insecticidal activity. The AChE inhibitory effects of the derivatives were investigated using the in vitro Ellman method. Half of the compounds exhibited excellent inhibition of AChE. All the compounds were assessed for insecticidal activities against Mythimna separate (Walker) and Rhopalosiphum padi in vivo. Some derivatives displayed promising insecticidal activity against Rhopalosiphum padi. Compounds 5b and 6a displayed the highest activity against R. padi, showing LC50 values of 17.14 and 18.28 μg mL-1, respectively, close to that of commercial insecticide flunicotamid (LC50 = 17.13 μg mL-1). Compound 9g also showed notable insecticidal activity, with an LC50 value of 23.98 μg mL-1. Additionally, the binding modes of the active compounds 5b, 6a and 9g with AChE were analyzed in-depth though molecular docking and the intrinsic reasons for the differences in the strength of the compound's activities were elucidated. In summary, our findings demonstrate the potential of these nereistoxin derivatives as promising candidates for the development of novel pesticides.
Collapse
Affiliation(s)
- Qiaoli Yan
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Xiaogang Lu
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Jin Wang
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Zixuan Zhang
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Runli Gao
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Chengxin Pei
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| |
Collapse
|
10
|
Jiang S, Du S, Bai J, Chen X, Liang M, Lin S, Luo MJ, Song XR, Xiao Q. Cascade Cyclization of 1,5-Diynols and (RO) 2P(O)SH to Construct Benzo[ b]fluorenyl S-Alkyl Phosphorothioates under Catalyst-Free Conditions. J Org Chem 2023; 88:14571-14586. [PMID: 37789588 DOI: 10.1021/acs.joc.3c01596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
An efficient and practical cascade cyclization of 1,5-diynols with (RO)2P(O)SH as the acid promoter and nucleophile under mild conditions was developed. A variety of highly substituted benzo[b]fluorenyl-containing S-alkyl phosphorothioates were successfully constructed in moderate to excellent yields. Furthermore, this protocol exhibited good functional group tolerance, a broad substrate scope, and potential practical applications, with water as the only byproduct. The reaction proceeded with allenyl thiophosphate as a key intermediate, followed by a Schmittel-type cyclization process to produce the target product.
Collapse
Affiliation(s)
- Shimin Jiang
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Sha Du
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Jiang Bai
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Xi Chen
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Meng Liang
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Shihong Lin
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Mu-Jia Luo
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| |
Collapse
|
11
|
Wang J, Han F, Hao S, Tang YJ, Xiong C, Xiong L, Li X, Lu J, Zhou Q. Metal-Free Regioselective Hydrophosphorodithioation of Spirovinylcyclopropyl Oxindoles: Rapid Access to Allyl Dialkylphosphorodithioates. J Org Chem 2022; 87:12844-12853. [PMID: 36166737 DOI: 10.1021/acs.joc.2c01435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorodithioates are important substructures due to their great use in bioactive compounds and functional materials. A metal-free 1,5-addition of spirovinylcyclopropyl oxindoles have been developed by choosing P4S10 and alcohol as nucleophiles through the regioselective ring-opening of spirovinylcyclopropyl oxindoles. This method provides access to allylic organothiophosphates with high efficiency, wide functional group tolerance, good chemo- and regioselectivity, and E-selectivity. 1,3-Addition products were also prepared in high yield. Furthermore, the resulting organothiophosphates could be readily transformed into other allylic derivatives.
Collapse
Affiliation(s)
- Jiahua Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Fang Han
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Siyuan Hao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yu-Jiang Tang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lin Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Xiancheng Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jinrong Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
12
|
Yang B, Zhang XY, Yue HQ, Li WZ, Li M, Lu L, Wu ZQ, Li J, Sun K, Yang S. A Promoter‐free Protocol for the Synthesis of Selenophosphates and Thiophosphates via a Spontaneous Process at Room Temperature. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Kai Sun
- Anyang Normal University CHINA
| | | |
Collapse
|
13
|
Zhang P, Li W, Zhu X, Li Y, Zhao X, Shi S, Zhu F, Lin J, Gao X. Photoredox and Copper‐Catalyzed Sulfonylphosphorothiolation of Alkenes toward β‐Sulfonyl Phosphorothioates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Ying Li
- Xinxiang Medical University CHINA
| | | | | | | | | | - Xia Gao
- Xinxiang Medical University CHINA
| |
Collapse
|
14
|
Li H, Yan W, Ren P, Hu H, Sun R, Liu M, Fu Z, Guo S, Cai H. Bromide ion promoted practical synthesis of phosphinothioates of sulfinic acid derivatives and H-phosphine oxides. RSC Adv 2022; 12:32350-32354. [DOI: 10.1039/d2ra06351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, a method for the practical synthesis of thiophosphinates under metal free and open flask conditions is reported.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Wenjie Yan
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Peipei Ren
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Huimin Hu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Runbo Sun
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Meixia Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Shengmei Guo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Hu Cai
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| |
Collapse
|
15
|
Zhang P, Li W, Qu W, Shu Z, Tao Y, Lin J, Gao X. Copper and Photocatalytic Radical Relay Enabling Fluoroalkylphosphorothiolation of Alkenes: Modular Synthesis of Fluorine-Containing S-Alkyl Phosphorothioates and Phosphorodithioates. Org Lett 2021; 23:9267-9272. [PMID: 34779202 DOI: 10.1021/acs.orglett.1c03608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A photoredox and copper-catalyzed fluoroalkylphosphorothiolation of activated and unactivated alkenes via a radical relay mechanism is reported. By employing fluoroalkyl halides as radical precursors and P(O)SH or P(S)SH compounds as coupling partners, a wide range of β-monofluoroalkyl-, -difluoroalkyl-, -trifluoromethyl-, or -perfluoroalkyl-substituted S-alkyl phosphorothioates and phosphorodithioates can be easily constructed under mild conditions with good functional group tolerance. Furthermore, this modular reaction system can be successfully applied to late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weilong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhigang Shu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinming Lin
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
16
|
Electrochemically driven synthesis of phosphorothioates from trialkyl phosphites and aryl thiols. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhang P, Yu G, Li W, Shu Z, Wang L, Li Z, Gao X. Copper-Catalyzed Multicomponent Trifluoromethylphosphorothiolation of Alkenes: Access to CF 3-Containing Alkyl Phosphorothioates. Org Lett 2021; 23:5848-5852. [PMID: 34250811 DOI: 10.1021/acs.orglett.1c01985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented copper-catalyzed multicomponent radical-based reaction involving alkenes, P(O)H compounds, sulfur powder, and Togni reagent II at room temperature has been developed. A variety of highly functionalized CF3-containing S-alkyl phosphorothioates can be directly prepared from a wide range of activated and unactivated alkenes. Moreover, this protocol highlights its potential in the late-stage functionalization of complex molecules and opens up a new avenue for the construction of C(sp3)-S-P bonds.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Guo Yu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhigang Shu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Longyu Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoting Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
18
|
Catalyst- and additive-free cascade phosphorylation/cyclization of propargylic alcohols and R2P(O)OH. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Jones DJ, O'Leary EM, O'Sullivan TP. Modern Synthetic Approaches to Phosphorus‐Sulfur Bond Formation in Organophosphorus Compounds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David J. Jones
- School of ChemistryUniversity College Cork Cork Ireland
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
| | - Eileen M. O'Leary
- Department of Physical SciencesCork Institute of Technology Cork Ireland
| | - Timothy P. O'Sullivan
- School of ChemistryUniversity College Cork Cork Ireland
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
- School of PharmacyUniversity College Cork Cork Ireland
| |
Collapse
|
20
|
Peng K, Dong Z. Recent Advances in Sulfur‐Centered S–X (X = N, P, O) Bond Formation Catalyzed by Transition Metals. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kang Peng
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology 430205 Wuhan China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology 430205 Wuhan China
- Key Laboratory of Green Chemical Process Ministry of Education Wuhan Institute of Technology 430205 Wuhan China
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei University 430062 Wuhan China
- Hubei key Laboratory of Novel Reactor and Green Chemistry Technology Wuhan Institute of Technology 430205 Wuhan China
| |
Collapse
|
21
|
Jones DJ, O'Leary EM, O'Sullivan TP. A Robust Methodology for the Synthesis of Phosphorothioates, Phosphinothioates and Phosphonothioates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David J. Jones
- School of ChemistryUniversity College Cork Cork
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
| | - Eileen M. O'Leary
- Department of Physical SciencesCork Institute of Technology Cork Ireland
| | - Timothy P. O'Sullivan
- School of ChemistryUniversity College Cork Cork
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
- School of PharmacyUniversity College Cork Cork Ireland
| |
Collapse
|
22
|
Choudhary R, Singh P, Bai R, Sharma MC, Badsara SS. Highly atom-economical, catalyst-free, and solvent-free phosphorylation of chalcogenides. Org Biomol Chem 2019; 17:9757-9765. [PMID: 31696899 DOI: 10.1039/c9ob01921a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica gel promoted, catalyst-free and solvent-free S-P, Se-P and Te-P bond formations are described. A variety of disulfides coupled with diarylphosphine oxides provide the corresponding phosphinothioates in excellent yields. For the first time, diselenides and ditellurides reacted with dialkyl phosphites under catalyst-free conditions to provide the corresponding phosphoroselenoates and phosphorotelluroates, respectively, in good to excellent yields.
Collapse
Affiliation(s)
- Rakhee Choudhary
- MFOS Laboratory, Department of Chemistry, Centre of Advanced Study, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India.
| | - Pratibha Singh
- MFOS Laboratory, Department of Chemistry, Centre of Advanced Study, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India.
| | - Rekha Bai
- MFOS Laboratory, Department of Chemistry, Centre of Advanced Study, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India.
| | - Mahesh C Sharma
- MFOS Laboratory, Department of Chemistry, Centre of Advanced Study, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India.
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, Centre of Advanced Study, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India.
| |
Collapse
|
23
|
Li CY, Liu YC, Li YX, Reddy DM, Lee CF. Electrochemical Dehydrogenative Phosphorylation of Thiols. Org Lett 2019; 21:7833-7836. [DOI: 10.1021/acs.orglett.9b02825] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chung-Yen Li
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
| | - You-Chen Liu
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
| | - Yi-Xuan Li
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
| | | | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
- Research Center for Sustainable Energy and Nanotechnology (RCSEN), National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402 Taiwan, R.O.C
| |
Collapse
|
24
|
Mondal M, Saha A. Benign synthesis of thiophosphates, thiophosphinates and selenophosphates in neat condition using N-chalcogenoimides as the source of electrophilic sulfur/selenium. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Li Y, Yang Q, Yang L, Lei N, Zheng K. A scalable electrochemical dehydrogenative cross-coupling of P(O)H compounds with RSH/ROH. Chem Commun (Camb) 2019; 55:4981-4984. [PMID: 30968096 DOI: 10.1039/c9cc01378d] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A practical, scalable electrochemical dehydrogenative cross-coupling of P(O)H compounds with thiols, phenols and alcohols in both an undivided cell and a continuous-flow setup is disclosed. Its broad substrate scope (>50 examples), good functional-group tolerance and scalability (>10 g) show potential for practical synthesis. A preliminary mechanistic study suggests that the phosphorus radicals are involved in the catalytic cycle.
Collapse
Affiliation(s)
- Yujun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | |
Collapse
|
26
|
Jones DJ, O'Leary EM, O'Sullivan TP. Synthesis and application of phosphonothioates, phosphonodithioates, phosphorothioates, phosphinothioates and related compounds. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Chang CZ, Liu X, Zhu H, Wu L, Dong ZB. Copper-Catalyzed and Air-Mediated Mild Cross-Dehydrogenative Coupling of Aryl Thioureas and Dialkyl H-Phosphonates: The Synthesis of Thiophosphonates. J Org Chem 2018; 83:13530-13535. [DOI: 10.1021/acs.joc.8b02011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cai-Zhu Chang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xing Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hui Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Li Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|
28
|
One-pot synthesis of phosphorodiamidothioates using N-heterocyclic phosphine (NHP)-thiourea. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Cavallaro V, Moglie YF, Murray AP, Radivoy GE. Alkynyl and β-ketophosphonates: Selective and potent butyrylcholinesterase inhibitors. Bioorg Chem 2018; 77:420-428. [DOI: 10.1016/j.bioorg.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 02/08/2023]
|
30
|
Kovács S, Bayarmagnai B, Aillerie A, Gooßen LJ. Practical Reagents and Methods for Nucleophilic and Electrophilic Phosphorothiolations. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701549] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Szabolcs Kovács
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Germany
| | - Bilguun Bayarmagnai
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Germany
| | - Alexandre Aillerie
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
31
|
Kaboudin B, Zangooei A, Kazemi F, Yokomatsu T. Catalyst-free Petasis-type reaction: Three-component decarboxylative coupling of boronic acids with proline and salicylaldehyde for the synthesis of alkylaminophenols. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Huang H, Ash J, Kang JY. Base-controlled Fe(Pc)-catalyzed aerobic oxidation of thiols for the synthesis of S–S and S–P(O) bonds. Org Biomol Chem 2018; 16:4236-4242. [DOI: 10.1039/c8ob00908b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Base-controlled Fe(Pc)-catalyzed S–S/S–P(O) bond formation.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry and Biochemistry
- University of Nevada Las Vegas
- Las Vegas
- USA
- Department of Applied Chemistry
| | - Jeffrey Ash
- Department of Chemistry and Biochemistry
- University of Nevada Las Vegas
- Las Vegas
- USA
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry
- University of Nevada Las Vegas
- Las Vegas
- USA
| |
Collapse
|
33
|
Zhang H, Zhan Z, Lin Y, Shi Y, Li G, Wang Q, Deng Y, Hai L, Wu Y. Visible light photoredox catalyzed thiophosphate synthesis using methylene blue as a promoter. Org Chem Front 2018. [DOI: 10.1039/c7qo01082f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel efficient method for the synthesis of thiophosphate derivatives catalyzed by methylene blue with blue light irradiation under an air atmosphere is described.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Zhen Zhan
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yan Lin
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yuesen Shi
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Guobo Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yong Deng
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Li Hai
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
34
|
Aouani I, Sellami B, Lahbib K, Cavalier JF, Touil S. Efficient synthesis of novel dialkyl-3-cyanopropylphosphate derivatives and evaluation of their anticholinesterase activity. Bioorg Chem 2017; 72:301-307. [DOI: 10.1016/j.bioorg.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
35
|
Nakayama K, Schwans JP, Sorin EJ, Tran T, Gonzalez J, Arteaga E, McCoy S, Alvarado W. Synthesis, biochemical evaluation, and molecular modeling studies of aryl and arylalkyl di-n-butyl phosphates, effective butyrylcholinesterase inhibitors. Bioorg Med Chem 2017; 25:3171-3181. [PMID: 28416102 DOI: 10.1016/j.bmc.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
A series of dialkyl aryl phosphates and dialkyl arylalkyl phosphates were synthesized. Their inhibitory activities were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The di-n-butyl phosphate series consistently displayed selective inhibition of BChE over AChE. The most potent inhibitors of butyrylcholinesterase were di-n-butyl-3,5-dimethylphenyl phosphate (4b) [KI=1.0±0.4μM] and di-n-butyl 2-naphthyl phosphate (5b) [KI=1.9±0.4μM]. Molecular modeling was used to uncover three subsites within the active site gorge that accommodate the three substituents attached to the phosphate group. Phosphates 4b and 5b were found to bind to these three subsites in analogous fashion with the aromatic groups in both analogs being accommodated by the "lower region," while the lone pairs on the PO oxygen atoms were oriented towards the oxyanion hole. In contrast, di-n-butyl-3,4-dimethylphenyl phosphate (4a) [KI=9±1μM], an isomer of 4b, was found to orient its aromatic group in the "upper left region" subsite as placement of this group in the "lower region" resulted in significant steric hindrance by a ridge-like region in this subsite. Future studies will be designed to exploit these features in an effort to develop inhibitors of higher inhibitory strength against butyrylcholinesterase.
Collapse
Affiliation(s)
- Kensaku Nakayama
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
| | - Jason P Schwans
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
| | - Eric J Sorin
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
| | - Trina Tran
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| | - Jeannette Gonzalez
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| | - Elvis Arteaga
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| | - Sean McCoy
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| | - Walter Alvarado
- Department of Physics, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| |
Collapse
|
36
|
Kaboudin B, Kazemi F, Hosseini NK. A novel straightforward synthesis of α-aminophosphonates: one-pot three-component condensation of alcohols, amines, and diethylphosphite in the presence of CuO@Fe3O4 nanoparticles as a catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2890-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Cs2
CO3
-Catalyzed Aerobic Oxidative Cross-Dehydrogenative Coupling of Thiols with Phosphonates and Arenes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Song Song
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Yiqun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Adeli Yeerlan
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Bencong Zhu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
- State Key Laboratory of Organometallic Chemistry; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
38
|
Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Cs 2 CO 3 -Catalyzed Aerobic Oxidative Cross-Dehydrogenative Coupling of Thiols with Phosphonates and Arenes. Angew Chem Int Ed Engl 2017; 56:2487-2491. [PMID: 28112850 DOI: 10.1002/anie.201612190] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 11/08/2022]
Abstract
An efficient Cs2 CO3 -catalyzed oxidative coupling of thiols with phosphonates and arenes that uses molecular oxygen as the oxidant is described. These reactions provide not only a novel alkali metal salt catalyzed aerobic oxidation, but also an efficient approach to thiophosphates and sulfenylarenes, which are ubiquitously found in pharmaceuticals and pesticides. The reaction proceeds under simple and mild reaction conditions, tolerates a wide range of functional groups, and is applicable to the late-stage synthesis and modification of bioactive molecules.
Collapse
Affiliation(s)
- Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Yiqun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Adeli Yeerlan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Bencong Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
39
|
Walczak S, Nowicka A, Kubacka D, Fac K, Wanat P, Mroczek S, Kowalska J, Jemielity J. A novel route for preparing 5' cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry. Chem Sci 2017; 8:260-267. [PMID: 28451173 PMCID: PMC5355871 DOI: 10.1039/c6sc02437h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 01/29/2023] Open
Abstract
The significant biological role of the mRNA 5' cap in translation initiation makes it an interesting subject for chemical modifications aimed at producing useful tools for the selective modulation of intercellular processes and development of novel therapeutic interventions. However, traditional approaches to the chemical synthesis of cap analogues are time-consuming and labour-intensive, which impedes the development of novel compounds and their applications. Here, we explore a different approach for synthesizing 5' cap mimics, making use of click chemistry (CuAAC) to combine two mononucleotide units and yield a novel class of dinucleotide cap analogues containing a triazole ring within the oligophosphate chain. As a result, we synthesized a library of 36 mRNA cap analogues differing in the location of the triazole ring, the polyphosphate chain length, and the type of linkers joining the phosphate and the triazole moieties. After biochemical evaluation, we identified two analogues that, when incorporated into mRNA, produced transcripts translated with efficiency similar to compounds unmodified in the oligophosphate bridge obtained by traditional synthesis. Moreover, we demonstrated that the triazole-modified cap structures can be generated at the RNA 5' end using two alternative capping strategies: either the typical co-transcriptional approach, or a new post-transcriptional approach based on CuAAC. Our findings open new possibilities for developing chemically modified mRNAs for research and therapeutic applications, including RNA-based vaccinations.
Collapse
Affiliation(s)
- Sylwia Walczak
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland
| | - Anna Nowicka
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Dorota Kubacka
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Kaja Fac
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland
| | - Przemyslaw Wanat
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Seweryn Mroczek
- Department of Genetics and Biotechnology , Faculty of Biology , University of Warsaw , 02-106 Warsaw , Poland
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Joanna Kowalska
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Jacek Jemielity
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
| |
Collapse
|
40
|
Gholivand K, Ebrahimi Valmoozi AA, Salahi M, Taghipour F, Torabi E, Ghadimi S, Sharifi M, Ghadamyari M. Bisphosphoramidate derivatives: synthesis, crystal structure, anti-cholinesterase activity, insecticide potency and QSAR analysis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0991-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Evaluating Fmoc-amino acids as selective inhibitors of butyrylcholinesterase. Amino Acids 2016; 48:2755-2763. [PMID: 27522651 DOI: 10.1007/s00726-016-2310-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Cholinesterases are involved in neuronal signal transduction, and perturbation of function has been implicated in diseases, such as Alzheimer's and Huntington's disease. For the two major classes of cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), previous studies reported BChE activity is elevated in patients with Alzheimer's disease, while AChE levels remain the same or decrease. Thus, the development of potent and specific inhibitors of BChE have received much attention as a potential therapeutic in the alleviation of neurodegenerative diseases. In this study, we evaluated amino acid analogs as selective inhibitors of BChE. Amino acid analogs bearing a 9-fluorenylmethyloxycarbonyl (Fmoc) group were tested, as the Fmoc group has structural resemblance to previously described inhibitors. We identified leucine, lysine, and tryptophan analogs bearing the Fmoc group as selective inhibitors of BChE. The Fmoc group contributed to inhibition, as analogs bearing a carboxybenzyl group showed ~tenfold higher values for the inhibition constant (K I value). Inclusion of a t-butoxycarbonyl on the side chain of Fmoc tryptophan led to an eightfold lower K I value compared to Fmoc tryptophan alone suggesting that modifications of the amino acid side chains may be designed to create inhibitors with higher affinity. Our results identify Fmoc-amino acids as a scaffold upon which to design BChE-specific inhibitors and provide the foundation for further experimental and computational studies to dissect the interactions that contribute to inhibitor binding.
Collapse
|
42
|
Teimuri-Mofrad R, Nikbakht R, Gholamhosseini-Nazari M. A convenient and efficient method for the synthesis of new 2-(4-amino substituted benzilidine) indanone derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2549-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Bi X, Li J, Meng F, Wang H, Xiao J. DCDMH-promoted synthesis of thiophosphates by coupling of H-phosphonates with thiols. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Krátký M, Štěpánková Š, Vorčáková K, Vinšová J. Salicylanilide diethyl phosphates as cholinesterases inhibitors. Bioorg Chem 2015; 58:48-52. [DOI: 10.1016/j.bioorg.2014.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 01/26/2023]
|
45
|
Gholivand K, Ebrahimi Valmoozi AA, Bonsaii M. Synthesis and crystal structure of new temephos analogues as cholinesterase inhibitor: molecular docking, QSAR study, and hydrogen bonding analysis of solid state. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5761-5771. [PMID: 24893121 DOI: 10.1021/jf5011726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of temephos (Tem) derivatives were synthesized and characterized by 31P, 13C, and 1H NMR and FT-IR spectral techniques. Also, the crystal structure of compound 9 was investigated. The hydrogen bonding energies (E2) were calculated by NBO analysis of the crystal cluster. The activities and the mixed-type mechanism of Tem derivatives were evaluated using the modified Ellman's and Lineweaver-Burk's methods on cholinesterase (ChE) enzymes. The inhibitory activities of Tem derivatives with a P═S moiety were higher than those with a P═O moiety. Docking analysis disclosed that the hydrogen bonds occurred between the OR (R=CH3 and C2H5) oxygen and N-H nitrogen atoms of the selected compounds and the receptor site (GLN and GLU) of ChEs. PCA-QSAR indicated that the correlation coefficients of the electronic variables were dominant compared to the structural descriptors. MLR-QSAR models clarified that the net charges of nitrogen and phosphorus atoms contribute important electronic function in the inhibition of ChEs. The validity of the QSAR model was confirmed by a LOO cross-validation method with q2=0.965 between the training and testing sets.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Tarbiat Modares University , P.O. Box 14115-175, Tehran, Iran
| | | | | |
Collapse
|
46
|
A catalyst-free, three-component decarboxylative coupling of amino acids with aldehydes and H-dialkylphosphites for the synthesis of α-aminophosphonates. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Kaboudin B, Emadi S, Faghihi MR, Fallahi M, Sheikh-Hasani V. Synthesis of α-oxycarbanilinophosphonates and their anticholinesterase activities: the most potent derivative is bound to the peripheral site of acetylcholinesterase. J Enzyme Inhib Med Chem 2012; 28:576-82. [DOI: 10.3109/14756366.2012.663362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Saeed Emadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS),
Gava Zang, Zanjan, Iran
| | | | | | - Vahid Sheikh-Hasani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS),
Gava Zang, Zanjan, Iran
| |
Collapse
|
48
|
Kaboudin B, Arefi M, Emadi S, Sheikh-Hasani V. Synthesis and inhibitory activity of ureidophosphonates, against acetylcholinesterase: pharmacological assay and molecular modeling. Bioorg Chem 2012; 41-42:22-7. [PMID: 22341898 DOI: 10.1016/j.bioorg.2012.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 02/02/2023]
Abstract
A novel method has been developed for the synthesis of 1-ureidophosphonates through a three components condensation of aldehyde with amine and diethylphosphite in the presence of sulfanilic acid as catalyst followed by subsequent reaction of the product with isocyanate. This method is easy, rapid, and good yielding. The anticholinesterase (AChE) activities (inhibition potency through IC(50)) of newly synthesized 1-ureidophosphonates were also investigated. The activities of the synthesized compounds toward the enzyme AChE were determined and compared in terms of their molecular structures and it was found, through molecular docking simulations, that the most potent derivative (compound 3i) inhibited the enzyme through binding to the peripheral anionic site (PAS) and not to its acylation site (A site).
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran.
| | | | | | | |
Collapse
|