1
|
Gaur V, Kumar N, Vyas A, Chowdhury D, Singh J, Bera S. Identification of potential inhibitors against Escherichia coli Mur D enzyme to combat rising drug resistance: an in-silico approach. J Biomol Struct Dyn 2025; 43:3286-3296. [PMID: 38149858 DOI: 10.1080/07391102.2023.2297007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Indiscriminate use of anti-microbial agents has resulted in the inception, frequency, and spread of antibiotic resistance among targeted bacterial pathogens and the commensal flora. Mur enzymes, playing a crucial role in cell-wall synthesis, are one of the most appropriate targets for developing novel inhibitors against antibiotic-resistant bacterial pathogens. In the present study, in-silico high-throughput virtual (HTVS) and Standard-Precision (SP) screening was carried out with 0.3 million compounds from several small-molecule libraries against the E. coli Mur D enzyme (PDB ID 2UUP). The docked complexes were further subjected to extra-precision (XP) docking calculations, and highest Glide-score compound was further subjected to molecular simulation studies. The top six virtual hits (S1-S6) displayed a glide score (G-score) within the range of -9.013 to -7.126 kcal/mol and compound S1 was found to have the highest stable interactions with the Mur D enzyme (2UUP) of E. coli. The stability of compound S1 with the Mur D (2UUP) complex was validated by a 100-ns molecular dynamics simulation. Binding free energy calculation by the MM-GBSA strategy of the S1-2UUP (Mur D) complex established van der Waals, hydrogen bonding, lipophilic, and Coulomb energy terms as significant favorable contributors for ligand binding. The final lead molecules were subjected to ADMET predictions to study their pharmacokinetic properties and displayed promising results, except for certain modifications required to improve QPlogHERG values. So, the compounds screened against the Mur D enzyme can be further studied as preparatory points for in-vivo studies to develop potential drugs. HIGHLIGHTSE.coli is a common cause of urinary tract infections.E.coli MurD enzyme is a suitable target for drug development.Novel inhibitors against E.coli MurD enzyme were identified.Molecular dynamics studies identified in-silico potential of identified compound.ADMET predictions and Lipinski's rule of five studies showed promising results.
Collapse
Affiliation(s)
- Vinita Gaur
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' University, Udaipur, Rajasthan, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Debabrata Chowdhury
- School of Medicine - Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| |
Collapse
|
2
|
Zhang Y, Guo Y, Zhao Y, Cao S. NaOAc-Assisted Aerobic Oxidation Protocol for the Synthesis of Pentacoordinate Chalcogenyl Spirophosphoranes with P-Se/P-S Bonds under Open Air. J Org Chem 2024; 89:3259-3270. [PMID: 38380616 DOI: 10.1021/acs.joc.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The NaOAc-assisted aerobic oxidation reaction of pentacoordinate hydrospirophosphoranes and dichalcogenyl compounds with open air as a green oxidant has been developed under mild conditions. A series of novel pentacoordinate spirophosphoranes with P-Se/P-S bonds were synthesized in excellent yields. The reaction mechanism was determined by 31P nuclear magnetic resonance tracing experiments, high-resolution mass spectrometry tracing experiments, and X-ray diffraction analysis. The method features a broad substrate scope, good functional group tolerance, and a high degree of atomic utilization and is meaningful for the synthesis of bioactive chalcogenphosphate compounds with chalcogen and phosphorus moieties.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yanchun Guo
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yufen Zhao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Shuxia Cao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Hervin V, Roy V, Agrofoglio LA. Antibiotics and Antibiotic Resistance-Mur Ligases as an Antibacterial Target. Molecules 2023; 28:8076. [PMID: 38138566 PMCID: PMC10745416 DOI: 10.3390/molecules28248076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of Multidrug Resistance (MDR) strains of bacteria has accelerated the search for new antibacterials. The specific bacterial peptidoglycan biosynthetic pathway represents opportunities for the development of novel antibacterial agents. Among the enzymes involved, Mur ligases, described herein, and especially the amide ligases MurC-F are key targets for the discovery of multi-inhibitors, as they share common active sites and structural features.
Collapse
Affiliation(s)
| | - Vincent Roy
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| | - Luigi A. Agrofoglio
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| |
Collapse
|
4
|
Anti-Tuberculosis Mur Inhibitors: Structural Insights and the Way Ahead for Development of Novel Agents. Pharmaceuticals (Basel) 2023; 16:ph16030377. [PMID: 36986477 PMCID: PMC10058398 DOI: 10.3390/ph16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mur enzymes serve as critical molecular devices for the synthesis of UDP-MurNAc-pentapeptide, the main building block of bacterial peptidoglycan polymer. These enzymes have been extensively studied for bacterial pathogens such as Escherichia coli and Staphylococcus aureus. Various selective and mixed Mur inhibitors have been designed and synthesized in the past few years. However, this class of enzymes remains relatively unexplored for Mycobacterium tuberculosis (Mtb), and thus offers a promising approach for drug design to overcome the challenges of battling this global pandemic. This review aims to explore the potential of Mur enzymes of Mtb by systematically scrutinizing the structural aspects of various reported bacterial inhibitors and implications concerning their activity. Diverse chemical scaffolds such as thiazolidinones, pyrazole, thiazole, etc., as well as natural compounds and repurposed compounds, have been reviewed to understand their in silico interactions with the receptor or their enzyme inhibition potential. The structural diversity and wide array of substituents indicate the scope of the research into developing varied analogs and providing valuable information for the purpose of modifying reported inhibitors of other multidrug-resistant microorganisms. Therefore, this provides an opportunity to expand the arsenal against Mtb and overcome multidrug-resistant tuberculosis.
Collapse
|
5
|
Grabrijan K, Hrast M, Proj M, Dolšak A, Zdovc I, Imre T, Petri L, Ábrányi-Balogh P, Keserű GM, Gobec S. Covalent inhibitors of bacterial peptidoglycan biosynthesis enzyme MurA with chloroacetamide warhead. Eur J Med Chem 2022; 243:114752. [PMID: 36126388 DOI: 10.1016/j.ejmech.2022.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) catalyzes the first committed step in the cytoplasmic part of peptidoglycan biosynthesis and is a validated target enzyme for antibacterial drug discovery; the inhibitor fosfomycin has been used clinically for decades. Like fosfomycin, most MurA inhibitors are small heterocyclic compounds that inhibit the enzyme by forming a covalent bond with the active site cysteine. The reactive chloroacetamide group was selected from a series of suitable electrophilic thiol-reactive warheads. The predominantly one-step synthesis led to the construction of the final library of 47 fragment-sized chloroacetamide compounds. Several new E. coli MurA inhibitors were identified, with the most potent compound having an IC50 value in the low micromolar range. The electrophilic reactivity of all chloroacetamide fragments in our library was evaluated by a high-throughput spectrophotometric assay using the reduced Ellman reagent as a surrogate for the cysteine thiol. LC-MS/MS experiments confirmed the covalent binding of the most potent inhibitor to Cys115 of the digested MurA enzyme. The covalent binding was further investigated by a biochemical time-dependent assay and a dilution assay, which confirmed the irreversible and time-dependent mode of action. The efficacy of chloroacetamide derivatives against MurA does not correlate with their thiol reactivity, making the active fragments valuable starting points for fragment-based development of new antibacterial agents targeting MurA.
Collapse
Affiliation(s)
- Katarina Grabrijan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Ana Dolšak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Irena Zdovc
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia.
| | - Tímea Imre
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary; MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology, Szt. Gellért tér 4., H-1117, Budapest, Hungary.
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology, Szt. Gellért tér 4., H-1117, Budapest, Hungary.
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Azam MA, Singh A. Molecular insight into the binding mode of thieno[3,2-c]pyrazol-3-ols with Streptococcus pneumoniae MurF enzyme by combined molecular modeling approach. Struct Chem 2022. [DOI: 10.1007/s11224-021-01866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Zheng X, Zheng T, Liao Y, Luo L. Identification of Potential Inhibitors of MurD Enzyme of Staphylococcus aureus from a Marine Natural Product Library. Molecules 2021; 26:6426. [PMID: 34770835 PMCID: PMC8587310 DOI: 10.3390/molecules26216426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause fatal bacterial infections. MurD catalyzes the formation of peptide bond between UDP-N-acetylehyl-l-alanine and d-glutamic acid, which plays an important role in the synthesis of peptidoglycan and the formation of cell wall by S. aureus. Because S. aureus is resistant to most existing antibiotics, it is necessary to develop new inhibitors. In this study, Schrodinger 11.5 Prime homology modeling was selected to prepare the protein model of MurD enzyme, and its structure was optimized. We used a virtual screening program and similarity screening to screen 47163 compounds from three marine natural product libraries to explore new inhibitors of S. aureus. ADME provides analysis of the physicochemical properties of the best performing compounds during the screening process. To determine the stability of the docking effect, a 100 ns molecular dynamics was performed to verify how tightly the compound was bound to the protein. By docking analysis and molecular dynamics analysis, both 46604 and 46608 have strong interaction with the docking pocket, have good pharmacological properties, and maintain stable conformation with the target protein, so they have a chance to become drugs for S. aureus. Through virtual screening, similarity screening, ADME study and molecular dynamics simulation, 46604 and 46608 were selected as potential drug candidates for S. aureus.
Collapse
Affiliation(s)
- Xiaoqi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (X.Z.); (T.Z.); (Y.L.)
| | - Tongyu Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (X.Z.); (T.Z.); (Y.L.)
| | - Yinglin Liao
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (X.Z.); (T.Z.); (Y.L.)
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
8
|
Design, synthesis and molecular modelling of phenoxyacetohydrazide derivatives as Staphylococcus aureus MurD inhibitors. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Qu X, Yang H, Jia B, Yu Z, Zheng Y, Dai K. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomater 2020; 117:400-417. [PMID: 33007485 DOI: 10.1016/j.actbio.2020.09.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/31/2022]
Abstract
Bone and joint-related infections remain the primary and most critical complications of orthopedic surgery. We have innovatively prepared Zn-Cu alloys to achieve outstanding material and antibacterial properties. In this study, we systematically assessed the material properties and antibacterial activity of these Zn-Cu alloys. Our results showed that the Zn-2Cu alloy had the best mechanical properties, biocompatibility, and osteogenic properties. Findings of microbial cultures, CLSM, SEM, and TEM indicated that Zn-2Cu alloy can inhibit both coagulase-positive and coagulase-negative staphylococci, as well as antibiotic-resistant strains (MRSA and MRSE), by preventing the bacteria adhesion and the biofilm formation. Zn-2Cu alloy could broadly affect the expression of MRSA genes associated with adhesion, autolysis, biofilm formation, virulence, and drug resistance. A rat femur intramedullary nail infection-prevention model was established and the Zn-2Cu alloy-treated group showed significant antibacterial activity against MRSA and reduced the inflammatory toxic side-effects and infection-related bone loss. Collectively, our results indicate the potential utility of Zn-Cu alloy implants with 2 wt% Cu in treating orthopedic infections. Statement of significance: Osteomyelitis is a serious complication of orthopedic surgeries. Wide use of antibiotics contributes to the appearance of multi-drug resistant strains like methicillin-resistant staphylococcus aureus (MRSA). Alternatively, anti-osteomyelitis implants with broad-spectrum antibacterial properties can be favorable. Here, the antibacterial performance of biodegradable Zn-Cu alloys was evaluated with four different bacteria strains including antibiotic-resistant strains (MRSA and MRSE). Zn-Cu alloys exert excellent bacterial killing capability in all strains. In a rat femur infection model, the alloy showed significant antibacterial activity against MRSA and reduced inflammatory toxic side-effects as well as infection-related bone loss. The antibacterial property of Zn-2Cu alloy was associated with inhibition of gene expression related to wall synthesis, adhesion, colonization, biofilm formation, autolysis, and secretion of virulence factors in MRSA.
Collapse
|
10
|
Azam MA, Manoj VCV. An explorative study on diarylquinoline-based inhibitor targeting Enterococcus faecium MurF. Struct Chem 2020. [DOI: 10.1007/s11224-020-01622-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
MurE inhibitors as antibacterial agents: a review. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Azam MA, Jupudi S. MurD inhibitors as antibacterial agents: a review. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Affiliation(s)
- Takahiro Sawano
- Department of Chemistry and Biological Science; Aoyama Gakuin University; 5-10-1 Fuchinobe, Chuo-ku 252-5258 Sagamihara Kanagawa Japan
| | - Hisashi Yamamoto
- Molecular Catalyst Research Center; Chubu University; 1200, Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
14
|
Jupudi S, Azam MA, Wadhwani A. Synthesis, molecular docking, binding free energy calculation and molecular dynamics simulation studies of benzothiazol-2-ylcarbamodithioates as Staphylococcus aureus MurD inhibitors. J Recept Signal Transduct Res 2020; 39:283-293. [PMID: 31538846 DOI: 10.1080/10799893.2019.1663538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new series of benzothiazol-2-ylcarbamodithioate functional compounds 5a-f has been designed, synthesized and characterized by spectral data. These compounds were screened for their in vitro antibacterial activity against strains of Staphylococcus aureus (NCIM 5021, NCIM 5022 and methicillin-resistant isolate 43300), Bacillus subtilis (NCIM 2545), Escherichia coli (NCIM 2567), Klebsiella pneumoniae (NCIM 2706) and Psudomonas aeruginosa (NCIM 2036). Compounds 5a and 5d exhibited significant activity against all the tested bacterial strains. Specifically, compounds 5a and 5d showed potent activity against K. pneumoniae (NCIM 2706), while compound 5a also displayed potent activity against S. aureus (NCIM 5021). Compound 5d showed minimum IC50 value of 13.37 μM against S. aureus MurD enzyme. Further, the binding interactions of compounds 5a-f in the catalytic pocket have been investigated using the extra-precision molecular docking and binding free energy calculation by MM-GBSA approach. A 30 ns molecular dynamics simulation of 5d/modeled S. aureus MurD enzyme was performed to determine the stability of the predicted binding conformation.
Collapse
Affiliation(s)
- Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , India
| | - Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , India
| | - Ashish Wadhwani
- Department of Biotechnology, JSS College of Pharmacy , Ooty , India
| |
Collapse
|
15
|
Shan L, Wenling Q, Mauro P, Stefano B. Antibacterial Agents Targeting the Bacterial Cell Wall. Curr Med Chem 2020; 27:2902-2926. [PMID: 32003656 DOI: 10.2174/0929867327666200128103653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
The introduction of antibiotics to treat bacterial infections either by killing or blocking their growth has been accompanied by the studies of mechanism that allows the drugs to kill the bacteria or to stop their proliferation. In such a scenario, the emergence of antibacterial agents active on the bacterial cell wall has been of fundamental importance in the fight against bacterial agents responsible for severe diseases. As a matter of fact, the cell wall, which plays many roles during the lifecycle, is an essential constituent of most bacteria. This overview focuses on the intracellular steps of peptidoglycan biosynthesis and the research of new antibacterial agents based on the enzymes involved in these early steps of the formation of cell membrane components.
Collapse
Affiliation(s)
- Li Shan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, China
| | - Qin Wenling
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, China
| | - Panunzio Mauro
- Isof-CNR Chemistry Department, Via Selmi, 2, 40126 Bologna, Italy
| | - Biondi Stefano
- BioVersys AG, C/o Technologiepark Basel, Hochbergerstrasse 60c, CH- 4057 Basel, Switzerland
| |
Collapse
|
16
|
Chin KF, Ye X, Li Y, Lee R, Kabylda AM, Leow D, Zhang X, Xia Ang EC, Tan CH. Bisguanidinium-Catalyzed Epoxidation of Allylic and Homoallylic Amines under Phase Transfer Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kek Foo Chin
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Richmond Lee
- Division of Science and Math, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Adil M. Kabylda
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Dasheng Leow
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xin Zhang
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Esther Cai Xia Ang
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
17
|
Miyachiro MM, Granato D, Trindade DM, Ebel C, Paes Leme AF, Dessen A. Complex Formation between Mur Enzymes from Streptococcus pneumoniae. Biochemistry 2019; 58:3314-3324. [DOI: 10.1021/acs.biochem.9b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mayara M. Miyachiro
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Daniela Granato
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | | | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| |
Collapse
|
18
|
Azam MA, Saha N, Jupudi S. An explorative study on Staphylococcus aureus MurE inhibitor: induced fit docking, binding free energy calculation, and molecular dynamics. J Recept Signal Transduct Res 2019; 39:45-54. [PMID: 31162992 DOI: 10.1080/10799893.2019.1605528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus MurE enzyme catalyzes the addition of l-lysine as third residue of the peptidoglycan peptide moiety. Due to the high substrate specificity and its ubiquitous nature among bacteria, MurE enzyme is considered as one of the potential target for the development of new therapeutic agents. In the present work, induced fit docking (IFD), binding free energy calculation, and molecular dynamics (MD) simulation were carried out to elucidate the inhibition potential of 2-thioxothiazolidin-4-one based inhibitor 1 against S. aureus MurE enzyme. The inhibitor 1 formed majority of hydrogen bonds with the central domain residues Asn151, Thr152, Ser180, Arg187, and Lys219. Binding free-energy calculation by MM-GBSA approach showed that van der Waals (ΔGvdW, -57.30 kcal/mol) and electrostatic solvation (ΔGsolv, -36.86 kcal/mol) energy terms are major contributors for the inhibitor binding. Further, 30-ns MD simulation was performed to validate the stability of ligand-protein complex and also to get structural insight into mode of binding. Based on the IFD and MD simulation results, we designed four new compounds D1-D4 with promising binding affinity for the S. aureus MurE enzyme. The designed compounds were subjected to the extra-precision docking and binding free energy was calculated for complexes. Further, a 30-ns MD simulation was performed for D1/4C13 complex.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- a Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , Tamil Nadu , India
| | - Niladri Saha
- a Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , Tamil Nadu , India
| | - Srikanth Jupudi
- a Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , Tamil Nadu , India
| |
Collapse
|
19
|
Structure-based virtual screening to identify inhibitors against Staphylococcus aureus MurD enzyme. Struct Chem 2019. [DOI: 10.1007/s11224-019-01330-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Azam MA, Jupudi S, Saha N, Paul RK. Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:1-20. [PMID: 30406684 DOI: 10.1080/1062936x.2018.1539034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The ATP-dependent bacterial MurD enzyme catalyses the formation of the peptide bond between cytoplasmic intermediate UDP-N-acetylmuramoyl-L-alanine and D-glutamic acid. This is essential for bacterial cell wall peptidoglycan synthesis in both Gram-positive and Gram-negative bacteria. MurD is recognized as an important target for the development of new antibacterial agents. In the present study we prepared the 3D-stucture of the catalytic pocket of the Staphylococcus aureus MurD enzyme by homology modelling. Extra-precision docking, binding free energy calculation by the MM-GBSA approach and a 40 ns molecular dynamics (MD) simulation of 2-thioxothiazolidin-4-one based inhibitor $1 was carried out to elucidate its inhibition potential for the S. aureus MurD enzyme. Molecular docking results showed that Lys19, Gly147, Tyr148, Lys328, Thr330 and Phe431 residues are responsible for the inhibitor-protein complex stabilization. Binding free energy calculation revealed electrostatic solvation and van der Waals energy components as major contributors for the inhibitor binding. The inhibitor-modelled S. aureus protein complex had a stable conformation in response to the atomic flexibility and interaction, when subjected to MD simulation at 40 ns in aqueous solution. We designed some molecules as potent inhibitors of S. aureus MurD, and to validate the stability of the designed molecule D1-modelled protein complex we performed a 20 ns MD simulation. Results obtained from this study can be utilized for the design of potent S. aureus MurD inhibitors.
Collapse
Affiliation(s)
- M A Azam
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| | - S Jupudi
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| | - N Saha
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| | - R K Paul
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| |
Collapse
|
21
|
Anitha M, Swamy KCK. Synthesis of thiazolidine-thiones, imino-thiazolidines and oxazolidines via the base promoted cyclisation of epoxy-sulfonamides and heterocumulenes. Org Biomol Chem 2018; 16:402-413. [DOI: 10.1039/c7ob02915b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epoxy-sulfonamides react with heterocumulenes (CS2/RNCS/RNCO) in the presence of a base to afford ring expansion products in good to high yields with excellent regioselectivity.
Collapse
Affiliation(s)
- Mandala Anitha
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046
- India
| | | |
Collapse
|
22
|
Ji N, Yuan J, Liu M, Lan T, He W. Novel chiral Schiff base/Ti(iv) catalysts for the catalytic asymmetric epoxidation of N-alkenyl sulfonamides. Chem Commun (Camb) 2016; 52:7731-4. [DOI: 10.1039/c6cc02852g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel highly enantioselective Schiff base/Ti(iv) catalyst for the catalytic asymmetric epoxidation of a series of N-alkenyl sulfonamides under mild conditions was described.
Collapse
Affiliation(s)
- Nan Ji
- Department of Chemistry
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032
- P. R. China
| | - Jiani Yuan
- Department of Chemistry
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032
- P. R. China
| | - Miaoxi Liu
- Department of Chemistry
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032
- P. R. China
| | - Ting Lan
- Department of Chemistry
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032
- P. R. China
| | - Wei He
- Department of Chemistry
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032
- P. R. China
| |
Collapse
|
23
|
Qin W, Wang L, Zhai R, Ma Q, Liu J, Bao C, Zhang H, Sun C, Feng X, Gu J, Du C, Han W, Langford PR, Lei L. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages. Antonie van Leeuwenhoek 2015; 109:51-70. [PMID: 26494209 DOI: 10.1007/s10482-015-0609-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Abstract
Actinobacillus pleuropneumoniae is an important pathogen that causes respiratory disease in pigs. Trimeric autotransporter adhesin (TAA) is a recently discovered bacterial virulence factor that mediates bacterial adhesion and colonization. Two TAA coding genes have been found in the genome of A. pleuropneumoniae strain 5b L20, but whether they contribute to bacterial pathogenicity is unclear. In this study, we used homologous recombination to construct a double-gene deletion mutant, ΔTAA, in which both TAA coding genes were deleted and used it in in vivo and in vitro studies to confirm that TAAs participate in bacterial auto-aggregation, biofilm formation, cell adhesion and virulence in mice. A microarray analysis was used to determine whether TAAs can regulate other A. pleuropneumoniae genes during interactions with porcine primary alveolar macrophages. The results showed that deletion of both TAA coding genes up-regulated 36 genes, including ene1514, hofB and tbpB2, and simultaneously down-regulated 36 genes, including lgt, murF and ftsY. These data illustrate that TAAs help to maintain full bacterial virulence both directly, through their bioactivity, and indirectly by regulating the bacterial type II and IV secretion systems and regulating the synthesis or secretion of virulence factors. This study not only enhances our understanding of the role of TAAs but also has significance for those studying A. pleuropneumoniae pathogenesis.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lei Wang
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.,College of Animal Science, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Ruidong Zhai
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Qiuyue Ma
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jianfang Liu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hu Zhang
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chongtao Du
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - P R Langford
- Section of Paediatrics, Imperial College London, London, UK
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
24
|
Seo HJ, Kim JC. In situ preparation of gold nanospheres in bead composed of alginate/poly(N-isopropylacrylamide-co-dimethyl aminoethyl methacrylate) and photothermal controlled release. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3524-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Yu WZ, Chen F, Cheng YA, Yeung YY. Catalyst-Free and Metal-Free Electrophilic Bromoamidation of Unactivated Olefins Using the N-Bromosuccinimide/Sulfonamide Protocol. J Org Chem 2015; 80:2815-21. [DOI: 10.1021/jo502416r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wesley Zongrong Yu
- 3 Science Drive 3, Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Feng Chen
- 3 Science Drive 3, Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yi An Cheng
- 3 Science Drive 3, Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ying-Yeung Yeung
- 3 Science Drive 3, Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
26
|
Hrast M, Sosič I, Sink R, Gobec S. Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg Chem 2014; 55:2-15. [PMID: 24755374 DOI: 10.1016/j.bioorg.2014.03.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/12/2023]
Abstract
The widespread emergence of resistant bacterial strains is becoming a serious threat to public health. This thus signifies the need for the development of new antibacterial agents with novel mechanisms of action. Continuous efforts in the design of novel antibacterials remain one of the biggest challenges in drug development. In this respect, the Mur enzymes, MurA-F, that are involved in the formation of UDP-N-acetylmuramyl-pentapeptide can be genuinely considered as promising antibacterial targets. This review provides an in-depth insight into the recent developments in the field of inhibitors of the MurA-F enzymes. Special attention is also given to compounds that act as multiple inhibitors of two, three or more of the Mur enzymes. Moreover, the reasons for the lack of preclinically successful inhibitors and the challenges to overcome these hurdles in the next years are also debated.
Collapse
Affiliation(s)
- Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Roman Sink
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Nikolaidis I, Favini-Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci 2014; 23:243-59. [PMID: 24375653 DOI: 10.1002/pro.2414] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 11/10/2022]
Abstract
Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.
Collapse
Affiliation(s)
- I Nikolaidis
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, 6 rue Jules Horowitz, 38027, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France; Centre National de la Recherche Scientifique (CNRS), UMR 5075, Grenoble, France; Bijvoet Center for Biomolecular Research, Department of Biochemistry of Membranes, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
28
|
Pal’chikov VA, Prid’ma SA, Tokar’ AV, Turov AV, Omel’chenko IV, Shishkin OV, Golodaeva EA, Kas’yan LI. Synthesis, structure, and transformations of N-(bicyclo[2.2.1]hept-5-en-endo-2-ylmethyl)-N-[(oxiran-2-yl) methyl]-arenesulfonamides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1070428013080058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Majce V, Ruane KM, Gobec S, Roper DI. Crystallization and preliminary X-ray analysis of a UDP-MurNAc-tripeptide D-alanyl-D-alanine-adding enzyme (PaMurF) from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:503-5. [PMID: 23695563 PMCID: PMC3660887 DOI: 10.1107/s1744309113005344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/24/2013] [Indexed: 11/11/2022]
Abstract
The ATP-dependent UDP-MurNAc-tripeptide:D-Ala-D-Ala ligase MurF catalyses the last step in the cytoplasmic phase of peptidoglycan biosynthesis, which is critical in the formation of the bacterial cell wall and in the recycling of peptidoglycan intermediates. In this study, the crystallization of MurF from the Gram-negative pathogen Pseudomonas aeruginosa in the presence of its UDP-MurNAc-tripeptide substrate is reported. The crystals belonged to space group P212121, with unit-cell parameters a = 57.81, b = 87.29, c = 92.61 Å, and data were collected to 1.92 Å resolution, allowing study of the enzyme in the substrate-liganded form for the first time.
Collapse
Affiliation(s)
- Vita Majce
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands CV4 7AL, England
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Karen M. Ruane
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands CV4 7AL, England
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - David I. Roper
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands CV4 7AL, England
| |
Collapse
|
30
|
Anusuya S, Natarajan J. Multi-targeted therapy for leprosy: insilico strategy to overcome multi drug resistance and to improve therapeutic efficacy. INFECTION GENETICS AND EVOLUTION 2012; 12:1899-910. [PMID: 22981928 DOI: 10.1016/j.meegid.2012.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 08/01/2012] [Accepted: 08/17/2012] [Indexed: 02/02/2023]
Abstract
Leprosy remains a major public health problem, since single and multi-drug resistance has been reported worldwide over the last two decades. In the present study, we report the novel multi-targeted therapy for leprosy to overcome multi drug resistance and to improve therapeutic efficacy. If multiple enzymes of an essential metabolic pathway of a bacterium were targeted, then the therapy would become more effective and can prevent the occurrence of drug resistance. The MurC, MurD, MurE and MurF enzymes of peptidoglycan biosynthetic pathway were selected for multi targeted therapy. The conserved or class specific active site residues important for function or stability were predicted using evolutionary trace analysis and site directed mutagenesis studies. Ten such residues which were present in at least any three of the four Mur enzymes (MurC, MurD, MurE and MurF) were identified. Among the ten residues G125, K126, T127 and G293 (numbered based on their position in MurC) were found to be conserved in all the four Mur enzymes of the entire bacterial kingdom. In addition K143, T144, T166, G168, H234 and Y329 (numbered based on their position in MurE) were significant in binding substrates and/co-factors needed for the functional events in any three of the Mur enzymes. These are the probable residues for designing newer anti-leprosy drugs in an attempt to reduce drug resistance.
Collapse
Affiliation(s)
- Shanmugam Anusuya
- Department of Bioinformatics, VMKV Engineering College, Vinayaka Missions University, Salem 636 308, India.
| | | |
Collapse
|
31
|
Tomašić T, Šink R, Zidar N, Fic A, Contreras-Martel C, Dessen A, Patin D, Blanot D, Müller-Premru M, Gobec S, Zega A, Kikelj D, Mašič LP. Dual Inhibitor of MurD and MurE Ligases from Escherichia coli and Staphylococcus aureus. ACS Med Chem Lett 2012; 3:626-30. [PMID: 24900523 DOI: 10.1021/ml300047h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/27/2012] [Indexed: 01/16/2023] Open
Abstract
MurD and MurE ligases, consecutive enzymes participating in the intracellular steps of bacterial peptidoglycan biosynthesis, are important targets for antibacterial drug discovery. We have designed, synthesized, and evaluated the first d-glutamic acid-containing dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus (IC50 values between 6.4 and 180 μM) possessing antibacterial activity against Gram-positive S. aureus and its methicillin-resistant strain (MRSA) with minimal inhibitory concentration (MIC) values of 8 μg/mL. The inhibitor was also found to be noncytotoxic for human HepG2 cells at concentrations below 200 μM.
Collapse
Affiliation(s)
- Tihomir Tomašić
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Roman Šink
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Anja Fic
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Carlos Contreras-Martel
- Institut de Biologie Structurale,
Bacterial Pathogenesis Group, Université Grenoble I, 38027 Grenoble, France
- Commissariat à l'Energie Atomique (CEA), IBS, 38027 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), IBS, 41 rue Jules
Horowitz, 38027 Grenoble, France
| | - Andréa Dessen
- Institut de Biologie Structurale,
Bacterial Pathogenesis Group, Université Grenoble I, 38027 Grenoble, France
- Commissariat à l'Energie Atomique (CEA), IBS, 38027 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), IBS, 41 rue Jules
Horowitz, 38027 Grenoble, France
| | - Delphine Patin
- Univ Paris-Sud, Laboratoire des Enveloppes
Bactériennes et Antibiotiques,
Institut de Biochimie et Biophysique Moléculaire et Cellulaire,
UMR 8619, 91405 Orsay, France
- CNRS, 91405
Orsay, France
| | - Didier Blanot
- Univ Paris-Sud, Laboratoire des Enveloppes
Bactériennes et Antibiotiques,
Institut de Biochimie et Biophysique Moléculaire et Cellulaire,
UMR 8619, 91405 Orsay, France
- CNRS, 91405
Orsay, France
| | - Manica Müller-Premru
- Institute
of Microbiology and
Immunology, Medical Faculty, University of Ljubljana, 1105 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | | |
Collapse
|
32
|
Olivares-Romero JL, Li Z, Yamamoto H. Hf(IV)-catalyzed enantioselective epoxidation of N-alkenyl sulfonamides and N-tosyl imines. J Am Chem Soc 2012; 134:5440-3. [PMID: 22420598 DOI: 10.1021/ja211880s] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Asymmetric epoxidation of allylic and homoallylic amine derivatives catalyzed by Hf(IV)-bishydroxamic acid complexes is described. Under similar conditions, aldimine and ketimine produced oxaziridines. The sulfonyl group is demonstrated to be an effective directing group for these transformations.
Collapse
|
33
|
Virtual screening of phenylsulfonamido-3-morpholinopropan-2-yl dihydrogen phosphate derivatives as novel inhibitors of MurC–MurF ligases from Mycobacterium leprae. Med Chem Res 2012. [DOI: 10.1007/s00044-011-9958-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Homology modeling and docking analyses of M. leprae Mur ligases reveals the common binding residues for structure based drug designing to eradicate leprosy. J Mol Model 2011; 18:2659-72. [PMID: 22102165 DOI: 10.1007/s00894-011-1285-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
Abstract
Multi drug resistance capacity for Mycobacterium leprae (MDR-Mle) demands the profound need for developing new anti-leprosy drugs. Since most of the drugs target a single enzyme, mutation in the active site renders the antibiotic ineffective. However, structural and mechanistic information on essential bacterial enzymes in a pathway could lead to the development of antibiotics that targets multiple enzymes. Peptidoglycan is an important component of the cell wall of M. leprae. The biosynthesis of bacterial peptidoglycan represents important targets for the development of new antibacterial drugs. Biosynthesis of peptidoglycan is a multi-step process that involves four key Mur ligase enzymes: MurC (EC:6.3.2.8), MurD (EC:6.3.2.9), MurE (EC:6.3.2.13) and MurF (EC:6.3.2.10). Hence in our work, we modeled the three-dimensional structure of the above Mur ligases using homology modeling method and analyzed its common binding features. The residues playing an important role in the catalytic activity of each of the Mur enzymes were predicted by docking these Mur ligases with their substrates and ATP. The conserved sequence motifs significant for ATP binding were predicted as the probable residues for structure based drug designing. Overall, the study was successful in listing significant and common binding residues of Mur enzymes in peptidoglycan pathway for multi targeted therapy.
Collapse
|
35
|
Osman K, Evangelopoulos D, Basavannacharya C, Gupta A, McHugh TD, Bhakta S, Gibbons S. An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. Int J Antimicrob Agents 2011; 39:124-9. [PMID: 22079533 PMCID: PMC3657136 DOI: 10.1016/j.ijantimicag.2011.09.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/05/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022]
Abstract
In a project to characterise new antibacterial chemotypes from plants, hyperenone A and hypercalin B were isolated from the hexane and chloroform extracts of the aerial parts of Hypericum acmosepalum. The structures of both compounds were characterised by extensive one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and were confirmed by mass spectrometry. Hyperenone A and hypercalin B exhibited antibacterial activity against multidrug-resistant strains of Staphylococcus aureus, with minimum inhibition concentration ranges of 2–128 mg/L and 0.5–128 mg/L, respectively. Hyperenone A also showed growth-inhibitory activity against Mycobacterium tuberculosis H37Rv and Mycobacterium bovis BCG at 75 mg/L and 100 mg/L. Neither hyperenone A nor hypercalin B inhibited the growth of Escherichia coli and both were non-toxic to cultured mammalian macrophage cells. Both compounds were tested for their ability to inhibit the ATP-dependent MurE ligase of M. tuberculosis, a crucial enzyme in the cytoplasmic steps of peptidoglycan biosynthesis. Hyperenone A inhibited MurE selectively, whereas hypercalin B did not have any effect on enzyme activity.
Collapse
Affiliation(s)
- Khadijo Osman
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Gautam A, Vyas R, Tewari R. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit Rev Biotechnol 2010; 31:295-336. [PMID: 21091161 DOI: 10.3109/07388551.2010.525498] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The range of antibiotic therapy for the control of bacterial infections is becoming increasingly limited because of the rapid rise in multidrug resistance in clinical bacterial isolates. A few diseases, such as tuberculosis, which were once thought to be under control, have re-emerged as serious health threats. These problems have resulted in intensified research to look for new inhibitors for bacterial pathogens. Of late, the peptidoglycan (PG) layer, the most important component of the bacterial cell wall has been the subject of drug targeting because, first, it is essential for the survivability of eubacteria and secondly, it is absent in humans. The last decade has seen tremendous inputs in deciphering the 3-D structures of the PG biosynthetic enzymes. Many inhibitors against these enzymes have been developed using virtual and high throughput screening techniques. This review discusses the mechanistic and structural properties of the PG biosynthetic enzymes and inhibitors developed in the last decade.
Collapse
Affiliation(s)
- Ankur Gautam
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
37
|
Patin D, Boniface A, Kovač A, Hervé M, Dementin S, Barreteau H, Mengin-Lecreulx D, Blanot D. Purification and biochemical characterization of Mur ligases from Staphylococcus aureus. Biochimie 2010; 92:1793-800. [PMID: 20659527 DOI: 10.1016/j.biochi.2010.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted L-Ala, L-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for L-Ala. S. aureus MurE was very specific for L-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and L-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (L-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and L-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Delphine Patin
- Univ Paris-Sud, Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kasımoğulları R, Bülbül M, Mert S, Güleryüz H. Synthesis of 5-amino-1,3,4-thiadiazole-2-sulphonamide derivatives and their inhibition effects on human carbonic anhydrase isozymes. J Enzyme Inhib Med Chem 2010; 26:231-7. [PMID: 20553118 DOI: 10.3109/14756366.2010.491795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, some novel inhibitors were synthesised from the further stage reactions of 4-benzoyl-1-(4-nitrophenyl)-5-phenyl-1H-pyrazole-3-carbonyl chloride with 5-amino-1,3,4-thiadiazole-2-sulphonamide 1 (inhibitor 1). They were characterised by elemental and spectral (¹H NMR, ¹³C NMR, IR) analyses. Human carbonic anhydrase isoenzymes (hCA-I and hCA-II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of inhibitor 1, acetazolamide (2) and the 11 newly synthesised amides (8-18) on the hydratase and esterase activities of these isoenzymes (hCA-I and hCA-II) were studied in vitro. In relation to these activities, the inhibition equilibrium constants (K(i)) were determined. The K(i) values for the new compounds (8-18) were observed to be well below that of the parent compound inhibitor 1 and were also compared to 2 under the same experimental conditions. The comparison of the newly synthesised amides to inhibitor 1 and to 2 indicated that the new derivatives preferentially inhibited hCA-II and were more potent inhibitors of hCA-II than the parent inhibitor 1 and 2.
Collapse
Affiliation(s)
- Rahmi Kasımoğulları
- Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kutahya, Turkey.
| | | | | | | |
Collapse
|