1
|
Travagliante G, Gaeta M, Purrello R, D’Urso A. Porphyrins as Chiroptical Conformational Probes for Biomolecules. Molecules 2025; 30:1512. [PMID: 40286092 PMCID: PMC11990877 DOI: 10.3390/molecules30071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Porphyrins are highly conjugated macrocyclic compounds that possess exceptional photophysical and chemical properties, progressively establishing themselves as versatile tools in the structural investigation of biomolecules. This review explores their role as chiroptical conformational probes, focusing on their interactions with DNA and RNA. The planar electron rich structure of porphyrin macrocycle that promote π-π interactions, their easy functionalization at the meso positions, and their capacity to coordinate metal ions enable their use in probing nucleic acid structures with high sensitivity. Emphasis is placed on their induced circular dichroism (ICD) signals in the Soret region, which provide precise diagnostic insights into binding mechanisms and molecular interactions. The review examines the interactions of porphyrins with various DNA structures, including B-, Z-, and A-DNA, single-stranded DNA, and G-quadruplex DNA, as well as less common structures like I-motif and E-motif DNA. The last part highlights recent advancements in the use of porphyrins to probe RNA structures, emphasizing binding behaviors and chiroptical signals observed with RNA G-quadruplexes, as well as the challenges in interpreting ICD signals with other RNA motifs due to their inherent structural complexity.
Collapse
Affiliation(s)
| | | | | | - Alessandro D’Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria, 6, 95125 Catania, Italy; (G.T.); (M.G.); (R.P.)
| |
Collapse
|
2
|
Rohrer C, Palumbo A, Paul M, Reese E, Basu S. Neurotransmitters and neural hormone-based probes for quadruplex DNA sequences associated with neurodegenerative diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-24. [PMID: 39561111 DOI: 10.1080/15257770.2024.2431145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The potential of neurotransmitters and neural hormones as possible G-quadruplex DNA binders was analyzed using fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), DNA melting analysis, and molecular docking. G-quadruplex sequences, (GGC)3 and G4C2, with roles in Fragile X syndrome and amyotrophic lateral sclerosis (ALS), respectively, were selected, and their interactions with melatonin, serotonin, and gamma-aminobutyric acid (GABA), were studied. Both melatonin and serotonin demonstrated strong interactions with the DNA sequences with hydrogen bonding being the primary mode of interaction, with some non-intercalative interactions involving the π systems. GABA demonstrated much weaker interactions and may not be a suitable candidate as a probe for low concentrations of G-quadruplex DNA.
Collapse
Affiliation(s)
- Callie Rohrer
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Alexis Palumbo
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Marissa Paul
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Erin Reese
- Department of Biology, Susquehanna University, Selinsgrove, PA, USA
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| |
Collapse
|
3
|
Kumar A, Sevilla MD. Proton-Transfer Reactions in One-Electron-Oxidized G-Quadruplexes: A Density Functional Theory Study. J Phys Chem B 2022; 126:1483-1491. [PMID: 35152699 PMCID: PMC8881324 DOI: 10.1021/acs.jpcb.1c10529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, G-quadruplexes (Gq) formed in B-DNA as secondary structures are found to be important therapeutic targets and material for developing nanodevices. Gq are guanine-rich and thus susceptible to oxidative damage by producing short-lived intermediate radicals via proton-transfer reactions. Understanding the mechanisms of radical formation in Gq is of fundamental interest to understand the early stages of DNA damage. Herein, we used density functional theory including aqueous phase (ωB97XD-PCM/6-31++G**) and considered single layer of Gq [G-quartets (G4): association of four guanines in a cyclic Hoogsteen hydrogen-bonded arrangement (Scheme 1)] to unravel the mechanisms of formation of intermediates by calculating the relative Gibbs free energies and spin density distributions of one-electron-oxidized G4 and its various proton-transfer states: G•+, G(N1-H)•, G(N2-H')•, G(N2-H″)•, G(N1-H)•-(H+O6)G, and G(N2-H)•-(H+N7)G. The present calculation predicts the formation of G(N2-H)•-(H+N7)G, which is only ca. 0.8 kcal/mol higher in energy than the initially formed G•+. The formation of G(N2-H)•-(H+N7)G plays a key role in explaining the formation of 8-OG along with G(N1-H)• formation via tautomerization from G(N2-H)•, as proposed recently.
Collapse
Affiliation(s)
- Anil Kumar
- Corresponding Author: . Tel: +1 248 370 2327, . Tel: +1 248 370 2328
| | | |
Collapse
|
4
|
Fu B, Lin HC, Liu YC, Lin JR, Xiong WM, Deng SJ, Chen N, Liang R, Zhao P. VEGF aptamer/i-motif-grafted multi-functional SPION nanocarrier for chemotherapeutic/phototherapeutic synergistic research. J Biomater Appl 2021; 36:1277-1288. [PMID: 34689658 DOI: 10.1177/08853282211049620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapeutic agents and photosensitizers often suffer from poor tumor selectivity, high side toxicity, or low water solubility. To address these problems, various drug delivery systems (DDS) have been explored but most of them are toxic, difficult to synthesize, or of single function. In order to design a highly biocompatible, conveniently prepared, multi-functional drug delivery system, herein, an aptamer of vascular endothelial growth factor (VEGF) and a cytosine (C)-DNA fragment were grafted on the surface of superparamagnetic iron oxide nanoparticles (SPION), and then a chemotherapeutic agent daunomycin (DNM) and a photosensitizer 5, 10, 15, 20-tetra (phenyl-4-N-methyl-4-pyridyl) porphyrin (TMPyP) were self-assembled with the hybridized VEGF-based DNA structure. By loading DNM and TMPyP, the DDS displayed strong chemotherapeutic/phototherapeutic capability against cancer cells via mechanisms such as mitochondrial dysfunction and ROS elevation, which triggered the apoptosis of the tumor cells. The dual delivery of chemotherapeutical agents and photosensitizers with aptamer/C-rich DNA successfully integrated the functions of pH stimuli-responsive drug release and chemotherapeutic/phototherapeutic modalities into one single system and thus could be considered as an ideal drug delivery vehicle with great potential in clinic.
Collapse
Affiliation(s)
- Bo Fu
- College of Health Industry, Zhongshan Torch Polytechnic, Guangdong, China
| | - Hui-Chao Lin
- Cang Zhou People's Hospital, Cangzhou, China.,School of Chemistry and Chemical Engineering, 71237Guangdong Pharmaceutical University, Guangdong, PR China
| | - Ying-Chun Liu
- College of Health Industry, Zhongshan Torch Polytechnic, Guangdong, China
| | - Jie-Rou Lin
- Cang Zhou People's Hospital, Cangzhou, China
| | - Wen-Ming Xiong
- College of Health Industry, Zhongshan Torch Polytechnic, Guangdong, China
| | | | - Nian Chen
- College of Health Industry, Zhongshan Torch Polytechnic, Guangdong, China
| | - Rui Liang
- Cang Zhou People's Hospital, Cangzhou, China
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, 71237Guangdong Pharmaceutical University, Guangdong, PR China
| |
Collapse
|
5
|
Zhao P, Tang ZW, Lin HC, Djuanda D, Zhu Z, Niu Q, Zhao LM, Qian YN, Cao G, Shen JL, Fu B. VEGF aptamer/i-motif-based drug co-delivery system for combined chemotherapy and photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102547. [PMID: 34562647 DOI: 10.1016/j.pdpdt.2021.102547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Nucleic acids used as drug delivery systems (DDS) have gained attention because of their biosafety and effortless synthesis. G-quadruplex (G4) structured aptamer such as AS1411 was frequently employed to deliver photosensitizers or chemotherapeutic agents while other aptamers were seldomly reported in this field. METHODS Herein, a chemical anticancer drug daunomycin (DNM), and a photosensitizer 5, 10, 15, 20-tetra (phenyl-4-N-methyl-4-pyridyl) porphyrin (TMPyP) were physically assembled with a novel DNA structure composed of an aptamer of vascular endothelial growth factor (VEGF) and a cytosine (C)-rich DNA fragment (gc-34). Spectral and molecular mimicking methods were employed to research the drug loading/releasing process. The in vitro cytotoxicity was studied by MTT, ROS, cell cycle, and cell apoptotic assays and the in vivo anticancer efficiency was evaluated by the inhibitive effect on the cancerous growth of MCF-7 tumor-bearing nude mice. RESULTS The G4-structured VEGF aptamer delivered TMPyP successfully for the first time. The designed DDS displayed sensitive VEGF/pH controlled drug release. The co-delivery of DNM and TMPyP exhibited high ROS production, significant cell cycle arresting and evident cell apoptosis, and displayed superior cytotoxicity against tumor cells compared with individual agents in vitro. In vivo studies showed that the dual-drug loaded system can greatly inhibit tumor growth with chemotherapeutic/photodynamic synergistic effects. CONCLUSION The co-delivery of DNM and TMPyP with aptamer/C-rich DNA successfully integrates the functions of VEGF/pH stimuli-responsive drug release and chemotherapeutic/phototherapeutic modalities into one single system, and may have great potential in cancer treatment.
Collapse
Affiliation(s)
- Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China.
| | - Zi-Wei Tang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Hui-Chao Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - David Djuanda
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhaowei Zhu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiang Niu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China; Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Li-Min Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Yu-Na Qian
- Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Gao Cao
- Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Jian-Liang Shen
- Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| | - Bo Fu
- College of Health Industry, Zhongshan Torch Polytechnic, No. 7 Xingye Road, Zhongshan 528436, Guangdong, China.
| |
Collapse
|
6
|
Gold(III) porphyrins: Synthesis and interaction with G-quadruplex DNA. J Inorg Biochem 2021; 223:111551. [PMID: 34340058 DOI: 10.1016/j.jinorgbio.2021.111551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022]
Abstract
G-quadruplex nucleic acids (G4s) are RNA and DNA secondary structures involved in the regulation of multiple key biological processes. They can be found in telomeres, oncogene promoters, RNAs, but also in viral genomes. Due to their unique structural features, very distinct from the canonical duplexes or single-strands, G4s represent promising pharmacological targets for small molecules, namely G4-ligands. Gold(III) penta-cationic porphyrins, as specific G4 ligands, are able to inhibit HIV-1 infectivity and their antiviral activity correlates with their affinity for G4s. Up to now, one of the best antiviral compounds is meso-5,10,15,20-tetrakis[4-(N-methyl-pyridinium-2-yl)phenyl]porphyrinato gold(III) (1). Starting from this compound, we report a structure/affinity relationship study of gold(III) cationic porphyrins to find out the best porphyrin candidate for functionalization, in order to study the antiviral mechanism of action of these gold(III) porphyrins.
Collapse
|
7
|
Interactions of porphyrins with DNA: A review focusing recent advances in chemical modifications on porphyrins as artificial nucleases. J Inorg Biochem 2021; 219:111434. [PMID: 33819802 DOI: 10.1016/j.jinorgbio.2021.111434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
The advance of porphyrins as artificial nucleases along the years have developed a class of compounds having potential therapeutic applications. Being an extrovert of chemistry, a variety of chemical modifications have been done on porphyrin macrocycle in order to improve the spectroscopic properties and to adapt as artificial receptors that can recognize molecules. The last twenty years has witnessed broad research in the arena of porphyrin- DNA interactions and their evolution from simple to more complex entities. In this review, we summarize the recent advances in the porphyrin-based structural modifications, with a specific emphasis on various effects of porphyrin on DNA cleavage potency. We particularly detailed the nuclease activity of cationic and anionic porphyrins, porphyrin dimers and conjugates as well as heme proteins till the third generation porphyrins as artificial nucleases.
Collapse
|
8
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Ligands of G-quadruplex nucleic acids. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Zhang Q, Hou B, Li Y, Zhang W, Liu J. DNA interactive and selective anticancer activity studies of copper(II) complexes decorated water‐soluble porphyrin. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Bing‐jie Hou
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Yan‐yan Li
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Wen‐yuan Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Jia‐cheng Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| |
Collapse
|
10
|
Zhang L, Liu X, Lu S, Liu J, Zhong S, Wei Y, Bing T, Zhang N, Shangguan D. Thiazole Orange Styryl Derivatives as Fluorescent Probes for G-Quadruplex DNA. ACS APPLIED BIO MATERIALS 2020; 3:2643-2650. [DOI: 10.1021/acsabm.9b01243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lingling Zhang
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi, PR China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilong Zhong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbiao Wei
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi, PR China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Sun X, Liu B, Chen X, Lin H, Peng Y, Li Y, Zheng H, Xu Y, Ou X, Yan S, Wu Z, Deng S, Zhang L, Zhao P. Aptamer-assisted superparamagnetic iron oxide nanoparticles as multifunctional drug delivery platform for chemo-photodynamic combination therapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:76. [PMID: 31218573 DOI: 10.1007/s10856-019-6278-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/03/2019] [Indexed: 05/27/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) were widely employed as targeted drug delivery platform due to their unique magnetic property and effortless surface modification. However, the lack of targeting accuracy has been a big obstacle for SPION used in precise medicine. Herein, the tumor-targeting of SPION was enhanced by the conjugation of an aptamer-hybridized nucleic acid structure. The aptamer modified on the surface of SPION was composed of a double-stranded DNA (dsDNA) and a G-quadruplex DNA (AS1411) structure, which carried a chemical anticancer drug, daunomycin (DNM) and a photosensitizer molecule, namely 5, 10, 15, 20-tetra (phenyl-4-N-methyl-4-pyridyl) porphyrin (TMPyP), respectively. The aptamer-dsDNA conjugated SPION nanocarriers (named Apt-S8@SPION) exhibited good stability in serum and nuclease DNase I. The drug-loaded nanocarriers (TMPyP&DNM&Apt-S8@SPION) have high cellular cytotoxicity to A549 and C26 cells which are represently nucleolin-overexpressing cancer cells. The nucleolin-blocking experiments unambiguously evidenced that the formed nanomedicine could target to the cell surface via the specific AS1411-nucleolin interaction, which increased the efficiency of cell uptake. Meanwhile, the TMPyP&DNM&Apt-S8@SPION nanospheres could produce cytotoxic reactive oxygen species efficiently by irradiation of visible light for establishing a new type of PDT to cancer cells. Therefore, the designed TMPyP&DNM&Apt-S8@SPION nanoparticles have magnetic-aptamer dual targeting and combined chemo-photodynamic therapy, and thus were supposed to be ideal drug delivery vehicles with great potential in the era of precision medicine.
Collapse
Affiliation(s)
- Xiangyu Sun
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Xianli Chen
- Medical College of Shaoguan University, No. 128, Xinhuanan Road, 512026, Shaoguan, China
| | - Huichao Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Yanbo Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Yanyu Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Haoran Zheng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Yibin Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Xulin Ou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Siqi Yan
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Zonghai Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Shujun Deng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China.
| |
Collapse
|
12
|
Spectroscopic, thermodynamic and molecular docking studies on the interaction of two water-soluble asymmetric cationic porphyrins with calf thymus DNA. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01609-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Sun XY, Zhao P, Jin SF, Liu MC, Wang XH, Huang YM, Cheng ZF, Yan SQ, Li YY, Chen YQ, Zhong YM. Shedding lights on the flexible-armed porphyrins: Human telomeric G4 DNA interaction and cell photocytotoxicity research. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:606-617. [DOI: 10.1016/j.jphotobiol.2017.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 01/21/2023]
|
14
|
Huo YF, Zhu LN, Liu KK, Zhang LN, Zhang R, Kong DM. Water-Soluble Cationic Metalloporphyrins: Specific G-Quadruplex-Stabilizing Ability and Reversible Chirality of Aggregates Induced by AT-Rich DNA. Inorg Chem 2017; 56:6330-6342. [DOI: 10.1021/acs.inorgchem.7b00426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yan-Fang Huo
- Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
- State Key
Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of
Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, People’s Republic of China
| | - Li-Na Zhu
- Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| | - Ke-Ke Liu
- Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Li-Na Zhang
- Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ran Zhang
- Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| | - De-Ming Kong
- State Key
Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of
Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
15
|
Perrier A, Mothes E, Bonduelle C, Pratviel G. Synthesis of asymmetric guanidiniumphenyl-aminophenyl porphyrins. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424616501170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The symmetric meso-tetrakis(4-aminophenyl)porphyrin was reacted with nonstoichiometric amount of [Formula: see text],[Formula: see text]-bis(tert-butoxycarbonyl)-[Formula: see text]-methylisothiourea with respect to the amine functions of the porphyrin to afford (after deprotection of the Boc residues) the asymmetric guanidiniumphenyl-aminophenyl porphyrins carrying two or three guanidiniumphenyl substituents at the meso-position. The adjacent and opposite isomers of the bis(guanidiniumphenyl) modified porphyrins were isolated separately.
Collapse
Affiliation(s)
- Arnaud Perrier
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, 31077 Toulouse, France
| | - Emmanuelle Mothes
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, 31077 Toulouse, France
| | - Colin Bonduelle
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, 31077 Toulouse, France
| | - Geneviève Pratviel
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
16
|
Polyhydric Corrole and Its Gallium Complex: Synthesis, DNA-binding Properties and Photodynamic Activities. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Jiang Y, Chen AC, Kuang GT, Wang SK, Ou TM, Tan JH, Li D, Huang ZS. Design, synthesis and biological evaluation of 4-anilinoquinazoline derivatives as new c-myc G-quadruplex ligands. Eur J Med Chem 2016; 122:264-279. [PMID: 27372288 DOI: 10.1016/j.ejmech.2016.06.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/18/2022]
Abstract
A series of 4-anilinoquinazoline derivatives were designed and synthesized as novel c-myc promoter G-quadruplex binding ligands. Subsequent biophysical and biochemical evaluation demonstrated that the introduction of aniline group at 4-position of quinazoline ring and two side chains with terminal amino group improved their binding affinity and stabilizing ability to G-quadruplex DNA. RT-PCR assay and Western blot showed that compound 7a could down-regulate transcription and expression of c-myc gene in Hela cells, which was consistent with the behavior of an effective G-quadruplex ligand targeting c-myc oncogene. More importantly, RTCA and colony formation assays indicated that 7a obviously inhibited Hela cells proliferation, without influence on normal primary cultured mouse mesangial cells. Flow cytometric assays suggested that 7a induced Hela cells to arrest in G0/G1 phase both in a time-dependent and dose-dependent manner.
Collapse
Affiliation(s)
- Yin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ai-Chun Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Guo-Tao Kuang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Shi-Ke Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
18
|
Tolstykh G, Sizov V, Kudrev A. Surface complex of ZnTMPyP4 metalloporphyrin with double-stranded Poly(A)-Poly(U). J Inorg Biochem 2016; 161:83-90. [PMID: 27216450 DOI: 10.1016/j.jinorgbio.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
This communication presents synthesis and spectral characterization of metalloporphyrin [Zn(X)TMPyP4] (TMPyP4 is 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin), and studies its binding onto anionic surface sites of synthetic double stranded polynucleotide Poly(A)-Poly(U). [Zn(X)TMPyP4] binding with Poly(A)-Poly(U) was monitored by UV-Vis absorbance spectroscopy, two fluorescence spectroscopies and 1H NMR in a working aqueous medium of 0.15M ionic strength, pH7.0 and at 25°C. The evidence provided by spectroscopic measurements and multivariate data analysis suggests the use of this metalloporphyrin as a probe for investigation of the polynucleotide surface. In contrast to TMPyP4 intercalation, an outside adsorption of [Zn(X)TMPyP4] induces an attenuation of luminescence intensity and has little influence on the shape of luminescence band. Special attention was paid to the quantitative description of the interaction between neighboring ligands on the Poly(A)-Poly(U) surface. The intrinsic binding constant to an isolated binding site lgKin 5.8±0.1, the cooperativity parameter ω 1.8±0.2, and number of monomers occupied by a ligand n=2 (25°C; pH7.0) were calculated based upon the recently proposed non-linear least-squares fitting procedure. The discovered cooperativity of binding of [Zn(X)TMPyP4] metalloporphyrin to Poly(A)-Poly(U) is significantly lower as compared to free porphyrin TMPyP4, reflecting minimal mutual influence between the nearest neighboring ligands bound with functional PO4(-) groups of the polynucleotide surface.
Collapse
Affiliation(s)
- G Tolstykh
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - V Sizov
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - A Kudrev
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| |
Collapse
|
19
|
Zhao P, Liu MC, Madanayake T, Reena C, Zheng M, Cheng ZF, Huang YM, Wang XH. Cationic porphyrin@SPION nanospheres as multifunctional anticancer therapeutics: magnetic targeting, photodynamic potential and bio-safety research. RSC Adv 2016. [DOI: 10.1039/c6ra19697g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Porphyrin@SPION nanospheres are described as pH-controllable, multifunctional photosensitizations with delivery bio-safety.
Collapse
Affiliation(s)
- Ping Zhao
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
- College of Pharmacy
| | - Min-Chao Liu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | | | - Chawla Reena
- College of Pharmacy
- University of Arizona
- Tucson
- USA
| | - Min Zheng
- School of Basic
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Zhen-Feng Cheng
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Yu-Min Huang
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Xia-Hong Wang
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| |
Collapse
|