1
|
Gediya P, Vyas VK, Carafa V, Sitwala N, Della Torre L, Poziello A, Kurohara T, Suzuki T, Sanna V, Raguraman V, Suthindhiran K, Ghosh D, Bhatia D, Altucci L, Ghate MD. Discovery of novel tetrahydrobenzo[b]thiophene-3-carbonitriles as histone deacetylase inhibitors. Bioorg Chem 2021; 110:104801. [PMID: 33756235 DOI: 10.1016/j.bioorg.2021.104801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
The discovery and development of isoform-selective histone deacetylase (HDAC) inhibitor is a challenging task because of the sequence homology among HDAC enzymes. In the present work, novel tetrahydro benzo[b]thiophene-3-carbonitrile based benzamides were designed, synthesized, and evaluated as HDAC inhibitors. Pharmacophore modeling was our main design strategy, and two novel series of tetrahydro benzo[b]thiophene-3-carbonitrile derivatives with piperidine linker (series 1) and piperazine linker (series 2) were identified as HDAC inhibitors. Among all the synthesised compounds, 9h with 4-(aminomethyl) piperidine linker and 14n with piperazine linker demonstrated good activity against human HDAC1 and HDAC6, respectively. Both the compounds also exhibited good antiproliferative activity against several human cancer cell lines. Both these compounds (9h and 14n) also induced cell cycle arrest and apoptosis in U937 and MDA-MB-231 cancer cells. Overall, for the first time, this research discovered potent isoform-selective HDAC inhibitors using cyclic linker instead of the aliphatic chain and aromatic ring system, which were reported in known HDAC inhibitors.
Collapse
Affiliation(s)
- Piyush Gediya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Nikum Sitwala
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Laura Della Torre
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angelita Poziello
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Takashi Kurohara
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibarakishi, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibarakishi, Osaka 567-0047, Japan
| | - Vinod Sanna
- Piramal Pharma Solution, Plot-18 Pharmaceutical Special Economic Zone, Sarkhej-Bawla, NH-8A, Ahmedabad, Gujarat 382213, India
| | - Varalakshmi Raguraman
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - K Suthindhiran
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Debarpan Ghosh
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, Gujarat, India
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
2
|
Vyas VK, Qureshi G, Oza D, Patel H, Parmar K, Patel P, Ghate MD. Synthesis of 2-,4,-6-, and/or 7-substituted quinoline derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents: 3D QSAR-assisted design. Bioorg Med Chem Lett 2019; 29:917-922. [DOI: 10.1016/j.bmcl.2019.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 11/26/2022]
|
3
|
Sitwala ND, Vyas VK, Gedia P, Patel K, Bouzeyen R, Kidwai S, Singh R, Ghate MD. 3D QSAR-based design and liquid phase combinatorial synthesis of 1,2-disubstituted benzimidazole-5-carboxylic acid and 3-substituted-5 H-benzimidazo[1,2- d][1,4]benzodiazepin-6(7 H)-one derivatives as anti-mycobacterial agents. MEDCHEMCOMM 2019; 10:817-827. [PMID: 31293724 DOI: 10.1039/c9md00006b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) is one of the world's deadliest infectious diseases, caused by Mycobacterium tuberculosis (Mtb). In the present study, a 3D QSAR study was performed for the design of novel substituted benzimidazole derivatives as anti-mycobacterial agents. The anti-tubercular activity of the designed compounds was predicted using the generated 3D QSAR models. The designed compounds which showed better activity were synthesized as 1,2-disubstituted benzimidazole-5-carboxylic acid derivatives (series 1) and 3-substituted-5H-benzimidazo[1,2-d][1,4]benzodiazepin-6(7H)-one derivatives (series 2) using the liquid phase combinatorial approach using a soluble polymer assisted support (PEG5000). The compounds were characterized by 1H-NMR, 13C-NMR, FTIR and mass spectrometry. HPLC analysis was carried out to evaluate the purity of the compounds. We observed that the synthesised compounds inhibited the growth of intracellular M. tuberculosis H37Rv in a bactericidal manner. The most active compound 16 displayed an MIC value of 0.0975 μM against the Mtb H37Rv strain in liquid cultures. The lead compound was also able to inhibit the growth of intracellular mycobacteria in THP-1 macrophages.
Collapse
Affiliation(s)
- Nikum D Sitwala
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| | - Piyush Gedia
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| | - Kinjal Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| | - Rania Bouzeyen
- Institut Pasteur de Tunis , LTCII, LR11 IPT02 , Tunis , 1002 , Tunisia.,Université Tunis El Manar , Tunis , 1068 , Tunisia
| | - Saqib Kidwai
- Tuberculosis Research Laboratory , Vaccine and Infectious Disease Research Centre , Translational Health Science and Technology Institute , Faridabad-Gurugram Expressway , Haryana , India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory , Vaccine and Infectious Disease Research Centre , Translational Health Science and Technology Institute , Faridabad-Gurugram Expressway , Haryana , India
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| |
Collapse
|
4
|
Madak JT, Bankhead A, Cuthbertson CR, Showalter HD, Neamati N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol Ther 2018; 195:111-131. [PMID: 30347213 DOI: 10.1016/j.pharmthera.2018.10.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identified as a hallmark of cancer, metabolic reprogramming allows cancer cells to rapidly proliferate, resist chemotherapies, invade, metastasize, and survive a nutrient-deprived microenvironment. Rapidly growing cells depend on sufficient concentrations of nucleotides to sustain proliferation. One enzyme essential for the de novo biosynthesis of pyrimidine-based nucleotides is dihydroorotate dehydrogenase (DHODH), a known therapeutic target for multiple diseases. Brequinar, leflunomide, and teriflunomide, all of which are potent DHODH inhibitors, have been clinically evaluated but failed to receive FDA approval for the treatment of cancer. Inhibition of DHODH depletes intracellular pyrimidine nucleotide pools and results in cell cycle arrest in S-phase, sensitization to current chemotherapies, and differentiation in neural crest cells and acute myeloid leukemia (AML). Furthermore, DHODH is a synthetic lethal susceptibility in several oncogenic backgrounds. Therefore, DHODH-targeted therapy has potential value as part of a combination therapy for the treatment of cancer. In this review, we focus on the de novo pyrimidine biosynthesis pathway as a target for cancer therapy, and in particular, DHODH. In the first part, we provide a comprehensive overview of this pathway and its regulation in cancer. We further describe the relevance of DHODH as a target for cancer therapy using bioinformatic analyses. We then explore the preclinical and clinical results of pharmacological strategies to target the de novo pyrimidine biosynthesis pathway, with an emphasis on DHODH. Finally, we discuss potential strategies to harness DHODH as a target for the treatment of cancer.
Collapse
Affiliation(s)
- Joseph T Madak
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christine R Cuthbertson
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| | - Nouri Neamati
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|