1
|
Zhang G, Feng B, Wang Y, Chen J, Ma X, Song Q. 1,1-Oxycarbonation of Terminal Alkynes via Sequential Borylation, 1,2-Migration, and Oxidation with Oxone. Org Lett 2024; 26:3109-3113. [PMID: 38552168 DOI: 10.1021/acs.orglett.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Alkynes are readily available and multifunctional synthetic intermediates, but their 1,1-oxofunctionalization remains challenging. Herein, we report a 1,1-oxycarbonation of terminal alkynes to construct ketones through sequential borylation, 1,2-carbon migration, and oxidation with Oxone as the proton source and oxidant. The synthetic potential of this transformation is showcased by the broad functional groups, scale-up synthesis, and diverse product transformations.
Collapse
Affiliation(s)
- Guan Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bofan Feng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yutong Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinglong Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Marchán-García J, Buxaderas E, Stratico DN, Richmond V, Cavallaro V, Murray AP, Radivoy G, Moglie Y. Green approach to the synthesis of α-aminophosphonate-tetrahydroisoquinoline hybrids and their anti-cholinesterase activity. Bioorg Chem 2024; 143:107008. [PMID: 38091720 DOI: 10.1016/j.bioorg.2023.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 01/24/2024]
Abstract
A series of 19 novel α-aminophosphonate-tetrahydroisoquinoline hybrids were synthesized through a cross dehydrogenative coupling reaction between N-aryl-tetrahydroisoquinolines and dialkylphosphites, using tert-butyl hydroperoxide as oxidazing agent. This simple procedure provided products with high atom economy and moderate to high yields. In vitro cholinesterase inhibitory activity of these compounds was evaluated. All the synthesized compounds showed good to excellent selective inhibition against butyrylcholinesterase. Compound 3bc was found to be the most active derivative with an IC50 of 9 nM. Molecular modelling studies suggested that the inhibitor is located in the peripheral anionic site (PAS) of the enzyme and interacts with some residue of the catalytic anionic site. Kinetic studies revealed that 3bc acts as a non-competitive inhibitor. Predicted ADME showed good pharmacokinetics and drug-likeness properties for most hybrids. Each newly synthesized compound was characterized by IR, 1H NMR, 13C NMR, 31P NMR spectral studies and also HRMS. The results of this study suggest that α-aminophosphonate-tetrahydroisoquinoline hybrids can be promising lead compounds in the discovery of new and improved drugs for the treatment of Alzheimer's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Joaquín Marchán-García
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Eduardo Buxaderas
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Dante Nicolás Stratico
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica, UMYMFOR (CONICET-UBA), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - Victoria Richmond
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica, UMYMFOR (CONICET-UBA), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Valeria Cavallaro
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina.
| | - Ana Paula Murray
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Gabriel Radivoy
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Yanina Moglie
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Xiong B, Si L, Zhu L, Liu Y, Xu W, Tang KW, Yin SF, Qian PC, Wong WY. Copper-Catalyzed Aerobic Oxidative/Decarboxylative Phosphorylation of Aryl Acrylic Acids with P(III)-Nucleophiles. J Org Chem 2023; 88:12502-12518. [PMID: 37579226 DOI: 10.1021/acs.joc.3c01238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles via the Michaelis-Arbuzov rearrangement for the synthesis of β-ketophosphine oxides, β-ketophosphinates, and β-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired β-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields. In addition, the possible mechanism and kinetic studies for the reaction have been explored by step-by-step control experiments and competitive experiments, and the results proved that this transformation may follow second-order chemical kinetics as well as involve a radical process.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| | - Lulu Si
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035 Zhejiang, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| |
Collapse
|
4
|
Sun S, Shi T, Peng Y, Zhang H, Zhuo L, Peng X, Li Q, Wang M, Wang S, Wang Z. Discovery of pyrrole derivatives as acetylcholinesterase-sparing butyrylcholinesterase inhibitor. Front Pharmacol 2022; 13:1043397. [PMID: 36561337 PMCID: PMC9763612 DOI: 10.3389/fphar.2022.1043397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Inspired by the crucial roles of (hetero)aryl rings in cholinesterase inhibitors and the pyrrole ring in new drug discovery, we synthesized 19 pyrrole derivatives and investigated their cholinesterase inhibitory activity. As a result, compounds 3o, 3p, and 3s with a 1,3-diaryl-pyrrole skeleton showed high selectivity toward BChE over AChE with a best IC50 value of 1.71 ± 0.087 µM, which were comparable to donepezil. The pharmaceutical potential of these structures was further predicted and compounds 3o and 3p were proved to meet well with the Lipinsky's five rules. In combination of the inhibition kinetic studies with the results of molecular docking, we concluded that compound 3p inhibited BChE in a mixed competitive mode. This research has proved the potential of the 1,3-diaryl-pyrrole skeleton as a kind of selective BChE inhibitor.
Collapse
Affiliation(s)
- Shouyuan Sun
- Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Qien Li
- Tibetan Medical College, Qinghai University, Xining, China
| | - Manxia Wang
- Lanzhou University Second Hospital, Lanzhou, China,*Correspondence: Manxia Wang, ; Shuzhi Wang, ; Zhen Wang,
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Manxia Wang, ; Shuzhi Wang, ; Zhen Wang,
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China,School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Manxia Wang, ; Shuzhi Wang, ; Zhen Wang,
| |
Collapse
|
5
|
Macías-Benítez P, Sierra-Padilla A, J Tenorio M, Moreno-Dorado FJ, Guerra FM. Copper-Catalyzed Microwave-Expedited Oxyphosphorylation of Alkynes with Diethyl Phosphite and t-Butyl Hydroperoxide Synthesis of Densely Functionalized Phosphonylated Indenones. J Org Chem 2021; 86:16409-16424. [PMID: 34709823 DOI: 10.1021/acs.joc.1c01763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatment of alkynes with diethyl phosphite and t-butyl hydroperoxide in the presence of [Cu(MeCN)4]BF4 under microwave irradiation produced the oxyphosphorylation of the triple bond, giving rise to the corresponding β-ketophosphonates in moderate-to-good yields. When the triple bond was conjugated to a carbonyl group bearing an aromatic ring, it led to the cyclization of the resulting ketone intermediate, producing eventually different phosphonylated indenones.
Collapse
Affiliation(s)
- Pablo Macías-Benítez
- Departamento de Química Orgánica and Instituto de Biomoléculas, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - Alfonso Sierra-Padilla
- Departamento de Química Orgánica and Instituto de Biomoléculas, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - Manuel J Tenorio
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica and Instituto de Biomoléculas, Universidad de Cadiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - F Javier Moreno-Dorado
- Departamento de Química Orgánica and Instituto de Biomoléculas, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - Francisco M Guerra
- Departamento de Química Orgánica and Instituto de Biomoléculas, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| |
Collapse
|
6
|
Xu Y, Zhang Z, Shi J, Liu X, Tang W. Recent developments of synthesis and biological activity of sultone scaffolds in medicinal chemistry. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Bakhtiary A, Poor Heravi MR, Hassanpour A, Amini I, Vessally E. Recent trends in the direct oxyphosphorylation of C-C multiple bonds. RSC Adv 2020; 11:470-483. [PMID: 35423055 PMCID: PMC8690964 DOI: 10.1039/d0ra08074h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 01/07/2023] Open
Abstract
Due to the wide importance of β-phosphorylated ketones as key building-blocks in the fabrication of various pharmaceutically active organophosphorus compounds, finding new and truly efficient methods for their preparation from simple, low-cost and ubiquitous feedstock materials within a single click is an interesting subject in organic synthesis. Recently, oxyfunctionalization of carbon-carbon multiple bonds has arisen as a straightforward and versatile tool for the synthesis of complex organic molecules from the simple and easily accessible alkenes/alkynes via a single operation. In this context, oxyphosphorylation of alkenes/alkynes with P(O)-H compounds has attracted considerable attention as a unique procedure for the construction of β-phosphorylated ketones. In this review, we outline the recent advances and developments in this fast-growing research field with particular emphasis on the mechanistic aspects of reaction.
Collapse
Affiliation(s)
- Alireza Bakhtiary
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | | | - Akbar Hassanpour
- Department of Chemistry, Marand Branch, Islamic Azad University Marand Iran
| | - Issa Amini
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
8
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
The structure-based optimization of δ-sultone-fused pyrazoles as selective BuChE inhibitors. Eur J Med Chem 2020; 201:112273. [DOI: 10.1016/j.ejmech.2020.112273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/23/2022]
|
10
|
Xu Y, Zhang Z, Jiang X, Chen X, Wang Z, Alsulami H, Qin HL, Tang W. Discovery of δ-sultone-fused pyrazoles for treating Alzheimer's disease: Design, synthesis, biological evaluation and SAR studies. Eur J Med Chem 2019; 181:111598. [DOI: 10.1016/j.ejmech.2019.111598] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|
11
|
Qi D, Dong W, Peng Z, Zhang Y, An D. Mukaiyama reagent-promoted metal-free preparation of alkynyl sulfones and phosphonates under mild conditions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Alvarado W, Bremer PL, Choy A, Dinh HN, Eung A, Gonzalez J, Ly P, Tran T, Nakayama K, Schwans JP, Sorin EJ. Understanding the enzyme-ligand complex: insights from all-atom simulations of butyrylcholinesterase inhibition. J Biomol Struct Dyn 2019; 38:1028-1041. [PMID: 30909811 DOI: 10.1080/07391102.2019.1596836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
All-atom molecular dynamics simulations of butyrylcholinesterase (BChE) sans inhibitor and in complex with each of 15 dialkyl phenyl phosphate derivatives were conducted to characterize inhibitor binding modes and strengths. Each system was sampled on the 250 ns timescale in explicit ionic solvent, for a total of over 4 μs of simulation time. A K-means algorithm was used to cluster the resulting structures into distinct binding modes, which were further characterized based on atomic-level contacts between inhibitor chemical groups and active site residues. Comparison of experimentally observed inhibition constants (KI) with the resulting contact tables provides structural explanations for relative binding coefficients and highlights several notable interaction motifs. These include ubiquitous contact between glycines in the oxyanion hole and the inhibitor phosphate group; a sterically driven binding preference for positional isomers that extend aromaticity; a stereochemical binding preference for choline-containing inhibitors, which mimic natural BChE substrates; and the mechanically induced opening of the omega loop region to fully expose the active site gorge in the presence of choline-containing inhibitors. Taken together, these observations can greatly inform future design of BChE inhibitors, and the approach reported herein is generalizable to other enzyme-inhibitor systems and similar complexes that depend on non-covalent molecular recognition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Walter Alvarado
- Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA, USA
| | - Parker Ladd Bremer
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Angela Choy
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA, USA
| | - Helen N Dinh
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Aingty Eung
- Department of Computer Engineering & Computer Science, California State University Long Beach, Long Beach, CA, USA
| | - Jeannette Gonzalez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Phillippe Ly
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Trina Tran
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Kensaku Nakayama
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Jason P Schwans
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Eric J Sorin
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| |
Collapse
|
13
|
Chen LL, Zhang JW, Yang WW, Chen P, Chen DY, Wang YB. An efficient preparation of β-ketophosphine oxides from alkynylphosphine oxides with benzaldehyde oxime as a hydroxide source. Org Biomol Chem 2019; 17:3003-3009. [DOI: 10.1039/c9ob00251k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An effective transition-metal-free method has been developed for the preparation of β-ketophosphine oxides from alkynylphosphine oxides with benzaldehyde oxime.
Collapse
Affiliation(s)
- Lu-Lu Chen
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jing-Wen Zhang
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Wan-Wan Yang
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Pei Chen
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Dan-Yun Chen
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Yan-Bo Wang
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| |
Collapse
|
14
|
Yuan T, Chen F, Lu GP. Direct synthesis of alkynylphosphonates from alkynes and phosphite esters catalyzed by Cu/Cu2O nanoparticles supported on Nb2O5. NEW J CHEM 2018. [DOI: 10.1039/c8nj03206h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new, recyclable and efficient copper catalyst for cross-couplings of alkynes and phosphite esters has been disclosed, in which the synergistic effects of Nb2O5 on the catalyst are found owing to its strong Lewis acid sites.
Collapse
Affiliation(s)
- Tao Yuan
- Chemical Engineering College
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Fei Chen
- Nanjing Institute of Environmental Sciences
- Ministry of Environmental Protection
- Nanjing 210042
- China
| | - Guo-ping Lu
- Chemical Engineering College
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|