1
|
Güleç Ö, Bilgiçli AT, Tüzün B, Taslimi P, Günsel A, Gülçin İ, Arslan M, Yarasir MN. Peripheral (E)-2-[(4-hydroxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one)]-coordinated phthalocyanines with improved enzyme inhibition properties and photophysicochemical behaviors. Arch Pharm (Weinheim) 2024; 357:e2400209. [PMID: 38838335 DOI: 10.1002/ardp.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
In this study, (E)-4-{4-[(1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)methyl]phenoxy}phthalonitrile (4) and its phthalocyanine derivatives (5-8) were synthesized for the first time. Aggregation behaviors of the novel soluble phthalocyanines in organic solvents were investigated. In addition, the efficiency of 1O2 production of (5) and ZnPc (6) was investigated. The singlet oxygen quantum yields (ΦΔ) for 2HPc (5) and ZnPc (6) were found to be 0.58 and 0.83, respectively. Additionally, novel phthalocyanines (5-8) were investigated for their ability to inhibit enzymes. They exhibited a highly potent inhibition effect on human carbonic anhydrase I and II (hCA I and II) and α-glycosidase (α-Gly) enzymes. Ki values are in the range of 2.60 ± 9.87 to 11.53 ± 6.92 µM, 3.35 ± 0.53 to 15.47 ± 1.20 µM, and 28.60 ± 4.82 to 40.58 ± 7.37 nM, respectively. The calculations of the studied molecule at the B3LYP, HF, and M062X levels in the 6-31G basis sets were made using the Gaussian package program. Afterward, the interactions occurring in the docking calculation against a protein that is the crystal structure of hCA I (PDB ID: 2CAB), the crystal structure of hCA II (PDB ID: 5AML), and the crystal structure of α-Gly (PDB ID: 1R47), were examined. Following that, Protein-Ligand Interaction Profiler (PLIP) analysis was used to look at the interactions that occurred during the docking calculation in further detail.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | | | - Burak Tüzün
- Sivas Vocational School, Department of Plant and Animal Production, Sivas Cumhuriyet University, Sivas, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Turkey
| | - Armağan Günsel
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | | |
Collapse
|
2
|
Turkkol A, Can Karanlık C, Calıskan SG, Bilgin MD, Erdoğmuş A, Güzel E. Hybrid Sono-Photodynamic Combination Therapy Mediated by Water-Soluble Gallium Phthalocyanine Enhances the Cytotoxic Effect against Breast Cancer Cell Lines. ACS APPLIED BIO MATERIALS 2024; 7:2725-2733. [PMID: 38591733 DOI: 10.1021/acsabm.3c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Breast cancer is a life-threatening disease that is gaining increasing importance due to its rising incidence, highlighting the need for novel treatment methods with the least disadvantages. Recently, scientists have focused on developing therapeutic treatment modalities for effective cancer treatment. In contrast to conventional cancer treatment methods such as immunotherapy, surgery, chemotherapy, or radiotherapy, photodynamic therapy (PDT) is gaining prominence. Besides, sonodynamic treatment (SDT) is a noninvasive therapeutic approach that uses ultrasound to induce high tissue penetration. In both methods, sensitizers are activated to generate cytotoxic reactive oxygen species such as •OH and 1O2. In particular, the combined use of hybrid and complementary treatment methods has become an important modality in cancer treatment in recent years. Sono-photodynamic therapy (SPDT), which is an important method applied in combination with PDT and SDT, has started to be preferred in terms of reducing potential side effects compared to monotherapy. One of the most important types of sensitizers used in PDT and SDT is known as phthalocyanines (Pcs). Motivated by these facts, this research presents the sono-photochemical, in vitro cytotoxicity, and theoretical evaluation of water-soluble gallium phthalocyanine (GaPc). The results indicate that the quantum yield of the generation of singlet oxygen increased in sono-photochemical studies (ΦΔ = 0.94), compared to photochemical studies (ΦΔ = 0.72). In vitro analyses revealed that GaPc did not exhibit significant cytotoxic effects at the specified varying concentration doses (1-20 μM). Furthermore, GaPc-mediated SPDT triggered cell death by inducing reactive oxygen species formation in the breast cancer cell line (MCF-7). The interaction mechanism of the GaPc with EGFR and VEGFR2 target proteins, which are critical regulators of metastasis, proliferation, and angiogenesis, was investigated by molecular docking simulation. GaPc has effective binding affinities against target proteins, and this affinity was found to be the highest against VEGFR2. Molecular docking results showed a good correlation with the obtained biological results. Eventually, this molecular building of the efficient water-soluble phthalocyanine-based sensitizer is a potential therapeutic for PDT, SDT, and SPDT applications.
Collapse
Affiliation(s)
- Aysegul Turkkol
- Department of Biophysics, Faculty of Medicine, Aydın Adnan Menderes University, 09010 Aydın, Turkiye
| | - Ceren Can Karanlık
- Department of Chemistry, Yıldız Technical University, 34220 İstanbul, Turkiye
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Istanbul, Turkiye
| | - Serife Gökce Calıskan
- Department of Physics, Faculty of Sciences, Aydın Adnan Menderes University, 09010 Aydın, Turkiye
| | - Mehmet Dincer Bilgin
- Department of Biophysics, Faculty of Medicine, Aydın Adnan Menderes University, 09010 Aydın, Turkiye
| | - Ali Erdoğmuş
- Department of Chemistry, Yıldız Technical University, 34220 İstanbul, Turkiye
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Istanbul, Turkiye
| | - Emre Güzel
- Department of Engineering Fundamental Sciences, Faculty of Technology, Sakarya University of Applied Sciences, 54050 Sakarya, Turkiye
- Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, 54050 Sakarya, Turkiye
| |
Collapse
|
3
|
Özten Ö, Kuznetsov AE, Gokce M, Erkan S, Bulut E, Taskin OS, Zengin Kurt B, Yıldız MZ, Sobotta L, Güzel E. Assessing cytotoxic activities, theoretical and in silico molecular docking calculations of phthalocyanines bearing cinnamyloxy-groups. J Biomol Struct Dyn 2023; 42:11931-11941. [PMID: 37794772 DOI: 10.1080/07391102.2023.2265503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Cancer has been recognized as one of the deadliest diseases in the world in recent years. By chemically tailoring specific properties, anticancer agents can be prepared very effectively for the treatment of various cancer types. In this manner, as anticancer agents, a series of soluble metal-free and metallophthalocyanines carrying cinnamyloxy-groups at peripheral β-positions have been prepared. All synthesized phthalocyanines were characterized by various spectroscopic approaches such as ultraviolet - visible (UV - Vis), Fourier transform infrared (FT-IR), and matrix-assisted laser deionization/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) techniques. These compounds are highly soluble in dimethyl sulfoxide (DMSO) and soluble in common organic solvents. The spectroscopic properties, cytotoxicity, and theoretical calculations of these complexes have been investigated. In cytotoxicity tests, compounds 1, 4, and 7 are the most active against HT-29 cell lines with IC50 values of 36.9 μM, 32.5 μM, and 51.1 μM, respectively. Also, the most and the least cytotoxic compounds against healthy CCD cell line is compounds 5 and 6 with the IC50 value of 13.4 μM and >250 μM, respectively. The PDB ID:4BQG target protein representing the HT-29 cancer cell line and the anti-cancer activities of phthalonitrile and its phthalocyanines were supported by molecular docking studies. Density Functional Theory (DFT) study supported the experimental results, including the spectral data, and implied that the compounds 5-7 are comparable by their characteristics, such as electronic properties, optical properties, electrostatic potentials, reactivity parameters, with the earlier studied compounds 2-4, which were successfully proved to be good candidates for cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Özge Özten
- Department of Biomedical Engineering, Sakarya University of Applied Sciences, Sakarya, Türkiye
- Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, Sakarya, Türkiye
| | - Aleksey E Kuznetsov
- Department of Chemistry, Universidad Técnica Federico Santa Maria, Santiago, Chile
| | - Mustafa Gokce
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakıf University, İstanbul, Türkiye
| | - Sultan Erkan
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Emrah Bulut
- Department of Chemistry, Sakarya University, Sakarya, Türkiye
| | - Omer Suat Taskin
- Department of Chemical Oceanography, Institute of Marine Science and Management, İstanbul University, İstanbul, Türkiye
| | - Belma Zengin Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakıf University, İstanbul, Türkiye
| | - Mustafa Zahid Yıldız
- Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, Sakarya, Türkiye
- Department of Electrical and Electronics Engineering, Sakarya University of Applied Sciences, Sakarya, Türkiye
| | - Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Emre Güzel
- Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, Sakarya, Türkiye
- Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, Sakarya, Türkiye
| |
Collapse
|
4
|
The potential of chalcone derivatives as human carbonic anhydrase inhibitors in the therapy of glaucoma. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Beytur A, Tekin Ç, Çalışkan E, Tekin S, Koran K, Orhan Görgülü A, Sandal S. Hexa-substituted cyclotriphosphazene derivatives containing hetero-ring chalcones: Synthesis, in vitro cytotoxic activity and their DNA damage determination. Bioorg Chem 2022; 127:105997. [DOI: 10.1016/j.bioorg.2022.105997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/27/2022]
|
6
|
Yadav M, Lal K, Kumar A, Kumar A, Kumar D. Indole-chalcone linked 1,2,3-triazole hybrids: Facile synthesis, antimicrobial evaluation and docking studies as potential antimicrobial agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Aktas Kamiloglu A, Omeroglu I, Yalazan H, Durmus M, Celik G, Kantekin H. Photophysical, photochemical properties of chalcone substituted Zinc(II) and Magnesium(II) metallophthalocyanines bearing thiophene units. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Karakılıç E, Alım Z, Günel A, Baran A. A versatile study of novel A3B-type unsymmetric zinc(II) phthalocyanines containing thiazolidin-4-one: Their, carbonic anhydrase I, II isoenzymes, and xanthine oxidase inhibitors evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Sohrabi M, Binaeizadeh MR, Iraji A, Larijani B, Saeedi M, Mahdavi M. A review on α-glucosidase inhibitory activity of first row transition metal complexes: a futuristic strategy for treatment of type 2 diabetes. RSC Adv 2022; 12:12011-12052. [PMID: 35481063 PMCID: PMC9020348 DOI: 10.1039/d2ra00067a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and has emerged as a controversial public health issue worldwide. The increasing number of patients with T2DM on one hand, and serious long-term complications of the disease such as obesity, neuropathy, and vascular disorders on the other hand, have induced a huge economic impact on society globally. In this regard, inhibition of α-glucosidase, the enzyme responsible for the hydrolysis of carbohydrates in the body has been the main therapeutic approach to the treatment of T2DM. As α-glucosidase inhibitors (α-GIs) have occupied a special position in the current research and prescription drugs are generally α-GIs, researchers have been encouraged to design and synthesize novel and efficient inhibitors. Previously, the presence of a sugar moiety seemed to be crucial for designing α-GIs since they can attach to the carbohydrate binding site of the enzyme mimicking the structure of disaccharides or oligosaccharides. However, inhibitors lacking glycosyl structures have also shown potent inhibitory activity and development of non-sugar based inhibitors is accelerating. In this respect, in vitro anti-α-glucosidase activity of metal complexes has attracted lots of attention and this paper has reviewed the inhibitory activity of first-row transition metal complexes toward α-glucosidase and discussed their probable mechanisms of action.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | | | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Central Research Laboratory, Shiraz University of Medical Sciences Shiraz Iran
- Liosa Pharmed Parseh Company Shiraz Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
10
|
Novel cationic-chalcone phthalocyanines for photodynamic therapy eradication of S. aureus and E. coli bacterial biofilms and MCF-7 breast cancer. Photodiagnosis Photodyn Ther 2022; 38:102863. [DOI: 10.1016/j.pdpdt.2022.102863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 01/25/2023]
|
11
|
Karaca H, Kazancı S. The metal sensing applications of chalcones: The synthesis, characterization and theoretical calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Çakır V, Arslan T. Synthesis and biological evaluation of new silicon(IV) phthalocyanines as carbonic anhydrase and cholinesterase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Varma RR, Vaidya FU, Pathak C, Dhaduk MP, Dabhi RA, Bhatt BS, Patel MN. Synthesis, spectroscopic characterization, computational and biological evaluation of organometallic Re(I) complexes with 5-(2-butyl-5-chloro-1H-imidazol-4-yl)-1,3-diaryl- 4,5-dihydro-1H-pyrazole. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Aktas Kamiloglu A, Yalazan H, Durmus M, Celik G, Omeroğlu I, Acar I, Kantekin H. Synthesis, spectroscopic, and photophysicochemical behavior of Zn(II) and Mg(II) phthalocyanine– chalcone conjugates. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1988081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Halise Yalazan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Mahmut Durmus
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Gonca Celik
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Ipek Omeroğlu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Irfan Acar
- Department of Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, Trabzon, Turkey
| | - Halit Kantekin
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
15
|
The synthesis of novel piperazine-benzodioxole substituted phthalocyanines and investigation of their α-amylase and tyrosinase inhibition properties. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Design, synthesis of novel peripherally tetra-chalcone substituted phthalocyanines and their inhibitory effects on acetylcholinesterase and carbonic anhydrases (hCA I and II). J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Karaçelik AA, Küçük M, Efe D, Çakır V, Bıyıklıoğlu Z. Carbonic Anhydrase Inhibition Potential and Some Bioactivities of the Peripherally Tetrasubstituted Cobalt(II), Titanium(IV), Manganese(III) Phthalocyanines. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201009162347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Peripherally tetrasubstituted cobalt(II), titanium(IV), manganese(III)
phthalocyanines carrying redox-active metal centers were previously synthesized. Metallophthalocyanines
(MPcs) exhibited the potential to use in medicinal applications due to biological activities,
such as antibacterial, antioxidant and enzyme inhibition.
Objective:
This study's aim was to evaluate the previously synthesized metallophthalocyanines in
terms of carbonic anhydrase inhibition, antioxidant, and antimicrobial activities.
Methods:
In this study, the inhibition potential of the metallophthallocyanines against carbonic anhydrase
(CA) enzyme, which is important for treatments of many disorders, was evaluated. The
metallophthalocyanines showed high CA inhibitory activity with IC50 values in the range of 74-317
nM, which was similar or better when compared with the standard CA inhibitors sulfanilamide and
acetazolamide. In addition, antibacterial and antioxidant activities were determined. The metallophthallocyanines
exhibited moderate antibacterial activity, especially against S. aureus and S.
epidermis. The antioxidant activities of the compounds in both tests were quite high, even exceeding
the standards Trolox and BHT, with SC50 values of 0.0048-0.0257 and TEAC values of 1143.3-
1543.7 μM, being 2 to 73 fold better activity.
Results:
In this study, the inhibition potential of the metallophthallocyanines against carbonic anhydrase
(CA) enzyme, which is important for treatments of many disorders, was evaluated. The
metallophthalocyanines showed high CA inhibitory activity with IC50 values in the range of 74-317
nM, which was similar or better when compared with the standard CA inhibitors sulfanilamide and
acetazolamide. In addition, antibacterial and antioxidant activities were determined. The metallophthallocyanines
exhibited moderate antibacterial activity, especially against S. aureus and S.
epidermis. The antioxidant activities of the compounds in both tests were quite high, even exceeding
the standards Trolox and BHT, with SC50 values of 0.0048-0.0257 and TEAC values of 1143.3-
1543.7 μM, being 2 to 73 fold better activity.
Conclusion:
In conclusion, all three metallophthalocyanines exhibit excellent carbonic anhydrase
and antioxidant potential and deserve further interest for the synthesis of new derivatives.
Collapse
Affiliation(s)
- Ayça Aktaş Karaçelik
- Department of Food Processing, Espiye Vocational School, Giresun University, Giresun,Turkey
| | - Murat Küçük
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon,Turkey
| | - Derya Efe
- Department of Crop and Animal Production, Espiye Vocational School, Giresun University, Giresun,Turkey
| | - Volkan Çakır
- Department of Therapy and Rehabilitation, Espiye Vocational School, Giresun University, Giresun,Turkey
| | - Zekeriya Bıyıklıoğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon,Turkey
| |
Collapse
|
18
|
Aktas Kamiloglu A. Photochemical properties of fluoro-chalcone substituted peripherally tetra Zn(II)Pc and Mg(II)Pc. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-020-01040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Dandawate P, Ahmed K, Padhye S, Ahmad A, Biersack B. Anticancer Active Heterocyclic Chalcones: Recent Developments. Anticancer Agents Med Chem 2021; 21:558-566. [PMID: 32628595 DOI: 10.2174/1871520620666200705215722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chalcones are structurally simple compounds that are easily accessible by synthetic methods. Heterocyclic chalcones have gained the interest of scientists due to their diverse biological activities. The anti-tumor activities of heterocyclic chalcones are especially remarkable and the growing number of publications dealing with this topic warrants an up-to-date compilation. METHODS Search for antitumor active heterocyclic chalcones was carried out using Pubmed and Scifinder as common web-based literature searching tools. Pertinent and current literature was covered from 2015/2016 to 2019. Chemical structures, biological activities and modes of action of anti-tumor active heterocyclic chalcones are summarized. RESULTS Simply prepared chalcones have emerged over the last years with promising antitumor activities. Among them, there are a considerable number of tubulin polymerization inhibitors. But there are also new chalcones targeting special enzymes such as histone deacetylases or with DNA-binding properties. CONCLUSION This review provides a summary of recent heterocyclic chalcone derivatives with distinct antitumor activities.
Collapse
Affiliation(s)
- Prasad Dandawate
- Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, University of Pune, 2390-B, K.B. Hidayatullah Road, Pune 411001, India
| | - Khursheed Ahmed
- Department of Chemistry, Abeda Inamdar Senior College, University of Pune, 2390-B, K.B. Hidayatullah Road, Pune 411001, India
| | - Subhash Padhye
- Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, University of Pune, 2390-B, K.B. Hidayatullah Road, Pune 411001, India
| | - Aamir Ahmad
- University of Alabama at Birmingham, 9th Ave South, Birmingham AL 33294, United States
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
20
|
Farajzadeh N, Sağlam Ö, Akin M, Saki N, Koçak MB. Investigation of tyrosinase enzyme (from mushroom) inhibitory activities and antioxidant properties of new fluorine-containing phthalocyanines. Arch Pharm (Weinheim) 2020; 354:e2000340. [PMID: 33300638 DOI: 10.1002/ardp.202000340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Abstract
A series of new peripherally or nonperipherally substituted phthalocyanines bearing 4-(trifluoromethoxy)thiophenyl groups was synthesized. In addition, a new metal-free phthalocyanine bearing 4-(trifluoromethoxy)phenoxy on the nonperipheral position was prepared. The resulting phthalocyanines were characterized using some spectroscopic techniques such as 1 H nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and UV-Vis spectroscopy, together with elemental analysis. When the tyrosinase enzyme inhibition activities of the synthesized phthalocyanines were examined, molecules 2b and 3b showed an inhibitory activity against the enzyme with IC50 values of 176.2 ± 0.65 and 284.4 ± 1.03, respectively. The inhibition types of the molecules and standard inhibitor kojic acid were found as competitive for 2b, mixed for 1b and kojic acid, and uncompetitive for 3b. Antioxidant activities were also assessed by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assays, and the molecules showed moderate antioxidant activities.
Collapse
Affiliation(s)
- Nazli Farajzadeh
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Özgül Sağlam
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Mustafa Akin
- Department of Chemistry, Faculty of Science and Letters, Kocaeli University, Kocaeli, Turkey
| | - Neslihan Saki
- Department of Chemistry, Faculty of Science and Letters, Kocaeli University, Kocaeli, Turkey
| | - Makbule B Koçak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
21
|
Leonova E, Shvirksts K, Borisovs V, Smelovs E, Sokolovska J, Bisenieks E, Duburs G, Grube M, Sjakste N. Spectroscopic and electrochemical study of interactions between DNA and different salts of 1,4-dihydropyridine AV-153. PeerJ 2020; 8:e10061. [PMID: 33240591 PMCID: PMC7664466 DOI: 10.7717/peerj.10061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 01/28/2023] Open
Abstract
1,4-dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antimutagenic and DNA-binding activity. The latter activity was first described for water-soluble 1,4-DHP with carboxylic group in position 4, the sodium salt of the 1,4-DHP derivative AV-153 among others. Some data show the modification of physicochemical properties and biological activities of organic compounds by metal ions that form the salts. We demonstrated the different affinity to DNA and DNA-protecting capacity of AV-153 salts, depending on the salt-forming ion (Na, K, Li, Rb, Ca, Mg). This study aimed to use different approaches to collate data on the DNA-binding mode of AV-153-Na and five other AV-153 salts. All the AV-153 salts in this study quenched the ethidium bromide and DNA complex fluorescence, which points to an intercalation binding mode. For some of them, the intercalation binding was confirmed using cyclic voltammetry and circular dichroism spectroscopy. It was shown that in vitro all AV-153 salts can interact with four DNA bases. The FTIR spectroscopy data showed the interaction of AV-153 salts with both DNA bases and phosphate groups. A preference for base interaction was observed as the AV-153 salts interacted mostly with G and C bases. However, the highest differences were detected in the spectral region assigned to phosphate groups, which might indicate either conformational changes of DNA molecule (B form to A or H form) or partial denaturation of the molecule. According to the UV/VIS spectroscopy data, the salts also interact with the human telomere repeat, both in guanine quadruplex (G4) and single-stranded form; Na and K salts manifested higher affinity to G4, Li and Rb -to single-stranded DNA.
Collapse
Affiliation(s)
- Elina Leonova
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Vitalijs Borisovs
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | | | - Gunars Duburs
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Nikolajs Sjakste
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
22
|
Demirol M, Sirka L, Çalışkan E, Biryan F, Koran K, Görgülü AO, Yakuphanoğlu F. Synthesis and photodiode properties of chalcone substituted metallo-phthalocyanine. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Abstract
Over the past two decades, phenol oxidases, particularly laccases and tyrosinases, have been extensively used for the removal of numerous pollutants in wastewaters due to their broad substrate specificity and their ability to use readily accessible molecular oxygen as the essential cofactor. As for other enzymes, immobilisation of laccases and tyrosinases has been shown to improve the performance and efficiency of the biocatalysts in solution. Several reviews have addressed the enzyme immobilisation techniques and the application of phenol oxidases to decontaminate wastewaters. This paper offers an overview of the recent publications, mainly from 2012 onwards, on the various immobilisation techniques applied to laccases and tyrosinases to induce and/or increase the performance of the biocatalysts. In this paper, the emphasis is on the efficiencies achieved, in terms of structural modifications, stability and resistance to extreme conditions (pH, temperature, inhibitors, etc.), reactivity, reusability, and broad substrate specificity, particularly for application in bioremediation processes. The advantages and disadvantages of several enzyme immobilisation techniques are also discussed. The relevance and effectiveness of the immobilisation techniques with respect to wastewater decontamination are critically assessed. A perspective on the future directions for large-scale application of the phenol oxidases in immobilised forms is provided.
Collapse
|
24
|
Ballı Z, Arslantaş A, Güngördü Solǧun D, Ağırtaş MS. DNA binding studies of the 2,10,16,24–tetrakis (phenoxy-3-methoxybenzoic acid)phthalocyaninato) Co(II) and Cu(II) compounds. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2640-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
25
|
Synthesis, spectroscopic, structural elucidation, NLO characteristic and Hirshfeld surface analysis of (E)-1-(4-ethylphenyl)-3-(4-(heptyloxy) phenyl)prop-2-en-1-one: A dual approach of experimental and DFT calculations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Farajzadeh N, Karaoğlu HP, Akin M, Saki N, Koçak MB. Synthesis, Photophysical and Biological Properties of New Phthalocyanines Bearing Peripherally 4‐(Trifluoromethoxy)phenoxy Groups. ChemistrySelect 2019. [DOI: 10.1002/slct.201901509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nazli Farajzadeh
- Department of ChemistryIstanbul Technical University, Maslak, Istanbul 34469 TURKEY
| | | | - Mustafa Akin
- Department of ChemistryKocaeli University, Umuttepe, Kocaeli 41380 TURKEY
| | - Neslihan Saki
- Department of ChemistryKocaeli University, Umuttepe, Kocaeli 41380 TURKEY
| | - Makbule Burkut Koçak
- Department of ChemistryIstanbul Technical University, Maslak, Istanbul 34469 TURKEY
| |
Collapse
|