1
|
Liu L, Zhang Y, Huang Y, Jiang T, Yu Q, Yang J, Yuan H. Characterization of a multifunctional enzyme from Trichoderma harzianum and its application in enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2025; 415:131701. [PMID: 39490601 DOI: 10.1016/j.biortech.2024.131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Efficient saccharification of lignocellulose to fermentable sugars is crucial for bioconversion, yet the process is often hindered by insufficient β-glucosidase, β-xylosidase, and α-L-arabinofuranosidase activities in enzyme cocktails from Trichoderma reesei. This study addresses this gap by identifying BX1, a multifunctional enzyme from the underexplored fungus Trichoderma harzianum EM0925, which demonstrates a triad of activities targeting hemicellulose-derived oligosaccharides preferentially. We used structural analysis, molecular docking, and mutation studies to elucidate the roles of specific residues (Asp389, Glu589, Gln185, Cys390, Tyr354, and Tyr526) in BX1's multifunctionality. The enzyme showed synergistic effects with cellulase and xylanase, leading to a 90.23% increase in fermentable sugar yields at 2% (w/v) solid substrate loads and a 22.14% improvement at 15% (w/v) loads when added to Celluclast 1.5L. These findings highlight BX1's potential to enhance lignocellulosic bioconversion efficiency and reduce associated costs, paving the way for more cost-effective saccharification processes and future enzyme engineering advancements.
Collapse
Affiliation(s)
- Liang Liu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaru Huang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tingting Jiang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qijun Yu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Chen J, Huang B, Liu Y, Sun X, Xiong L, Zhu T, Yao X, Hu H, Liu H. Characterization of a novel cold-active β-Xylosidase from Parabacteroides distasonis and its synergistic hydrolysis of beechwood xylan. Int J Biol Macromol 2025; 284:137895. [PMID: 39571862 DOI: 10.1016/j.ijbiomac.2024.137895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Although β-xylosidases have broad applications in fields such as food and medicine, there is limited research on cold-active β-xylosidases. This study cloned a novel cold-active β-xylosidase XYL13 from Parabacteroides distasonis. The purified XYL13 exhibited the highest activity at 40 °C, with 42 % and 25 % of its maximum activity at 4 °C and 0 °C, respectively. Meanwhile, XYL13 predominantly produces X1 while degrading X2-X6. Additionally, XYL13 showed a significant synergistic effect (18.5-fold) with endo-xylanase for degrading beechwood xylan at low temperatures. Moreover, the site-directed mutagenesis assay indicated that Ile269 and Glu621 are essential catalytic sites of XYL13. Finally, molecular docking showed that XYL13 has an excellent binding effect with X2-X6, verifying that XYL13 can effectively cut X2-X6 to produce xylose. These results highlight the potential of cold-adapted XYL13 from P. distasonis for application in the food industry.
Collapse
Affiliation(s)
- Jin Chen
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Bisheng Huang
- School of Pharmacy, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Ye Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiongjie Sun
- School of Pharmacy, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lei Xiong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaowei Yao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haiming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| |
Collapse
|
3
|
Su R, Zheng W, Li A, Wu H, He Y, Tao H, Zhang W, Zheng H, Zhao Z, Li S. Characterization of a novel sucrose phosphorylase from Paenibacillus elgii and its use in biosynthesis of α-arbutin. World J Microbiol Biotechnol 2023; 40:24. [PMID: 38057640 DOI: 10.1007/s11274-023-03853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
α-Arbutin, a naturally occurring glycosylated derivative of hydroquinone (HQ), effectively inhibits melanin biosynthesis in epidermal cells. It is widely recognized as a fourth-generation whitening agent within the cosmetic industry. Currently, enzymatic catalysis is universally deemed the safest and most efficient method for α-arbutin synthesis. Sucrose phosphorylase (SPase), one of the most frequently employed glycosyltransferases, has been extensively reported for α-arbutin synthesis. In this study, a previously reported SPase known for its effectiveness in synthesizing α-arbutin, was used as a probe sequence to identify a novel SPase from Paenibacillus elgii (PeSP) in the protein database. The sequence similarity between PeSP and the probe was 39.71%, indicating a degree of novelty. Subsequently, the gene encoding PeSP was coexpressed with the molecular chaperone pG-Tf2 in Escherichia coli, significantly improving PeSP's solubility. Following this, PeSP was characterized and employed for α-arbutin biosynthesis. The specific activity of co-expressed PeSP reached 169.72 U/mg, exhibited optimal activity at 35℃ and pH 7.0, with a half-life of 3.6 h under the condition of 35℃. PeSP demonstrated excellent stability at pH 6.5-8.5 and sensitivity to high concentrations of metal ions. The kinetic parameters Km and kcat/Km were determined to be 14.50 mM and 9.79 min- 1·mM- 1, respectively.The reaction conditions for α-arbutin biosynthesis using recombinant PeSP were optimized, resulting in a maximum α-arbutin concentration of 52.60 g/L and a HQ conversion rate of 60.9%. The optimal conditions were achieved at 30℃ and pH 7.0 with 200 U/mL of PeSP, and by combining sucrose and hydroquinone at a molar ratio of 5:1 for a duration of 25 h.
Collapse
Affiliation(s)
- Ruiyang Su
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China
| | - Wan Zheng
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China
| | - Anqi Li
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China
| | - Huawei Wu
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China.
| | - Yamei He
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China
| | - Huimei Tao
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China
| | - Wangpu Zhang
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China
| | - Hairui Zheng
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China
| | - Zhenjun Zhao
- College of Horticulture and Gardening, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China
| | - Shaobin Li
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025, China.
| |
Collapse
|
4
|
Zhang S, Lu C, Cao S, Li Q, Wu G, Zhao L. Efficient production of icariin and baohuoside I from Epimedium Folium flavonoids by fungal α-L-rhamnosidase hydrolysing regioselectively the terminal rhamnose of epimedin C. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:107. [PMID: 37386510 DOI: 10.1186/s13068-023-02348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
Industrial application of icariin and baohuoside I has been hindered by the short supply to a great extent. In this work, a novel GH78 α-L-rhamnosidase AmRha catalyzed the bioconversion of low-value epimedin C in crude Epimedium Folium flavonoids (EFs) to icariin and baohuoside I was developed. Firstly, the high-level expression of AmRha in Komagataella phaffii GS115 attained an enzyme activity of 571.04 U/mL. The purified recombinant AmRha could hydrolyze α-1,2-rhamnoside bond between two rhamnoses (α-Rha(2 → 1)α-Rha) in epimedin C to produce icariin with a molar conversion rate of 92.3%, in vitro. Furtherly, the biotransformation of epimedin C to icariin by the recombinant Komagataella phaffii GS115 cells was also investigated, which elevated the EFs concentration by fivefold. In addition, biotransformation of epimedins A-C and icariin in the raw EFs to baohuoside I was fulfilled by a collaboration of AmRha and β-glucosidase/β-xylosidase Dth3. The results obtained here provide a new insight into the preparation of high-value products icariin and baohuoside I from cheap raw EFs.
Collapse
Affiliation(s)
- Shanshan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Changning Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Shiping Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Guangwei Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| |
Collapse
|
5
|
Li N, Zhang R, Zhou J, Huang Z. Structures, Biochemical Characteristics, and Functions of β-Xylosidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7961-7976. [PMID: 37192316 DOI: 10.1021/acs.jafc.3c01425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The complete degradation of abundant xylan derived from plants requires the participation of β-xylosidases to produce the xylose which can be converted to xylitol, ethanol, and other valuable chemicals. Some phytochemicals can also be hydrolyzed by β-xylosidases into bioactive substances, such as ginsenosides, 10-deacetyltaxol, cycloastragenol, and anthocyanidins. On the contrary, some hydroxyl-containing substances such as alcohols, sugars, and phenols can be xylosylated by β-xylosidases into new chemicals such as alkyl xylosides, oligosaccharides, and xylosylated phenols. Thus, β-xylosidases shows great application prospects in food, brewing, and pharmaceutical industries. This review focuses on the molecular structures, biochemical properties, and bioactive substance transformation function of β-xylosidases derived from bacteria, fungi, actinomycetes, and metagenomes. The molecular mechanisms of β-xylosidases related to the properties and functions are also discussed. This review will serve as a reference for the engineering and application of β-xylosidases in food, brewing, and pharmaceutical industries.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| |
Collapse
|
6
|
Alicyclobacillus mali FL18 as a Novel Source of Glycosyl Hydrolases: Characterization of a New Thermophilic β-Xylosidase Tolerant to Monosaccharides. Int J Mol Sci 2022; 23:ijms232214310. [PMID: 36430787 PMCID: PMC9696088 DOI: 10.3390/ijms232214310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
A thermo-acidophilic bacterium, Alicyclobacillus mali FL18, was isolated from a hot spring of Pisciarelli, near Naples, Italy; following genome analysis, a novel putative β-xylosidase, AmβXyl, belonging to the glycosyl hydrolase (GH) family 3 was identified. A synthetic gene was produced, cloned in pET-30a(+), and expressed in Escherichia coli BL21 (DE3) RIL. The purified recombinant protein, which showed a dimeric structure, had optimal catalytic activity at 80 °C and pH 5.6, exhibiting 60% of its activity after 2 h at 50 °C and displaying high stability (more than 80%) at pH 5.0-8.0 after 16 h. AmβXyl is mainly active on both para-nitrophenyl-β-D-xylopyranoside (KM 0.52 mM, kcat 1606 s-1, and kcat/KM 3088.46 mM-1·s-1) and para-nitrophenyl-α-L-arabinofuranoside (KM 10.56 mM, kcat 2395.8 s-1, and kcat/KM 226.87 mM-1·s-1). Thin-layer chromatography showed its ability to convert xylooligomers (xylobiose and xylotriose) into xylose, confirming that AmβXyl is a true β-xylosidase. Furthermore, no inhibitory effect on enzymatic activity by metal ions, detergents, or EDTA was observed except for 5 mM Cu2+. AmβXyl showed an excellent tolerance to organic solvents; in particular, the enzyme increased its activity at high concentrations (30%) of organic solvents such as ethanol, methanol, and DMSO. Lastly, the enzyme showed not only a good tolerance to inhibition by xylose, arabinose, and glucose, but was activated by 0.75 M xylose and up to 1.5 M by both arabinose and glucose. The high tolerance to organic solvents and monosaccharides together with other characteristics reported above suggests that AmβXyl may have several applications in many industrial fields.
Collapse
|
7
|
Li Q, Wang L, Fang X, Zhao L. Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by Dictyoglomus thermophilum β-xylosidase Xln-DT. J Microbiol Biotechnol 2022; 32:447-457. [PMID: 35131955 PMCID: PMC9628812 DOI: 10.4014/jmb.2111.11020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
Notoginsenoside R1 and ginsenoside Rg1 are the main active ingredients of Panax notoginseng, exhibiting anti-fatigue, anti-tumor, anti-inflammatory, and other activities. In a previous study, a GH39 β-xylosidase Xln-DT was responsible for the bioconversion of saponin, a natural active substance with a xylose group, with high selectivity for cleaving the outer xylose moiety of notoginsenoside R1 at the C-6 position, producing ginsenoside Rg1 with potent anti-fatigue activity. The optimal bioconversion temperature, pH, and enzyme dosage were obtained by optimizing the transformation conditions. Under optimal conditions (pH 6.0, 75°C, enzyme dosage 1.0 U/ml), 1.0 g/l of notoginsenoside R1 was converted into 0.86 g/l of ginsenoside Rg1 within 30 min, with a molar conversion rate of approximately 100%. Furthermore, the in vivo anti-fatigue activity of notoginsenoside R1 and ginsenoside Rg1 were compared using a suitable rat model. Compared with the control group, the forced swimming time to exhaustion was prolonged in mice by 17.3% in the Rg1 high group (20 mg/kg·d). Additionally, the levels of hepatic glycogen (69.9-83.3% increase) and muscle glycogen (36.9-93.6% increase) were increased. In the Rg1 group, hemoglobin levels were also distinctly increased by treatment concentrations. Our findings indicate that treatment with ginsenoside Rg1 enhances the anti-fatigue effects. In this study, we reveal a GH39 β-xylosidase displaying excellent hydrolytic activity to produce ginsenoside Rg1 in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Qi Li
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China
| | - Lei Wang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China
| | - Xianying Fang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P.R. China,Corresponding authors X. Fang Phone : +86-025-85427962 Fax : +86-025-85418873 E-mail :
| | - Linguo Zhao
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,
L. Zhao Phone : +86-025-85427962 Fax : +86-025-85418873 E-mail :
| |
Collapse
|
8
|
Bankeeree W, Prasongsuk S, Lotrakul P, Abd‐Aziz S, Punnapayak H. Enzymes for Hemicellulose Degradation. BIOREFINERY OF OIL PRODUCING PLANTS FOR VALUE‐ADDED PRODUCTS 2022:199-220. [DOI: 10.1002/9783527830756.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Front Bioeng Biotechnol 2021; 9:794304. [PMID: 34976981 PMCID: PMC8715034 DOI: 10.3389/fbioe.2021.794304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.
Collapse
Affiliation(s)
- Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sunday Bulus Peter
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
10
|
Improvements in xylose stability and thermalstability of GH39 β-xylosidase from Dictyoglomus thermophilum by site-directed mutagenesis and insights into its xylose tolerance mechanism. Enzyme Microb Technol 2021; 151:109921. [PMID: 34649692 DOI: 10.1016/j.enzmictec.2021.109921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022]
Abstract
β-Xylosidases are often inhibited by its reaction product xylose or inactivated by high temperature environment, which limited its application in hemicellulosic biomass conversion to fuel and food processing. Remarkably, some β-xylosidases from GH39 family are tolerant to xylose. Therefore, it is of great significance to elucidate the effect mechanism of xylose on GH39 β-xylosidases to improve their application. In this paper, based on the homologous model and prediction of protein active pocket constructed by I-TASSA and PyMOL, two putative xylose tolerance relevant sites (283 and 284) were mutated at the bottom of the protein active pocket, where xylose sensitivity and thermostability of Dictyoglomus thermophilum β-xylosidase Xln-DT were improved by site-directed mutagenesis. The Xln-DT mutant Xln-DT-284ASP and Xln-DT-284ALA showed high xylose tolerance, with the Ki values of 4602 mM and 3708 mM, respectively, which increased by 9-35% compared with the wildtype Xln-DT. The thermostability of mutant Xln-DT-284ASP was significantly improved at 75 and 85 °C, while the activity of the wild enzyme Xln-DT decreased to 40-20%, the activity of the mutant enzyme still remained 100%. The mutant Xln-DT-284ALA showed excellent stability at pH 4.0-7.0, but Xln-DT-284ASP showed slightly decreased activity. Furthermore, in order to explore the key sites and mechanism of xylose's effect on β-xylosidase activity, the interaction between xylose and enzyme was simulated by molecular docking. Besides binding to the active sites at the bottom of the substrate channel, xylose can also bind to sites in the middle or entrance of the channel with different affinities, which may determine the xylose inhibition of β-xylosidase. In conclusion, the improved xylose tolerance of mutant enzyme could be more advantageous in the degradation of hemicellulose and the biotransformation of other natural active substances containing xylose. This study supplies new insights into general mechanism of xylose effect on the activity of GH 39 β-xylosidases as well as related enzymes that modulate their activity via feedback control mechanism.
Collapse
|
11
|
Biotransformation of the total flavonoid extract of epimedium into icaritin by two thermostable glycosidases from Dictyoglomus thermophilum DSM3960. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Li Q, Jiang Y, Tong X, Zhao L, Pei J. Co-production of Xylooligosaccharides and Xylose From Poplar Sawdust by Recombinant Endo-1,4-β-Xylanase and β-Xylosidase Mixture Hydrolysis. Front Bioeng Biotechnol 2021; 8:637397. [PMID: 33598452 PMCID: PMC7882696 DOI: 10.3389/fbioe.2020.637397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022] Open
Abstract
As is well-known, endo-1,4-β-xylanase and β-xylosidase are the rate-limiting enzymes in the degradation of xylan (the major hemicellulosic component), main functions of which are cleavaging xylan to release xylooligosaccharides (XOS) and xylose that these two compounds have important application value in fuel, food, and other industries. This study focuses on enzymatic hydrolysis of poplar sawdust xylan for production of XOS and xylose by a GH11 endo-1,4-β-xylanase MxynB-8 and a GH39 β-xylosidase Xln-DT. MxynB-8 showed excellent ability to hydrolyze hemicellulose of broadleaf plants, such as poplar. Under optimized conditions (50°C, pH 6.0, dosage of 500 U/g, substrate concentration of 2 mg/mL), the final XOS yield was 85.5%, and the content of XOS2-3 reached 93.9% after 18 h. The enzymatic efficiency by MxynB-8 based on the poplar sawdust xylan in the raw material was 30.5%. Xln-DT showed excellent xylose/glucose/arabinose tolerance, which is applied as a candidate to apply in degradation of hemicellulose. In addition, the process and enzymatic mode of poplar sawdust xylan with MxynB-8 and Xln-DT were investigated. The results showed that the enzymatic hydrolysis yield of poplar sawdust xylan was improved by adding Xln-DT, and a xylose-rich hydrolysate could be obtained at high purity, with the xylose yield of 89.9%. The enzymatic hydrolysis yield was higher (32.2%) by using MxynB-8 and Xln-DT together. This study provides a deep understanding of double-enzyme synergetic enzymolysis of wood polysaccharides to valuable products.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yunpeng Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Tong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Linguo Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|