1
|
Aksu K, Ayvaz MÇ, Çelik ÖF, Serdaroğlu G, Üstün E, Kelebekli L. Synthesis, Biological Activities, DFT Calculations, and Molecular Docking Studies of O-Methyl-Inositols. Chem Biodivers 2025:e202402346. [PMID: 39874173 DOI: 10.1002/cbdv.202402346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
The concise synthesis of O-methyl-d-inositol derivative and conduritol derivatives was obtained starting from p-benzoquinone. Spectroscopic methods have been performed for the characterization of newly synthesized compounds. Cyclitols are useful molecules with anticancer, antibiotic, antinutrient, and antileukemic activities. Inositol class molecules, known as the most important cyclitol derivatives, were examined in this study for their 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide radical scavenging and butyrylcholinesterase (BChE) and glycosidase inhibition activities. It was observed that compound 5, in particular, showed efficacy that competed with the standards in terms of both antioxidant activity and enzyme inhibitor potential. Additionally, compound 5 shows effective antimicrobial activity. The water-soluble characteristics and lipophilic properties of the compounds were also considered and discussed. Moreover, the quantum chemical analyses were performed in light of the DFT/B3LYP/6-311G** level computations to elucidate/compare the studied inositols' possible reactivity directions. Additionally, the interactions of the molecules were analyzed against acetylcholinesterase (AChE), peroxiredoxin 5, and DNA gyrase by molecular docking methods. Cholinesterase inhibitors have an important status as the most important drug group used in the treatment of Alzheimer's disease today. Considering the effects of inhibition of the α-glucosidase enzyme by inhibitors, such molecules can also be used as therapeutic components in the treatment of diabetes.
Collapse
Affiliation(s)
- Kadir Aksu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Türkiye
| | - Melek Çol Ayvaz
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Türkiye
| | - Ömer Faruk Çelik
- Department of Food Engineering, Faculty of Agriculture, Ordu University, Ordu, Türkiye
| | - Goncagül Serdaroğlu
- Faculty of Education, Math and Science Education, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Elvan Üstün
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Türkiye
| | - Latif Kelebekli
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Türkiye
| |
Collapse
|
2
|
Dallali D, Fakhfakh J, Paris C, Aoiadni N, Philippot S, Risler A, Varbanov M, Allouche N. HPLC-HESI-MS/MS Analysis of Phenolic Compounds from Cynoglossum tubiflorus Leaf Extracts: An Assessment of Their Cytotoxic, Antioxidant, and Antibacterial Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:909. [PMID: 38592935 PMCID: PMC10974341 DOI: 10.3390/plants13060909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
The current study aimed to investigate the chemical composition, antioxidant, antibacterial, and cytotoxic properties of three extracts (hexane, dichloromethane, and methanol) from Cynoglossum tubiflorus. The composition of the methanolic extract was elucidated using HPLC-HESI-MS/MS analysis. The antioxidant effect was examined using NO, DPPH, FRAP, and TAC assays. Antimicrobial activity was evaluated by broth microdilution using various bacterial strains such as S. aureus, S. epidermidis, P. aeruginosa, E. coli, and K. pneumoniae. Structural disruptions in Gram-positive bacteria were visualized using scanning electron microscopy (SEM). Cytotoxic effects were evaluated on human MRC-5 in culture according to the MTT assay. The outcomes suggest that methanol extract contained a high amount of phenolic compounds (254.35 ± 0.360 mg GAE/g DE and 211.59 ± 0.939 mg QE/g DE). By applying the HPLC-HESI-MS/MS analysis, 32 compounds were identified, including phenolic acids, flavonoids, lignans, and fatty acids. This extract showed strong antioxidant (IC50 = 0.043 ± 0.001 mg/mL) and antimicrobial (MIC = 156 µg/mL) activities. The SEM suggests that cells exhibited membrane distortions characterized by surface depressions and alterations in bacterial shape, including dents, when compared to untreated cells. The in vitro cytotoxicity effect on human MRC-5 cells showed no toxicity effects at a concentration of 600 µg/mL. In silico analysis predicted low toxicity for all tested compounds across four different administration routes. This research indicates that this plant could be explored as a powerful source of natural drugs to target pathogens, with applications in the food, pharmaceutical, and medical industries.
Collapse
Affiliation(s)
- Dhouha Dallali
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax P.O. Box 1171, Tunisia; (D.D.); (J.F.)
| | - Jawhar Fakhfakh
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax P.O. Box 1171, Tunisia; (D.D.); (J.F.)
| | - Cédric Paris
- Université de Lorraine, LIBio, F-54000 Nancy, France;
| | - Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Sfax P.O. Box 1171, Tunisia;
| | - Stéphanie Philippot
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.P.); (A.R.); (M.V.)
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.P.); (A.R.); (M.V.)
| | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.P.); (A.R.); (M.V.)
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax P.O. Box 1171, Tunisia; (D.D.); (J.F.)
| |
Collapse
|
3
|
Marzouk MM, Hegazi NM, El Shabrawy MOA, Farid MM, Kawashty SA, Hussein SR, Saleh NAM. Discriminative Metabolomics Analysis and Cytotoxic Evaluation of Flowers, Leaves, and Roots Extracts of Matthiola longipetala subsp. livida. Metabolites 2023; 13:909. [PMID: 37623853 PMCID: PMC10456503 DOI: 10.3390/metabo13080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Matthiola longipetala subsp. livida is an annual herb in Brassicaceae that has received little attention despite the family's high reputation for health benefits, particularly cancer prevention. In this study, UPLC-HRMS-MS analysis was used for mapping the chemical constituents of different plant parts (i.e., flowers, leaves, and roots). Also, spectral similarity networks via the Global Natural Products Social Molecular Networking (GNPS) were employed to visualize their chemical differences and similarities. Additionally, the cytotoxic activity on HCT-116, HeLa, and HepG2 cell lines was evaluated. Throughout the current analysis, 154 compounds were annotated, with the prevalence of phenolic acids, glucosinolates, flavonol glucosides, lipids, peptides, and others. Predictably, secondary metabolites (phenolic acids, flavonoids, and glucosinolates) were predominant in flowers and leaves, while the roots were characterized by primary metabolites (peptides and fatty acids). Four diacetyl derivatives tentatively assigned as O-acetyl O-malonyl glucoside of quercetin (103), kaempferol (108 and 112), and isorhamnetin (114) were detected for the first time in nature. The flowers and leaves extracts showed significant inhibition of HeLa cell line propagation with LC50 values of 18.1 ± 0.42 and 29.6 ± 0.35 µg/mL, respectively, whereas the flowers extract inhibited HCT-116 with LC50 24.8 ± 0.45 µg/mL, compared to those of Doxorubicin (26.1 ± 0.27 and 37.6 ± 0.21 µg/mL), respectively. In conclusion, the flowers of M. longipetala are responsible for the abundance of bioactive compounds with cytotoxic properties.
Collapse
Affiliation(s)
- Mona M. Marzouk
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, Cairo P.O. Box 12622, Egypt; (N.M.H.); (M.O.A.E.S.); (M.M.F.); (S.A.K.); (S.R.H.); (N.A.M.S.)
| | | | | | | | | | | | | |
Collapse
|
4
|
LEFAHAL M, MAKHLOUFI EH, AYAD R, BOUSSETLA A, ELHATTAB M, KESKİN M, AKKAL S. Highlighting the Cosmeceutical Potential of the Edible Bunium alpinum Waldst& Kit (Apiaceae) Growing in Algeria: in vitro Antioxidant and Photoprotective Effects. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Shi H, Yang J, Cheng Y, Yang J, Lu X, Ma X. 1, 2-trans-Stereoselective 7-O-Glycosylation of Flavonoids with Unprotected Pyranoses by Mitsunobu Reaction. Chem Asian J 2022; 17:e202200120. [PMID: 35244345 DOI: 10.1002/asia.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Indexed: 11/11/2022]
Abstract
The glycosylation of protecting-group-free pyranoses with flavonoids to generate flavonoid O-glycosides under Mitsunobu conditions was reported. The methodology allows to prepare a wide range of natural 7-flavonoid O -glycosides and their derivatives from commercially available chemicals in good to excellent yields with exclusive 1,2- trans -stereoselectivity regardless the anomeric configuration of employed pyranoses. The highly regioselective glycosylation was also achieved among different types of hydroxyl groups on the glycosyl acceptors.
Collapse
Affiliation(s)
- Hailong Shi
- Chengdu Institute of Biology, Natural Products Research Centre, CHINA
| | - Jian Yang
- Chengdu Institute of Biology, Natural Products Research Centre, CHINA
| | - Yao Cheng
- Chengdu Institute of Biology, Natural Products Research Centre, CHINA
| | - Jinlian Yang
- Chengdu Institute of Biology, Natural Products Research Centre, CHINA
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Natural Products Research Centre, CHINA
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Natural Products Research Centre, No. 9, Section 4, South Renmin Road, 610041, Chengdu, CHINA
| |
Collapse
|
6
|
Tan Z, Deng J, Ye Q, Zhang Z. The antibacterial activity of natural-derived flavonoids. Curr Top Med Chem 2022; 22:1009-1019. [PMID: 35189804 DOI: 10.2174/1568026622666220221110506] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/31/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
Abstract
Flavonoids, a wide variety of phenolic secondary metabolites, are found in almost all plant families in the leaves, stems, roots, flowers, and seeds. Flavonoids could exert antibacterial activity via damaging the cytoplasmic membrane, inhibiting energy metabolism, and inhibiting the synthesis of nucleic acids, so flavonoids are considered constitutive antibacterial substances. This review aims to outline the recent advances of natural-derived flavonoids, including flavonoid glycosides with antibacterial potential to provide novel antibacterial lead hits/candidates, covering articles published between January 2016 and July 2021.
Collapse
Affiliation(s)
- Zhenyou Tan
- Guangdong Xianqiang Pharmaceutical Co., Ltd, Guangzhou, P. R. China
| | - Jun Deng
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| | - Qiongxian Ye
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| | - Zhenfeng Zhang
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| |
Collapse
|
7
|
Ferreira JDF, López MHM, Gomes JVD, Martins DHN, Fagg CW, Magalhães PO, Davies NW, Silveira D, Fonseca-Bazzo YM. Seasonal Chemical Evaluation of Miconia chamissois Naudin from Brazilian Savanna. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031120. [PMID: 35164385 PMCID: PMC8838837 DOI: 10.3390/molecules27031120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Miconia chamissois Naudin is a species from the Cerrado, which is being increasingly researched for its therapeutic potential. The aim of this study was to obtain a standardized extract and to evaluate seasonal chemical variations. Seven batches of aqueous extracts from leaves were produced for the standardization. These extracts were evaluated for total solids, polyphenol (TPC) and flavonoid content (TFC), vitexin derivative content, antioxidant activity; thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC) profiles were generated. For the seasonal study, leaves were collected from five different periods (May 2017 to August 2018). The results were correlated with meteorological data (global radiation, temperature, and rainfall index). Using chromatographic and spectroscopic techniques, apigenin C-glycosides (vitexin/isovitexin) and derivatives, luteolin C-glycosides (orientin/isoorientin) and derivatives, a quercetin glycoside, miconioside B, matteucinol-7-O-β-apiofuranosyl (1 → 6) -β-glucopyranoside, and farrerol were identified. Quality parameters, including chemical marker quantification by HPLC, and biological activity, are described. In the extract standardization process, all the evaluated parameters showed low variability. The seasonality study revealed no significant correlations (p < 0.05) between TPC or TFC content and meteorological data. These results showed that it is possible to obtain extracts from M. chamissois at any time of the year without significant differences in composition.
Collapse
Affiliation(s)
- Juliana de Freitas Ferreira
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Manuel Humberto Mera López
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - João Victor Dutra Gomes
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Diegue H. Nascimento Martins
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Christopher William Fagg
- Department of Botany, Institute of Biological Science, Ceilândia Campus, School of Pharmacy, University of Brasília, Brasilia 70910-900, Brazil;
| | - Pérola Oliveira Magalhães
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Noel William Davies
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Dâmaris Silveira
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Yris Maria Fonseca-Bazzo
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
- Correspondence:
| |
Collapse
|
8
|
Abstract
This work presents an overview of the modern approaches embracing advanced equipment and validation parameters of both liquid and gas chromatography techniques, including thin-layer chromatography (TLC), column liquid chromatography (CLC), and gas chromatography (GC), suitable for the identification and quantitative determination of various bioactive compounds occurring in pharmaceutical products and medicinal plants in the time from 2020 to 2021 (November). This review confirmed that HPLC is an incredibly universal tool, especially when combined with different detectors, such as UV-Visible spectroscopy, mass spectrometry (MS), and fluorescence detection for numerous active ingredients in different pharmaceutical formulations without interferences from other excipients. TLC, in combination with densitometry, is a very efficient tool for the determination of biologically active substances present in pharmaceutical preparations. In addition, TLC coupled to densitometry and mass spectrometry could be suitable for preliminary screening and determination of the biological activity (e.g., antioxidant properties, thin layer chromatography (TLC) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) method) of plant materials. Gas chromatography, coupled with a mass spectrometer (GC-MS, GC-MS/MS), is of particular importance in the testing of any volatile substances, such as essential oils. LC, coupled to NMR and MS, is the best solution for identifying and studying the structure of unknown components from plant extracts, as well as degradation products (DPs). Thanks to size-exclusion chromatography, coupled to multi-angle light scattering, the quality control of biological pharmaceuticals is possible.
Collapse
|
9
|
Zheng Z, Hu H, Zeng L, Yang H, Yang T, Wang D, Zhang C, Deng Y, Zhang M, Guo D, Deng F. Analysis of the characteristic compounds of Citri Sarcodactylis Fructus from different geographical origins. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:72-82. [PMID: 34114292 DOI: 10.1002/pca.3069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Citri Sarcodactylis Fructus (CSF) is widely used as a food ingredient and a traditional Chinese medicine. In China, CSF is cultivated in many places, including Sichuan, Guangdong, Zhejiang, and Fujian provinces. The types and chemical contents of CSF from different origins may vary greatly due to the difference in climate and environmental conditions. Therefore, comparing the chemical composition of CSF from various places is vital. OBJECTIVE To rapidly select potential characteristic compounds for differentiating CSF from different origins. MATERIAL AND METHODS Thirty-one batches of CSF samples from different regions were analysed using ultra-performance liquid chromatography with hybrid quadrupole-orbitrap high-resolution mass spectrometry. Thereafter, chemometric methods, including principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA), were employed to find differential metabolites among the CSF samples from various origins. RESULTS PCA revealed 77.9% of the total variance and divided all CSF samples into three categories corresponding to their origins. OPLS-DA displayed better discrimination of CSF from different sources, with R2 X, R2 Y, and Q2 of 0.801, 0.985, and 0.849, respectively. Finally, 203 differential metabolites were obtained from CSF from different origins using the variable importance in projection of the OPLS-DA model, 30 of which were identified, and five coumarin compounds were selected as marker compounds discriminating CSF from different origins. CONCLUSION This work provides a practical strategy for classifying CSF from different origins and offers a research foundation for the quality control of CSF.
Collapse
Affiliation(s)
- Zhenxing Zheng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanwen Hu
- Yuechi Hospital of Traditional Chinese Medicine, Guang'an, China
| | - Li Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianlong Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Di Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanyang Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingzhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dale Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Molo Z, Tel-Çayan G, Deveci E, Öztürk M, Duru ME. Insight into isolation and characterization of compounds of Chaerophyllum bulbosum aerial part with antioxidant, anticholinesterase, anti-urease, anti-tyrosinase, and anti-diabetic activities. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Liu Y, Cui Y, Lu L, Gong Y, Han W, Piao G. Natural indole-containing alkaloids and their antibacterial activities. Arch Pharm (Weinheim) 2020; 353:e2000120. [PMID: 32557757 DOI: 10.1002/ardp.202000120] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
As the growth in resistance to bacterial infection treatments poses a grave threat to global health in the 21st century, there is a constant need to explore novel antibacterial agents that have the ability to overcome drug resistance. Indole-containing alkaloids are widely distributed in nature, and a variety of indole-containing alkaloids have already been applied in clinical practice, proving that indole-containing alkaloids are fascinating and privileged scaffolds for the development of novel drugs. Moreover, indole-containing alkaloids could exert their antibacterial activity through the inhibition of efflux pumps, the biofilm, filamentous temperature-sensitive protein Z, and methicillin-resistant Staphylococcus aureus pyruvate kinase; so, indole-containing alkaloids constitute an important source of novel antibacterial agents. This review is an endeavor to highlight the advances in the development of indole-containing alkaloids with antibacterial potential, covering articles published in the recent 10 years.
Collapse
Affiliation(s)
- Yang Liu
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Ying Cui
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Liyan Lu
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yufeng Gong
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Wen Han
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Guishun Piao
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
12
|
Liu G, Duan Z, Wang P, Fan D, Zhu C. Purification, characterization, and hypoglycemic properties of eurocristatine from Eurotium cristatum spores in Fuzhuan brick tea. RSC Adv 2020; 10:22234-22241. [PMID: 35516628 PMCID: PMC9054505 DOI: 10.1039/d0ra03423a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/02/2020] [Indexed: 01/24/2023] Open
Abstract
Fuzhuan brick tea (FBT) is a Chinese dark tea that is famous for its significant health benefits, in which Eurotium cristatum (E. cristatum) strains play a vital role in its postfermentation process. In this study, eurocristatine with hypoglycemic activity was discovered for the first time and purified from the spores of E. cristatum growing in FBT. Eurocristatine (98%) was obtained by D-101 macroporous resin-based column chromatography and preparative high performance liquid chromatography (HPLC) with a C18 column as the stationary phase and 35% acetonitrile in ultrapure water as the mobile phase. Hypoglycemic activity in a Hep-G2 cell hypoglycemic model was used as a screening indicator during purification. The chemical structure of eurocristatine was characterized by ESI/MS, 1H NMR and 13C NMR analyses. The antidiabetic effects of eurocristatine were verified in high-fat diet/streptozocin-induced type 2 diabetes mellitus (T2DM) rats. The results showed that eurocristatine significantly reduced fasting blood glucose. Our study demonstrated that eurocristatine, as a newly discovered hypoglycemic active substance, could be considered a potential candidate for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Gang Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| |
Collapse
|