1
|
Xu Z, Zang M, Li H, Tian R, Zhang Z, Liu W, Xiao F, Yan X, Zhu Y, Zhu C, Xu J, Yu S, Wang T, Sun H, Liu J. Living Biotherapeutics Using Nanoparticles-Armed Cyanobacteria for Boosting Photodynamic-Immunotherapy of Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502746. [PMID: 40344505 DOI: 10.1002/advs.202502746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Indexed: 05/11/2025]
Abstract
The interdisciplinary development of synthetic biology and material sciences propels medicine into a new era. For cancer therapy, living biotherapeutics integrating functional living bacteria with nanomedicine are particularly interesting. The current study developed a living biotherapeutic platform integrating oxygen-self-supplying cyanobacteria with multifunctional prodrug nanoparticles to boost photodynamic immunotherapy. Generally, tetracarboxyl porphyrin is associated with cisplatin via a covalent self-assembly strategy into uniform prodrug-skeletal nanoparticles (ZnNCs). This helped encapsulate the antitumor drug dicumarol derivative (DicTBS). Later, these developed DicTBS-ZnNC nanoparticles helped arm the surface of cyanobacteria using electrostatic adsorption to yield living nanotherapeutics (Cyano@DicTBS-ZnNCs). Cyano@DicTBS-ZnNCs achieved a self-supply of nanoparticles and oxygen under 660 nm laser irradiation, producing PDT therapeutic effects. Furthermore, combining cisplatin and dicoumarol achieved synergistic anticancer effects. This approach also induced immunogenic cell death (ICD) and regulated the tumor microenvironment (TME). This promoted an immune-supportive environment to improve antitumor immune responses.
Collapse
Affiliation(s)
- Zhengwei Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Mingsong Zang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hui Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Ruizhen Tian
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Zherui Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Wang Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Fei Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Xuesha Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yan Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Canhong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Tingting Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
2
|
Yakkala PA, Kamal A. Dual-targeting inhibitors involving tubulin for the treatment of cancer. Bioorg Chem 2025; 156:108116. [PMID: 39823818 DOI: 10.1016/j.bioorg.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025]
Abstract
Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes. Despite clinical approval of several tubulin inhibitors, their efficacy is hampered by drug resistance and toxic side effects. Dual targeting inhibitors of tubulin and other cancer-related pathways have emerged as vital components in cancer therapy, with promising prospects in both market availability and ongoing clinical trials. The rational design of hybrid inhibitors targeting both pathways presents an innovative approach to combatting cancer. However, despite the potent anti-tumor activity exhibited by several compounds, research on their anti-angiogenic potential remains limited. This review emphasizes the significance of tubulin based dual-target inhibitors, elucidating their mechanisms of action. Recent advances in exploring therapeutic efficacy, toxicity profiles, and challenges such as MDR are discussed. By presenting the research progress of tubulin based dual-target inhibitors as potential anticancer agents, this study delivers valuable insights for the development of more efficient drugs for cancer therapy.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Human Nutrition and Analytical Chemistry, Human Nutrition Program, The Ohio State University, Columbus, OH 43212, United States of America; Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India.
| |
Collapse
|
3
|
Zubaș A, Ghinet A, Farce A, Dubois J, Bîcu E. Phenothiazine- and Carbazole-Cyanochalcones as Dual Inhibitors of Tubulin Polymerization and Human Farnesyltransferase. Pharmaceuticals (Basel) 2023; 16:888. [PMID: 37375835 DOI: 10.3390/ph16060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In the search for innovative approaches to cancer chemotherapy, a chemical library of 49 cyanochalcones, 1a-r, 2a-o, and 3a-p, was designed as dual inhibitors of human farnesyltransferase (FTIs) and tubulin polymerization (MTIs) (FTIs/MTIs), two important biological targets in oncology. This approach is innovative since the same molecule would be able to interfere with two different mitotic events of the cancer cells and prevent these cells from developing an emergency route and becoming resistant to anticancer agents. Compounds were synthesized by the Claisen-Schmidt condensation of aldehydes with N-3-oxo-propanenitriles under classical magnetic stirring and under sonication. Newly synthesized compounds were screened for their potential to inhibit human farnesyltransferase, tubulin polymerization, and cancer cell growth in vitro. This study allowed for the identification of 22 FTIs and 8 dual FTIs/MTIs inhibitors. The most effective molecule was carbazole-cyanochalcone 3a, bearing a 4-dimethylaminophenyl group (IC50 (h-FTase) = 0.12 µM; IC50 (tubulin) = 0.24 µM) with better antitubulin activity than the known inhibitors that were previously reported, phenstatin and (-)-desoxypodophyllotoxin. The docking of the dual inhibitors was realized in both the active site of FTase and in the colchicine binding site of tubulin. Such compounds with a dual inhibitory profile are excellent clinical candidates for the treatment of human cancers and offer new research perspectives in the search for new anti-cancer drugs.
Collapse
Affiliation(s)
- Andreea Zubaș
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
| | - Alina Ghinet
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, 59000 Lille, France
| | - Amaury Farce
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, University of Lille, 59000 Lille, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR2301, CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | - Elena Bîcu
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
| |
Collapse
|
4
|
Hossain M, Roth S, Dimmock JR, Das U. Cytotoxic derivatives of dichloroacetic acid and some metal complexes. Arch Pharm (Weinheim) 2022; 355:e2200236. [DOI: 10.1002/ardp.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/12/2022]
Affiliation(s)
| | - Shayne Roth
- School of Sciences Indiana University Kokomo Kokomo Indiana USA
| | - Jonathan R. Dimmock
- Drug Discovery and Development Research Cluster University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Umashankar Das
- Drug Discovery and Development Research Cluster University of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
5
|
Hossain M, Roayapalley PK, Sakagami H, Satoh K, Bandow K, Das U, Dimmock JR. Dichloroacetyl Amides of 3,5-Bis(benzylidene)-4-piperidones Displaying Greater Toxicity to Neoplasms than to Non-Malignant Cells. MEDICINES 2022; 9:medicines9060035. [PMID: 35736248 PMCID: PMC9228592 DOI: 10.3390/medicines9060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/21/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
Abstract
A series of 3,5-bis(benzylidene)-1-dichloroacetyl-4-piperidones 1a–l was evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas. Virtually all of the compounds displayed potent cytotoxicity, with 83% of the CC50 values being submicromolar and several CC50 values being in the double digit nanomolar range. The compounds were appreciably less toxic to human HGF, HPLF, and HPC non-malignant cells, which led to some noteworthy selectivity index (SI) figures. From these studies, 1d,g,k emerged as the lead molecules in terms of their potencies and SI values. A Quantitative Structure-Activity Relationship (QSAR) study revealed that cytotoxic potencies and potency–selectivity expression figures increased when the magnitude of the sigma values in the aryl rings was elevated. The modes of action of the representative cytotoxins in Ca9-22 cells were found to include G2/M arrest and stimulation of the cells to undergo mitosis and cause poly(ADP-ribose) polymerase (PARP) and procaspase 3 cleavage.
Collapse
Affiliation(s)
- Mohammad Hossain
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46904, USA;
| | - Praveen K. Roayapalley
- Drug Discovery and Development Research Cluster, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (U.D.); (J.R.D.)
- Correspondence: ; Tel.: +1-306-715-4217
| | - Hiroshi Sakagami
- Meikai University School of Dentistry, Sakado 350-0283, Japan; (H.S.); (K.S.); (K.B.)
| | - Keitaro Satoh
- Meikai University School of Dentistry, Sakado 350-0283, Japan; (H.S.); (K.S.); (K.B.)
| | - Kenjiro Bandow
- Meikai University School of Dentistry, Sakado 350-0283, Japan; (H.S.); (K.S.); (K.B.)
| | - Umashankar Das
- Drug Discovery and Development Research Cluster, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (U.D.); (J.R.D.)
| | - Jonathan R. Dimmock
- Drug Discovery and Development Research Cluster, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (U.D.); (J.R.D.)
| |
Collapse
|
6
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
7
|
Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem 2021; 64:7963-7990. [PMID: 34101463 DOI: 10.1021/acs.jmedchem.1c00100] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
Moise IM, Bîcu E, Farce A, Dubois J, Ghinet A. Indolizine-phenothiazine hybrids as the first dual inhibitors of tubulin polymerization and farnesyltransferase with synergistic antitumor activity. Bioorg Chem 2020; 103:104184. [DOI: 10.1016/j.bioorg.2020.104184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/03/2020] [Accepted: 08/07/2020] [Indexed: 01/21/2023]
|