1
|
Guo J, Zhu Y, Zhi J, Lou Q, Bai R, He Y. Antioxidants in anti-Alzheimer's disease drug discovery. Ageing Res Rev 2025; 107:102707. [PMID: 40021094 DOI: 10.1016/j.arr.2025.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Oxidative stress is widely recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). While not the sole factor, it is closely linked to critical pathological features, such as the formation of senile plaques and neurofibrillary tangles. The development of agents with antioxidant properties has become an area of growing interest in AD research. Between 2015 and 2024, several antioxidant-targeted drugs for AD progressed to clinical trials, with increasing attention to the evaluation of antioxidant properties during their development. Oxidative stress plays a pivotal role in linking various AD hypotheses, underscoring its importance in understanding the disease mechanisms. Despite this, comprehensive reviews addressing advancements in AD drug development from the perspective of antioxidant capacity remain limited, hindering the design of novel compounds. This review aims to explore the mechanistic relationship between oxidative stress and AD, summarize methods for assessing antioxidant capacity, and provide an overview of antioxidant compounds with anti-AD properties reported over the past decade. The goal is to offer strategies for identifying effective antioxidant-based therapies for AD and to deepen our understanding of the role of oxidative stress in AD pathology.
Collapse
Affiliation(s)
- Jianan Guo
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| | - Yalan Zhu
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Jia Zhi
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiuwen Lou
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yiling He
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| |
Collapse
|
2
|
Deng P, An JX, Liang HJ, Mou GL, Luo XF, Wang DT, Zhang SY, Zhang LJ, Jin YR, Zhang ZJ, Liu YQ. Design, Synthesis, and Antibacterial Activity of Stilbene Derivatives against Phytopathogenic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40312132 DOI: 10.1021/acs.jafc.5c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The increasing resistance of phytopathogenic bacteria to chemical pesticides has underscored the urgent need for novel bactericidal agents. In this study, we designed, synthesized, and evaluated a series of stilbene derivatives for their antibacterial activity against six strains of plant-pathogenic bacteria. Among them, compound ST-A-8 showed the optimal activity against Xanthomonas oryzae pv oryzae (Xoo) and Erwinia aroideae, with both MIC values of 1.56 μg/mL, which was more potent than the commercialized antibacterial agent thiodiazole copper. Furthermore, the mechanism of ST-A-8 on Xoo was preliminarily investigated, and the results showed that ST-A-8 inhibited the biofilm formation as well as the production of extracellular polysaccharides in Xoo. Additionally, it disrupted the integrity of the cell membrane and increased the production of ROS, leading to lipid peroxidation of the cell membrane. Therefore, compound ST-A-8 may serve as a potential novel bactericide for the control of plant bacterial diseases.
Collapse
Affiliation(s)
- Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Hong-Jie Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Guo-Liang Mou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Deng-Tuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Li Jing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Ma X, Ma Z, Qi X, Zhang X, Liu X, Liu X, Zhang A, Yue G, Li G, Li J. Identification of a novel Src inhibitor K882 derived from quinazoline-based stilbenes with anti-NSCLC effect. Bioorg Chem 2025; 156:108185. [PMID: 39947800 DOI: 10.1016/j.bioorg.2025.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 03/28/2025]
Abstract
The growing concern about drug resistance to KRAS G12C inhibitors emphasizes the urgent need for effective therapies targeting NSCLC with KRAS G12C mutation. In this research, a series of quinazoline-based stilbene derivatives were designed, synthesized and assayed for cytotoxic activities against human KRAS G12C mutant NSCLC NCI-H358 cells. Among them, K882 (4e) exhibited remarkable inhibitory activities on tumor cell proliferation, migration and invasion, as well as tumor organoids growth in vitro. Subsequent study revealed that K882 arrested NCI-H358 cell cycle in G2/M phase and induced apoptosis. In a NCI-H358 xenograft tumor model, K882 showed potential tumor inhibition effect in vivo without causing obvious organ damage. Mechanistically, K882 bound to ATP binding hydrophobic pocket of Src and inhibited its downstream signaling pathways including Jak/Stat, PI3K/Akt and RAS/MAPK activation, thereby exerting its anti-tumor effect. These findings highlight the promising potential of K882 as a therapeutic targeting agent for the treatment of KRAS mutant NSCLC while also providing novel insights into targeted therapy strategies for this type of malignancy. Furthermore, the information of structure-activity relationship presents valuable molecular design blueprints for the development of novel and highly potent compounds targeting Src.
Collapse
MESH Headings
- Humans
- Quinazolines/pharmacology
- Quinazolines/chemistry
- Quinazolines/chemical synthesis
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Cell Proliferation/drug effects
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Structure-Activity Relationship
- Stilbenes/chemistry
- Stilbenes/pharmacology
- Stilbenes/chemical synthesis
- Animals
- Drug Screening Assays, Antitumor
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Molecular Structure
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/metabolism
- Dose-Response Relationship, Drug
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Apoptosis/drug effects
- Mice
- Cell Line, Tumor
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Mice, Nude
Collapse
Affiliation(s)
- Xiuwei Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Zongchen Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Xiaochun Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071 China
| | - Xiaoyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Aotong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Gan Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China.
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003 China.
| |
Collapse
|
4
|
Puranik N, Song M. Therapeutic Role of Heterocyclic Compounds in Neurodegenerative Diseases: Insights from Alzheimer's and Parkinson's Diseases. Neurol Int 2025; 17:26. [PMID: 39997657 PMCID: PMC11858632 DOI: 10.3390/neurolint17020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's and Parkinson's are the most common neurodegenerative diseases (NDDs). The development of aberrant protein aggregates and the progressive and permanent loss of neurons are the major characteristic features of these disorders. Although the precise mechanisms causing Alzheimer's disease (AD) and Parkinson's disease (PD) are still unknown, there is a wealth of evidence suggesting that misfolded proteins, accumulation of misfolded proteins, dysfunction of neuroreceptors and mitochondria, dysregulation of enzymes, and the release of neurotransmitters significantly influence the pathophysiology of these diseases. There is no effective protective medicine or therapy available even with the availability of numerous medications. There is an urgent need to create new and powerful bioactive compounds since the number of people with NDDs is rising globally. Heterocyclic compounds have consistently played a pivotal role in drug discovery due to their exceptional pharmaceutical properties. Many clinically approved drugs, such as galantamine hydrobromide, donepezil hydrochloride, memantine hydrochloride, and opicapone, feature heterocyclic cores. As these heterocyclic compounds have exceptional therapeutic potential, heterocycles are an intriguing research topic for the development of new effective therapeutic drugs for PD and AD. This review aims to provide current insights into the development and potential use of heterocyclic compounds targeting diverse therapeutic targets to manage and potentially treat patients with AD and PD.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Kaur R, Dilip H, Kirubakaran S, Babu SA. Synthesis of biaryl-based carbazoles via C-H functionalization and exploration of their anticancer activities. Org Biomol Chem 2024; 22:8916-8944. [PMID: 39404867 DOI: 10.1039/d4ob01392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The synthesis of a library of new biaryl-based carbazoles via bidentate directing group-assisted C-H functionalization and preliminary screening of the anticancer properties of biaryl-based carbazoles is reported. While various classes of modified carbazoles are known for their applications in materials and medicinal chemistry, to our knowledge, the biological activities of designed biaryl-based carbazoles have been rarely known. Given the prominence of carbazoles in research in medicinal chemistry, we envisioned the scope for new scaffolds of carbazole-based biaryl structures. We screened the synthesized biaryl-based carbazoles for their anticancer properties against various cancer cell lines such as HeLa (cervical cancer), HCT116 (colon cancer), MDA-MB-231 and MDA-MB-468 (breast cancer). In addition, the hits were also tested in the human embryonic kidney cell line HEK293T to assess their impact on the viability of normal human cells in the presence of these compounds. In this preliminary study, we identified some of the biaryl-based carbazoles as lead compounds with anticancer activities.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge, City, Sector 81, SAS Nagar, Manauli P. O., Mohali, Punjab, 140306, India.
| | - Haritha Dilip
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India.
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge, City, Sector 81, SAS Nagar, Manauli P. O., Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Sepehri S, Khedmati M, Yousef-Nejad F, Mahdavi M. Medicinal chemistry perspective on the structure-activity relationship of stilbene derivatives. RSC Adv 2024; 14:19823-19879. [PMID: 38903666 PMCID: PMC11188052 DOI: 10.1039/d4ra02867h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Stilbenes are a small family of polyphenolic secondary metabolites produced in a variety of closely related plant species. These compounds function as phytoalexins, aiding plant defense against phytopathogens and plants' adaptation to abiotic environmental factors. Structurally, some important phenolic compounds have a 14-carbon skeleton and usually have two isomeric forms, Z and E. Stilbenes contain two benzene rings linked by a molecule of ethanol or ethylene. Some derivatives of natural (poly)phenolic stilbenes such as resveratrol, pterostilbene, and combretastatin A-4 have shown various biological activities, such as anti-microbial, anti-cancer, and anti-inflammatory properties as well as protection against heart disease, Alzheimer's disease, and diabetes. Among stilbenes, resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds have been investigated for their bioactivity. This review focuses on the assessment of synthetic stilbene derivatives in terms of their biological activities and structure-activity relationship. The goal of this study is to consider the structural changes and different substitutions on phenyl rings that can improve the desired medicinal effects of stilbene-based compounds beyond the usual standards and subsequently discover biological activities by identifying effective alternatives of the evaluated compounds.
Collapse
Affiliation(s)
- Saghi Sepehri
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences Ardabil Iran +98-45-33522197 +98-45-33522437-39, ext. 164
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences Ardabil Iran
| | - Mina Khedmati
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences Ardabil Iran
| | - Faeze Yousef-Nejad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
7
|
Evyapan S, Oruç-Emre EE, Sıcak Y, Karaküçük-İyidoğan A, Yılmaz GT, Öztürk M. Design, in Silico Studies and Biological Evaluation of New Chiral Thiourea and 1,3-Thiazolidine-4,5-dione Derivatives. Chem Biodivers 2023; 20:e202300626. [PMID: 37477542 DOI: 10.1002/cbdv.202300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
In this study, new chiral thiourea and 1,3-thiazolidine-4,5-dione derivatives were synthesized, it was aimed to evaluate the various biological activities and molecular docking of these compounds. Firstly, the new thioureas (1-16) were obtained by reacting 1-naphthylisothiocyanate with different chiral amines. Then, the chiral thioureas were cyclized with oxalyl chloride to obtain 1,3-thiazolidine-4,5-dione derivatives (17-32). All compounds were evaluated with several in vitro antioxidant and enzyme inhibition activities. Compound 30 was the most active compound against AChE, with a value of IC50 =8.09±0.58 μM. On the other hand, all compounds were tested in silico absorption, distribution, metabolism, and excretion (ADME) assays to better understand their bioavailability. These physicochemical properties, pharmacokinetics, and drug-likeness of all compounds were calculated using SwissADME. Furthermore, according to molecular docking analyses compound 30 exhibited significant binding affinities for all enzymes. Based on our overall observations, compound 30 could be recommended as a potential lead for the therapuetic of Alzheimer's.
Collapse
Affiliation(s)
- Samet Evyapan
- Department of Chemistry, Faculty of Art and Sciences, Gaziantep University, Gaziantep, 27410, Türkiye
| | - Emine Elçin Oruç-Emre
- Department of Chemistry, Faculty of Art and Sciences, Gaziantep University, Gaziantep, 27410, Türkiye
| | - Yusuf Sıcak
- Department of Medicinal and Aromatic Plants, Köyceğiz Vocational School, Muğla Sıtkı Koçman University, Muğla, 48800, Türkiye
| | | | - Gizem Tatar Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61000, Türkiye
| | - Mehmet Öztürk
- Department of Chemistry, Faculty of Sciences, Muğla Sıtkı Koçman University, Muğla, 48800, Türkiye
| |
Collapse
|
8
|
Faghih Z, Khabnadideh S, Sakhteman A, Shirazi AK, Yari HA, Chatraei A, Rezaei Z, Sadeghian S. Synthesis, biological evaluation and molecular modeling studies of novel carbazole-benzylpiperazine hybrids as acetylcholinesterase and butyrylcholinesterase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Patel KB, Patel DV, Patel NR, Kanhed AM, Teli DM, Gandhi B, Shah BS, Chaudhary BN, Prajapati NK, Patel KV, Yadav MR. Carbazole-based semicarbazones and hydrazones as multifunctional anti-Alzheimer agents. J Biomol Struct Dyn 2022; 40:10278-10299. [PMID: 34215173 DOI: 10.1080/07391102.2021.1942212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With the aim to combat a multi-faceted neurodegenerative Alzheimer's disease (AD), a series of carbazole-based semicarbazide and hydrazide derivatives were designed, synthesized and assessed for their cholinesterase (ChE) inhibitory, antioxidant and biometal chelating activity. Among them, (E)-2-((9-ethyl-9H-carbazol-3-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide (62) and (E)-2-((9-ethyl-9H-carbazol-3-yl)methylene)-N-(5-chloropyridin-2-yl)hydrazinecarbothioamide (63) emerged as the premier candidates with good ChE inhibitory activities (IC50 values of 1.37 µM and 1.18 µM for hAChE, IC50 values of 2.69 µM and 3.31 µM for EqBuChE, respectively). All the test compounds displayed excellent antioxidant activity (reduction percentage of DPPH values for compounds (62) and (63) were 85.67% and 84.49%, respectively at 100 µM concentration). Compounds (62) and (63) conferred specific copper ion chelating property in metal chelation study. Molecular docking studies of compounds (62) and (63) indicate strong interactions within the active sites of both the ChE enzymes. Besides that, these compounds also exhibited significant in silico drug-like pharmacokinetic properties. Thus, taken together, they can serve as a starting point in the designing of multifunctional ligands in pursuit of potential anti-AD agents that might further prevent the progression of ADs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kishan B Patel
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Dushyant V Patel
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Nirav R Patel
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ashish M Kanhed
- Shobhaben Pratapbhai Patel - School of Pharmacy & Technology Management, SVKM's NMIMS University, Mumbai, India
| | - Divya M Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Gujarat, India
| | - Bhumi Gandhi
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Bhavik S Shah
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Bharat N Chaudhary
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Navnit K Prajapati
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Kirti V Patel
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.,Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
10
|
Kumar N, Gupta P, Bansal S. Progress and Development of Carbazole Scaffold Based as Potential Anti-
Alzheimer Agents Using MTDL Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220314144219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Alzheimer’s is a neurodegenerative disease (NDs) found in old age people with associated
most common symptom dementia. MTDLs (Multi-Target Direct Ligand strategy) is based on a combination
of two or more bioactive pharmacophores into a single molecule and this phenomenon has received a
great attention in the new era of modern drug discovery and emerging as a choice to treat this complex
Alzheimer’s disease (AD). In last fifteen years, many research groups designed, and synthesized new
carbazole integrated molecules linked with other bioactive pharmacophores like thiazoles, carvedilol, α-
naphthylaminopropan-2-ol, tacrine, ferulic acid, piperazine, coumarin, chalcones, stilbene, benzyl piperidine,
adamantane, quinoline, phthalocyanines, α-amino phosphonate, thiosemicarbazones, hydrazones,
etc. derivatives using MTDLs approach to confront AD. The present review entails the scientific data on
carbazole hybrids as potential Anti-Alzheimer activities from 2007 to 2021 that have shown potential
anti-Alzheimer activities through multiple target pathways thereby promising hope for new drug development
to confront AD.
Collapse
Affiliation(s)
- Nitin Kumar
- School of Medical and Allied Sciences (SMAS), K.R. Mangalam University, Sohna road, Gurugram, Haryana, India
- Sanskar College of Pharmacy and Research (SCPR), NH-24, Ahead Masuri Canal, Ghaziabad 201302, India
| | - Pankaj Gupta
- School of Medical and Allied Sciences (SMAS), K.R. Mangalam University, Sohna road, Gurugram, Haryana, India
| | - Sahil Bansal
- School of Medical and Allied Sciences (SMAS), K.R. Mangalam University, Sohna road, Gurugram, Haryana, India
| |
Collapse
|
11
|
Eltoukhi M, Fadda AA, Abdel-Latif E, Elmorsy MR. Low cost carbazole-based organic dyes bearing the acrylamide and 2-pyridone moieties for efficient dye-sensitized solar cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy. Eur J Med Chem 2022; 233:114242. [DOI: 10.1016/j.ejmech.2022.114242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 01/04/2023]
|
13
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
14
|
Imidazolylacetophenone oxime-based multifunctional neuroprotective agents: Discovery and structure-activity relationships. Eur J Med Chem 2022; 228:114031. [PMID: 34875520 DOI: 10.1016/j.ejmech.2021.114031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) possesses a complex pathogenetic mechanism. Nowadays, multitarget agents are considered to have potential in effectively treating AD via triggering molecules in functionally complementary pathways at the same time. Here, based on the screening (∼1400 compounds) against neuroinflammation, an imidazolylacetophenone oxime ether (IOE) was discovered as a novel hit. In order to obtain SARs, a series of imidazolylacetophenone oxime derivatives were constructed, and their C=N bonds were confirmed as the Z configuration by single crystals. These derivatives exhibited potential multifunctional neuroprotective effects including anti-neuroinflammatory, antioxidative damage, metal-chelating, inhibition of acetylcholinesterase (AChE) properties. Among these derivatives, compound 12i displayed the most potent inhibitory activity against nitric oxide (NO) production with EC50 value of 0.57 μM 12i can dose-dependently suppress the expression of iNOS and COX-2 but not change the expression of HO-1 protein. Moreover, 12i exhibited evidently neuroprotective effects on H2O2-induced PC12 cells damage and ferroptosis without cytotoxicity at 10 μM, as well as selectively metal chelating properties via chelating Cu2+. In addition, 12i showed a mixed-type inhibitory effect on AChE in vitro. The structure-activity relationships (SARs) analysis indicated that dioxolane groups on benzene ring and rigid oxime ester can improve the activity. Parallel artificial membrane permeation assay (PAMPA) also verified that 12i can overcome the blood-brain barrier (BBB). Overall, this is the first report on imidazolylacetophenone oxime-based multifunctional neuroprotective effects, suggesting that this type of compounds might be novel multifunctional agents against AD.
Collapse
|
15
|
Syntheses, crystal structures, luminescence, Hirshfeld surface analyses and thermal properties of biphenyl carbazole derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Tang JJ, Guo C, Peng XN, Guo XC, Zhang Q, Tian JM, Gao JM. Chemical characterization and multifunctional neuroprotective effects of sesquiterpenoid-enriched Inula britannica flowers extract. Bioorg Chem 2021; 116:105389. [PMID: 34601295 DOI: 10.1016/j.bioorg.2021.105389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/05/2023]
Abstract
Dried flowers of Inula britannica commercially serve as pharmaceutical/nutraceutical herbs in the manufacture of medicinal products and functional tea that has been reported to possess extensive biological property. However, the neuroprotective constituents in I. britannica flowers are not known. In the current study, phytochemicals of sesquiterpenoid-enriched I. britannica flowers extract and their potential multifunctional neuroprotective effects were investigated. Nineteen structurally diverse sesquiterpenoids, including two new sesquiterpenoid dimers, namely, inubritanolides A and B (1, 2), and four new sesquiterpenoid monomers (3-6), namely, 1-O-acetyl-6-O-chloracetylbritannilactone (3), 6-methoxybritannilactone (4), 1-hydroxy-10β-methoxy-4αH-1,10-secoeudesma-5(6),11(13)-dien-12,8β-olide (5) and 1-hydroxy-4αH-1,10-secoeudesma-5(6),10(14),11(13)-trien-12,8β-olide (6), as well as 13 known congeners (7-19) were isolated from this source. The structures of compounds 1-6 were elucidated by 1D- and 2D- NMR and HR-ESI-MS data, and their absolute configurations were discerned by electronic circular dichroism (ECD) data analysis and single crystal X-ray diffraction. Interestingly, inubritannolide A (1) is a new type [4 + 2] Diels-Alder dimer featuring a hepta-membered cycloether skeleton. Most of the compounds showed potential multifunctional neuroprotective effects, including antioxidative, anti-neuroinflammatory, and microglial polarization properties. Specifically, 1 and 6 displayed slight strong neuroprotective potency against different types of neuronal cells mediated by various inducers including H2O2, 6-hydroxydopamine (6-OHDA), and lipopolysaccharide (LPS). Overall, this is the first report on multifunctional neuroprotective effects of sesquiterpenoid-enriched I. britannica flowers extract, which supports its potential pharmaceutical/nutraceutical application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Chen Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Jun-Mian Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
17
|
Sirin S, Duyar H, Aslım B, Seferoğlu Z. Synthesis and biological activity of pyrrolidine/piperidine substituted 3-amido-9-ethylcarbazole derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Chowdhury SR, Gu J, Hu Y, Wang J, Lei S, Tavallaie MS, Lam C, Lu D, Jiang F, Fu L. Synthesis, biological evaluation and molecular modeling of benzofuran piperidine derivatives as Aβ antiaggregant. Eur J Med Chem 2021; 222:113541. [PMID: 34116326 DOI: 10.1016/j.ejmech.2021.113541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/04/2023]
Abstract
A series of benzofuran piperidine derivatives were designed, synthesized and evaluated as multifunctional Aβ antiaggregant to treat Alzheimer's disease (AD). In vitro results revealed that all of them are very good Aβ antiaggregants and some of the compounds are potent acetylcholinesterase (AChE) inhibitors with moderate antioxidant property. Selected compounds were also tested for neuroprotection activity, LDH release, ATP production and inhibitory activity to prevent Aβ peptides binding to the cell membrane. The different modifications introduced in the structure of our lead compound 3 (hAChE IC50 = 61 μM and self induced Aβ 25-35 aggregation 45.45%), to increase its activity toward AD related targets. The most interesting multifunctional Aβ antiaggregants were compounds 3a, 3h and 3i, highlighting 3h as potent Aβ antiaggregant and good antiacetylholinesterase inhibitor (self induced Aβ 25-35 aggregation 57.71% and hAChE IC50 = 21 μM), with good neuroprotective and antioxidant activity. In addition, these three most promising compounds prevent intracellular reactive oxygen species (ROS) formation and cell apoptosis induced by Aβ25-35 peptides in SH-SY5Y cells. Molecular docking studies were also accomplished to understand the binding interaction of these compounds on Aβ monomer, Aβ fibril and AChE. Based on all data, compounds 3a, 3h and 3i were concluded as potent multifunctional Aβ antiaggregant, useful candidate for the treatment of AD.
Collapse
Affiliation(s)
- Sharmin Reza Chowdhury
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Jinxin Gu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Yixin Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Juntao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Mojdeh S Tavallaie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Celine Lam
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Faqin Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China; SJTU-Agilent Technologies Joint Laboratory for Pharmaceutical Analysis, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; Academy of Pharmacy, Xi'an Jiaotong - Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
19
|
In Vitro Enzymatic and Kinetic Studies, and In Silico Drug-Receptor Interactions, and Drug-Like Profiling of the 5-Styrylbenzamide Derivatives as Potential Cholinesterase and β-Secretase Inhibitors with Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10050647. [PMID: 33922328 PMCID: PMC8145986 DOI: 10.3390/antiox10050647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The 5-(styryl)anthranilamides were transformed into the corresponding 5-styryl-2-(p-tolylsulfonamido)benzamide derivatives. These 5-styrylbenzamide derivatives were evaluated through enzymatic assays in vitro for their capability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase (BACE-1) activities as well as for antioxidant potential. An in vitro cell-based antioxidant activity assay involving lipopolysaccharides (LPS)-induced reactive oxygen species (ROS) production revealed that compounds 2a and 3b have the capability of scavenging free radicals. The potential of the most active compound, 5-styrylbenzamide (2a), to bind copper (II) or zinc (II) ions has also been evaluated spectrophotometrically. Kinetic studies of the most active derivatives from each series against the AChE, BChE, and β-secretase activities have been performed. The experimental results are complemented with molecular docking studies into the active sites of these enzymes to predict the hypothetical protein–ligand binding modes. Their drug likeness properties have also been predicted.
Collapse
|
20
|
De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ. A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules 2021; 11:580. [PMID: 33920972 PMCID: PMC8071298 DOI: 10.3390/biom11040580] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
The present article reviews published efforts to study acetylcholinesterase and butyrylcholinesterase structure and function using computer-based modeling and simulation techniques. Structures and models of both enzymes from various organisms, including rays, mice, and humans, are discussed to highlight key structural similarities in the active site gorges of the two enzymes, such as flexibility, binding site location, and function, as well as differences, such as gorge volume and binding site residue composition. Catalytic studies are also described, with an emphasis on the mechanism of acetylcholine hydrolysis by each enzyme and novel mutants that increase catalytic efficiency. The inhibitory activities of myriad compounds have been computationally assessed, primarily through Monte Carlo-based docking calculations and molecular dynamics simulations. Pharmaceutical compounds examined herein include FDA-approved therapeutics and their derivatives, as well as several other prescription drug derivatives. Cholinesterase interactions with both narcotics and organophosphate compounds are discussed, with the latter focusing primarily on molecular recognition studies of potential therapeutic value and on improving our understanding of the reactivation of cholinesterases that are bound to toxins. This review also explores the inhibitory properties of several other organic and biological moieties, as well as advancements in virtual screening methodologies with respect to these enzymes.
Collapse
Affiliation(s)
- Danna De Boer
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| | - Nguyet Nguyen
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jia Mao
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jessica Moore
- Department of Biomedical Engineering, California State University, Long Beach, CA 90840, USA;
| | - Eric J. Sorin
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| |
Collapse
|
21
|
Song MQ, Min W, Wang J, Si XX, Wang XJ, Liu YW, Shi DH. Design, synthesis and biological evaluation of new carbazole-coumarin hybrids as dual binding site inhibitors of acetylcholinesterase. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Gök N, Akıncıoğlu A, Erümit Binici E, Akıncıoğlu H, Kılınç N, Göksu S. Synthesis of novel sulfonamides with anti-Alzheimer and antioxidant capacities. Arch Pharm (Weinheim) 2021; 354:e2000496. [PMID: 33749025 DOI: 10.1002/ardp.202000496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 11/10/2022]
Abstract
A series of novel dopamine analogs incorporating urea and sulfonamide functional groups was synthesized from 3,4-dimethoxyphenethylamine. The reaction of 3,4-dimethoxyphenethylamine with N,N-dimethylcarbamoyl chloride, followed by the sulfonyl chlorination of the urea derivative, gave benzene-1-sulfonyl chloride 9, which was reacted with NH3 (aq) or N-alkyl amines to give related sulfonamides. The O-demethylation reaction of the subsequent compounds with BBr3 afforded four novel phenolic dopamine analogs including sulfonamide and urea in the same structure. The anticholinergic and antioxidant effects of the synthesized compounds were examined. Compound 13 exhibited inhibition at the micromolar level for both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The IC50 value of 13 was calculated as 298 ± 43 µM for AChE and 321 ± 29 µM for BChE. The antioxidant and antiradical effects of the molecules were investigated by five different methods. Among the synthesized compounds 10-18, the best antioxidant and antiradical activities belong to the phenolic compounds 15-18. Compounds 16 and 18 have a higher reducing power than the standards used, that is, butylated hydroxytoluene, butylated hydroxyanisole, Trolox, and α-tocopherol, for Fe3+ -Fe2+ and Cu2+ -Cu+ reducing activities. For the DPPH• radical scavenging method, compounds 16-18 have a much better scavenging power than the standard molecules. In addition, it has been determined by the induced-fit docking method that compound 13 is well-fitted in the active site of the enzymes. ADME studies reveal that the pharmacokinetic and physicochemical properties of all synthesized compounds are within an acceptable range.
Collapse
Affiliation(s)
- Nihal Gök
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Akın Akıncıoğlu
- Central Researching Laboratory, Agri İbrahim Cecen University, Ağrı, Turkey.,Vocational School, Agri İbrahim Cecen University, Ağrı, Turkey
| | | | - Hülya Akıncıoğlu
- Faculty of Arts and Science, Agri İbrahim Çeçen University, Ağrı, Turkey
| | - Namık Kılınç
- Department of Medical Services and Techniques, Vocational School of Health Services, Igdir University, Igdir, Turkey
| | - Süleyman Göksu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
23
|
Patel DV, Patel NR, Kanhed AM, Teli DM, Patel KB, Gandhi PM, Patel SP, Chaudhary BN, Shah DB, Prajapati NK, Patel KV, Yadav MR. Further Studies on Triazinoindoles as Potential Novel Multitarget-Directed Anti-Alzheimer's Agents. ACS Chem Neurosci 2020; 11:3557-3574. [PMID: 33073564 DOI: 10.1021/acschemneuro.0c00448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The inadequate clinical efficacy of the present anti-Alzheimer's disease (AD) drugs and their low impact on the progression of Alzheimer's disease in patients have revised the research focus from single targets to multitarget-directed ligands. A novel series of substituted triazinoindole derivatives were obtained by introducing various substituents on the indole ring for the development of multitarget-directed ligands as anti-AD agents. The experimental data indicated that some of these compounds exhibited significant anti-AD properties. Among them, 8-(piperidin-1-yl)-N-(6-(pyrrolidin-1-yl)hexyl)-5H-[1,2,4]triazino[5,6-b]indol-3-amine (60), the most potent cholinesterase inhibitor (AChE, IC50 value of 0.32 μM; BuChE, IC50 value of 0.21 μM), was also found to possess significant self-mediated Aβ1-42 aggregation inhibitory activity (54% at 25 μM concentration). Additionally, compound 60 showed strong antioxidant activity. In the PAMPA assay, compound 60 exhibited blood-brain barrier penetrating ability. An acute toxicity study in rats demonstrated no sign of toxicity at doses up to 2000 mg/kg. Furthermore, compound 60 significantly restored the cognitive deficits in the scopolamine-induced mice model and Aβ1-42-induced rat model. In the in silico ADMET prediction studies, the compound satisfied all the parameters of CNS acting drugs. These results highlighted the potential of compound 60 to be a promising multitarget-directed ligand for the development of potential anti-AD drugs.
Collapse
Affiliation(s)
- Dushyant V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Nirav R. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Ashish M. Kanhed
- Shobhaben Pratapbhai Patel - School of Pharmacy & Technology Management, SVKM’s NMIMS University, Vile Parle, Mumbai 400056, India
| | - Divya M. Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Kishan B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Pallav M. Gandhi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Sagar P. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Bharat N. Chaudhary
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Dharti B. Shah
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Navnit K. Prajapati
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Kirti V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
- Director (R & D), Centre of Research for Development, Parul University, Limbda, Waghodia Road, Vadodara, 391760 Gujarat, India
| |
Collapse
|
24
|
Kanhed AM, Patel DV, Patel NR, Sinha A, Thakor PS, Patel KB, Prajapati NK, Patel KV, Yadav MR. Indoloquinoxaline derivatives as promising multi-functional anti-Alzheimer agents. J Biomol Struct Dyn 2020; 40:2498-2515. [DOI: 10.1080/07391102.2020.1840441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ashish M. Kanhed
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Shobhaben Pratapbhai Patel - School of Pharmacy & Technology Management, SVKMs NMIMS University, Mumbai, India
| | - Dushyant V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Nirav R. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Anshuman Sinha
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Priyanka S. Thakor
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kishan B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Navnit K. Prajapati
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kirti V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|