1
|
Liu Y, Jin WH, Li RP, Sun HM. Nickel-Catalyzed Linear-Selective C-H Alkylation of N-Heteroarenes with Unactivated α-Olefins. J Org Chem 2025; 90:3053-3061. [PMID: 39960020 DOI: 10.1021/acs.joc.4c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We herein describe the nickel-catalyzed C2-H alkylation of benzothiazoles with unactivated α-olefins by using the Ni(IPr*OMe)[P(OEt)3]Br2/Mg catalytic system in which a variety of linear alkylated benzothiazoles with high regioselectivity were formed under mild reaction conditions. This transformation showed good compatibility to unactivated α-olefins bearing various functional groups, such as esters, acetals, silyl ethers, amines, silanes, and boronate esters. Furthermore, this transformation is also suitable to other typical N-heteroarenes including thiazoles, benzimidazoles, quinazolones, uracils, pyridines, caffeines, and indoles. Thus, this work provides rapid access to diverse linear alkylated N-heteroarenes with good step and atom economy.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wen-Hui Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Rui-Peng Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong-Mei Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Wu Q, Zhou Z, Xu L, Zhong H, Xiong B, Ren T, Li Z, Yuan L, Zhang XB. Multivalent supramolecular fluorescent probes for accurate disease imaging. SCIENCE ADVANCES 2024; 10:eadp8719. [PMID: 39423274 PMCID: PMC11488570 DOI: 10.1126/sciadv.adp8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging is a powerful tool for early disease detection and effective treatment planning, but its accuracy is often compromised by the uptake of imaging materials by the mononuclear phagocyte system (MPS). Herein, we leverage multivalent host-guest interactions between cyanine dyes and β-cyclodextrin polymers to develop supramolecular probes with enhanced stability, optical, and transport profiles for accurate in vivo imaging. These multivalent interactions not only ensure the stability of the probes but also enhance fluorescence efficiency by minimizing nonradiative decay. Our self-assembly approach effectively modulates probe size and surface properties, enabling evasion of MPS clearance and promoting prolonged bloodstream circulation, thereby improving the signal-to-background ratio for imaging. The effectiveness of our design is demonstrated by substantial advancements in the early diagnosis of acute kidney injury and by providing high-contrast imaging and precise surgical navigation across various tumor models. Our strategy not only advances optical imaging materials toward clinical translation but also establishes a versatile platform applicable to multiple imaging modalities.
Collapse
Affiliation(s)
| | | | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haichen Zhong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tianbing Ren
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Zanakhov TO, Galenko EE, Novikov MS, Khlebnikov AF. Divergent Diazo Approach toward Alkyl 5/4-Hydroxy-3 H-benzo[ e]indole-4/5-carboxylates. J Org Chem 2023; 88:13191-13204. [PMID: 37672038 DOI: 10.1021/acs.joc.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A divergent diazo approach toward alkyl 5/4-hydroxy-3H-benzo[e]indole-4/5-carboxylates has been developed. The reaction of 1,3-diketones with alkyl 2-diazo-3-oxo-3-(2H-azirin-2-yl)propanoates catalyzed by Co(acac)3 or Ni(acac)2 gives various alkyl 3-(1H-pyrrol-2-yl)-2-diazo-3-oxopropanoate in good yields. The latter undergo Wolff rearrangement followed by the 6π-cyclization of transient ketene to form alkyl 5-hydroxy-3H-benzo[e]indole-4-carboxylates bearing various substituents in positions 1, 2, 7, and 8, as well as derivatives of methyl 4-hydroxy-6H-thieno[2,3-e]indole-5-carboxylates and methyl 5-hydroxy-7H-benzo[c]carbazole-6-carboxylate under thermolysis or Rh2(OAc)4 catalysis. Isomeric benzoindoles, alkyl 4-hydroxy-3H-benzo[e]indole-5-carboxylates, have been prepared by Boc-protection of the pyrrole nitrogen of alkyl 3-(1H-pyrrol-2-yl)-2-diazo-3-oxopropanoates followed by an intramolecular formal carbene insertion into the aromatic C-H bond catalyzed by Cu(OTf)2. The hydroxyl group of alkyl 5/4-hydroxy-3H-benzo[e]indole-4/5-carboxylates, through the formation of the corresponding triflates, allows the introduction of various substituents into the 5/4 position of benzo[e]indoles using the cross-coupling reaction and even form a new heterocyclic backbone, benzo[k]pyrrolo[2,3-i]phenanthridine, via a tandem Suzuki reaction/nucleophilic acyl substitution.
Collapse
Affiliation(s)
- Timur O Zanakhov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Ekaterina E Galenko
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| |
Collapse
|
5
|
İ MAHMOOD I, SALMAN S, ABD L. New Bioactive Aromatic Heterocyclic Macromolecules with Monosaccharide Core. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1098055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
1,1,2-trimethyl-1H-benzo[e]indole is an important heterocyclic compound, its available in reasonable price and can easily modified to make a good intermediate for other derivatives. That is quite enough reasons to use as starting material for a new series of compounds with other biomolecules such as monosaccharides after simple modification. The target molecules show biological activity. So, the current work is aiming to improve the activity and the properties of the benzo indole by attaching with a naturally occurring, and biodegradable compounds represented by 2-deoxy-2-amino -d-glucose and 6-deoxy-6-amino-d-glucose to synthesis both mono and di-saccharides derivatives of benzo indole. Two steps synthesis were used for mono-saccharide derivatives and three steps for di-saccharide derivatives, the first is the functionalization of 1,1,2-trimethyl-1H-benzo[e]indole [1] via the reaction with POCl3 to produce 2-(1,1-dimethyl-1H-benzo[e]indol-2(3H)-ylidene) malonaldehyde [2] with two aldehydes reaction centers, while in the second step the latter was coupled with sugar via amino groups to get the two monosaccharide derivatives [3,5], while the disaccharides molecules [4,6] taken one more step with harder conditions to overcome the steric hindrance at the other reaction center. The purity and characterization of the target molecules was confirmed using spectroscopy methods including 1H NMR and 13 NMR. The synthesized compound shows a good biological activity as antibacterial antifungal.
Collapse
|
6
|
Chen Y, Li H, Liu J, Zhong R, Li H, Fang S, Liu S, Lin S. Synthesis and biological evaluation of indole-based peptidomimetics as antibacterial agents against Gram-positive bacteria. Eur J Med Chem 2021; 226:113813. [PMID: 34520955 DOI: 10.1016/j.ejmech.2021.113813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/15/2021] [Accepted: 08/28/2021] [Indexed: 01/06/2023]
Abstract
The emergence of bacterial multidrug resistance and the lack of new antimicrobial agents urgently demand the discovery and development of novel antibacterials that avoid bacterial resistance. Antimicrobial peptidomimetics represent a promising approach for overcoming antibiotic resistance. Herein we report the synthesis and evaluation of indole-based amphiphilic antimicrobial peptidomimetics, bearing hydrophobic side chains and hydrophilic cationic moieties. Among these derivatives, compound 28 demonstrated potent antimicrobial activity against Gram-positive bacteria, low hemolytic activity and low toxicity towards mammalian cells, as well as good stability in salt conditions. Moreover, compound 28 showed the rapid killing of bacteria via membrane-targeting action without developing bacterial resistance. More importantly, compound 28 displayed high antimicrobial potency against Gram-positive bacteria in a murine model of bacterial keratitis, and was found to be more efficient than vancomycin. Thus, compound 28 had great potential as a promising lead compound for the treatment of Gram-positive bacterial infection.
Collapse
Affiliation(s)
- Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Rongcui Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haizhou Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Shanfang Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
7
|
Xie F, Sun Y, Song H, Zhao J, Zhang Z, Duan Y, Chen R. Cascade Reaction of 2-Naphthols and Azirines: One-Pot Synthesis of C-3 Naphthol-Substituted Benzo[ e]indoles. J Org Chem 2021; 86:15631-15639. [PMID: 34643381 DOI: 10.1021/acs.joc.1c02164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A copper-catalyzed annulation of 3-aryl-2H-azirines with 2-naphthols has been developed for the rapid assembly of C-3-naphthol-substituted benzo[e]indoles in one pot. This cascade reaction was realized through dearomatic nucleophilic ring opening of azirine, intramolecular cyclization, and oxidative cross-dehydrogenative coupling to furnish the important unreported π-expanded naphthol/benzo[e]indole biaryls.
Collapse
Affiliation(s)
- Fang Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yajun Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Hanghang Song
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Zengpeng Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yue Duan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Rao Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|