1
|
Milli G, Pellegrini A, Listro R, Fasolini M, Pagano K, Ragona L, Pietrocola G, Linciano P, Collina S. New LsrK Ligands as AI-2 Quorum Sensing Interfering Compounds against Biofilm Formation. J Med Chem 2024; 67:18139-18156. [PMID: 39384180 PMCID: PMC11513922 DOI: 10.1021/acs.jmedchem.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Antimicrobial resistance (AMR) represents a critical global health crisis. An innovative strategy to deal with AMR is to interfere with biofilm formation and bacterial quorum sensing (QS). In this study, newly designed autoinducer-2 (AI-2)-inspired compounds in targeting biofilm-associated infections were evaluated for their ability to inhibit biofilm formation in Staphylococcus aureus and Pseudomonas aeruginosa. The most effective compounds, 5d, 5e, and 7b, exhibited potent antibiofilm activity with minimal inhibitory concentrations in the low microgram per mL range. Detailed biological assays confirmed that the antibiofilm activity was primarily driven through AI-2 QS inhibition rather than direct antimicrobial effects. The combination of different spectroscopic techniques, such as differential scanning fluorimetry, intrinsic tryptophan fluorescence, circular dichroism, and nuclear magnetic resonance, elucidated the binding between the compounds and the LsrK enzyme, a key player in AI-2 mediated QS. Our findings highlight the potential of these novel QS inhibitors as promising therapeutic agents against biofilm-associated infections.
Collapse
Affiliation(s)
- Giorgio Milli
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Angelica Pellegrini
- Department
of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marina Fasolini
- Nerviano
Medical Sciences s.r.l., Viale Pasteur 10, Nerviano, Milano 20014, Italy
| | - Katiuscia Pagano
- NMR
Laboratory, Istituto di Scienze e Tecnologie Chimiche “Giulio
Natta”, CNR, via Alfonso Corti, 12, Milano 20133, Italy
| | - Laura Ragona
- NMR
Laboratory, Istituto di Scienze e Tecnologie Chimiche “Giulio
Natta”, CNR, via Alfonso Corti, 12, Milano 20133, Italy
| | - Giampiero Pietrocola
- Department
of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
2
|
Castillo-Ordoñez WO, Cajas-Salazar N, Velasco-Reyes MA. Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer's agents. Neural Regen Res 2024; 19:846-854. [PMID: 37843220 PMCID: PMC10664119 DOI: 10.4103/1673-5374.382232] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults. Pathogenic factors, such as oxidative stress, an increase in acetylcholinesterase activity, mitochondrial dysfunction, genotoxicity, and neuroinflammation are present in this syndrome, which leads to neurodegeneration. Neurodegenerative pathologies such as Alzheimer's disease are considered late-onset diseases caused by the complex combination of genetic, epigenetic, and environmental factors. There are two main types of Alzheimer's disease, known as familial Alzheimer's disease (onset < 65 years) and late-onset or sporadic Alzheimer's disease (onset ≥ 65 years). Patients with familial Alzheimer's disease inherit the disease due to rare mutations on the amyloid precursor protein (APP), presenilin 1 and 2 (PSEN1 and PSEN2) genes in an autosomal-dominantly fashion with closely 100% penetrance. In contrast, a different picture seems to emerge for sporadic Alzheimer's disease, which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology. Importantly, the fundamental pathophysiological mechanisms driving Alzheimer's disease are interfaced with epigenetic dysregulation. However, the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer's disease or following injury or stroke in humans. In recent years, there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer's disease. Through epigenetic mechanisms, such as DNA methylation, non-coding RNAs, histone modification, and chromatin conformation regulation, natural compounds appear to exert neuroprotective effects. While we do not purport to cover every in this work, we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer's disease-related genes.
Collapse
Affiliation(s)
- Willian Orlando Castillo-Ordoñez
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia
| | - Nohelia Cajas-Salazar
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
| | - Mayra Alejandra Velasco-Reyes
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
| |
Collapse
|
3
|
Somsakeesit LO, Senawong T, Senawong G, Kumboonma P, Samankul A, Namwan N, Yenjai C, Phaosiri C. Evaluation and molecular docking study of two flavonoids from Oroxylum indicum (L.) Kurz and their semi-synthetic derivatives as histone deacetylase inhibitors. J Nat Med 2024; 78:236-245. [PMID: 37991632 DOI: 10.1007/s11418-023-01758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Chrysin (5,7-dihydroxyflavone, 6) and galangin 3-methyl ether (5,7-dihydroxy-3-methoxy flavone, 7) were obtained from the leaves of Oroxylum indicum (L.) Kurz in 4% and 6% yields, respectively. Both compounds could act as pan-histone deacetylase (HDAC) inhibitors. Structural modification of these lead compounds provided thirty-eight derivatives which were further tested as HDAC inhibitors. Compounds 6b, 6c, and 6q were the most potent derivatives with the IC50 values of 97.29 ± 0.63 μM, 91.71 ± 0.27 μM, and 96.87 ± 0.45 µM, respectively. Molecular docking study indicated the selectivity of these three compounds toward HDAC8 and the test against HDAC8 showed IC50 values in the same micromolar range. All three compounds were further evaluated for the anti-proliferative activity against HeLa and A549 cell lines. Compound 6q exhibited the best activity against HeLa cell line with the IC50 value of 13.91 ± 0.34 μM. Moreover, 6q was able to increase the acetylation level of histone H3. These promising HDAC inhibitors deserve investigation as chemotherapeutic agents for treating cancer.
Collapse
Affiliation(s)
- La-Or Somsakeesit
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation (Implementation Unit-IU, Khon Kaen University), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanaset Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gulsiri Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pakit Kumboonma
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000, Thailand
| | - Arunta Samankul
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Narissara Namwan
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation (Implementation Unit-IU, Khon Kaen University), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chanokbhorn Phaosiri
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation (Implementation Unit-IU, Khon Kaen University), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Wang Z, Zhao L, Zhang B, Feng J, Wang Y, Zhang B, Jin H, Ding L, Wang N, He S. Discovery of novel polysubstituted N-alkyl acridone analogues as histone deacetylase isoform-selective inhibitors for cancer therapy. J Enzyme Inhib Med Chem 2023; 38:2206581. [PMID: 37144599 PMCID: PMC10165928 DOI: 10.1080/14756366.2023.2206581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Pan-histone deacetylase (HDAC) inhibitors often have some toxic side effects. In this study, three series of novel polysubstituted N-alkyl acridone analogous were designed and synthesised as HDAC isoform-selective inhibitors. Among them, 11b and 11c exhibited selective inhibition of HDAC1, HDAC3, and HDAC10, with IC50 values ranging from 87 nM to 418 nM. However, these compounds showed no inhibitory effect against HDAC6 and HDAC8. Moreover, 11b and 11c displayed potent antiproliferative activity against leukaemia HL-60 cells and colon cancer HCT-116 cells, with IC50 values ranging from 0.56 μM to 4.21 μM. Molecular docking and energy scoring functions further analysed the differences in the binding modes of 11c with HDAC1/6. In vitro anticancer studies revealed that the hit compounds 11b and 11c effectively induced histone H3 acetylation, S-phase cell cycle arrest, and apoptosis in HL-60 cells in a concentration-dependent manner.
Collapse
Affiliation(s)
- Ze Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, People's Republic of China
| | - Bo Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Jiahe Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Yule Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, People's Republic of China
| |
Collapse
|
5
|
Moi D, Bonanni D, Belluti S, Linciano P, Citarella A, Franchini S, Sorbi C, Imbriano C, Pinzi L, Rastelli G. Discovery of potent pyrrolo-pyrimidine and purine HDAC inhibitors for the treatment of advanced prostate cancer. Eur J Med Chem 2023; 260:115730. [PMID: 37633202 DOI: 10.1016/j.ejmech.2023.115730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
The development of drugs for the treatment of advanced prostate cancer (PCA) remains a challenging task. In this study we have designed, synthesized and tested twenty-nine novel HDAC inhibitors based on three different zinc binding groups (trifluoromethyloxadiazole, hydroxamic acid, and 2-mercaptoacetamide). These warheads were conveniently tethered to variously substituted phenyl linkers and decorated with differently substituted pyrrolo-pyrimidine and purine cap groups. Remarkably, most of the compounds showed nanomolar inhibitory activity against HDAC6. To provide structural insights into the Structure-Activity Relationships (SAR) of the investigated compounds, docking of representative inhibitors and molecular dynamics of HDAC6-inhibitor complexes were performed. Compounds of the trifluoromethyloxadiazole and hydroxamic acid series exhibited promising anti-proliferative activities, HDAC6 targeting in PCA cells, and in vitro tumor selectivity. Representative compounds of the two series were tested for solubility, cell permeability and metabolic stability, demonstrating favorable in vitro drug-like properties. The more interesting compounds were subjected to migration assays, which revealed that compound 13 and, to a lesser extent, compound 15 inhibited the invasive behaviour of androgen-sensitive and -insensitive advanced prostate cancer cells. Compound 13 was profiled against all HDACs and found to inhibit all members of class II HDACs (except for HDAC10) and to be selective with respect to class I and class IV HDACs. Overall, compound 13 combines potent inhibitory activity and class II selectivity with favorable drug-like properties, an excellent anti-proliferative activity and marked anti-migration properties on PCA cells, making it an excellent lead candidate for further optimization.
Collapse
Affiliation(s)
- Davide Moi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Davide Bonanni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Andrea Citarella
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy.
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy.
| |
Collapse
|
6
|
Castillo Ordoñez WO, Aristizabal-Pachon AF, Alves LB, Giuliatti S. Epigenetic regulation exerted by Caliphruria subedentata and galantamine: an in vitro and in silico approach for mimic Alzheimer's disease. J Biomol Struct Dyn 2023; 42:11215-11230. [PMID: 37814967 DOI: 10.1080/07391102.2023.2261034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
At the interface between genes and environment, epigenetic mechanisms, including DNA methylation and histone modification, regulate neurogenic processes such as differentiation, proliferation, and maturation of neural stem cells. However, these mechanisms are altered in Alzheimer's disease (AD), a neurodegenerative condition that mainly affects older adults. Since epigenetic mechanisms are known to be reversible, a number of molecules from natural sources are being studied as epigenetic regulators in AD. Recently, in vitro and in silico studies have shown that C. subedentata and its alkaloids modulated neurotoxicity. However, studies exploring the epigenetic activity of these alkaloids are limited. We conducted a set of bioassays to evaluate neuronal differentiation and the sensitivity of undifferentiated SH-SY5 cells against a neurotoxic stimulus. In addition, we analyzed the methylation profiles in genes such as APP, PSI, and BACE1 due to their role in amyloid processing. Docking and molecular dynamic analysis were used to explore the effect exerted by C. subedentata alkaloids on the regulation of histone deacetylases (HDAC2, HDAC3 and HDAC7). The results demonstrated that C. subedentata and galantamine induce neuronal differentiation and protect the undifferentiated SH-SY5Y cells against Aβ(1-42)-induced neurotoxicity. The methylation profiles of the studied genes show no statistically significant differences between C. subedentata, galantamine. However, these findings should be interpreted with caution, since small changes in methylation promoters in the brain could not be easily detected. Results from in silico approaches describe for the first time the potential promissing epigenetic effects of galantamine by regulating HDAC3 and HDAC7 modification.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Willian Orlando Castillo Ordoñez
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología, Universidad del Cauca, Popayán-Cauca, Colombia
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia
| | - Andrés F Aristizabal-Pachon
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Levy Bueno Alves
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| |
Collapse
|
7
|
Donnarumma F, Tucci V, Ambrosino C, Altucci L, Carafa V. NAA60 (HAT4): the newly discovered bi-functional Golgi member of the acetyltransferase family. Clin Epigenetics 2022; 14:182. [PMID: 36539894 PMCID: PMC9769039 DOI: 10.1186/s13148-022-01402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Chromatin structural organization, gene expression and proteostasis are intricately regulated in a wide range of biological processes, both physiological and pathological. Protein acetylation, a major post-translational modification, is tightly involved in interconnected biological networks, modulating the activation of gene transcription and protein action in cells. A very large number of studies describe the pivotal role of the so-called acetylome (accounting for more than 80% of the human proteome) in orchestrating different pathways in response to stimuli and triggering severe diseases, including cancer. NAA60/NatF (N-terminal acetyltransferase F), also named HAT4 (histone acetyltransferase type B protein 4), is a newly discovered acetyltransferase in humans modifying N-termini of transmembrane proteins starting with M-K/M-A/M-V/M-M residues and is also thought to modify lysine residues of histone H4. Because of its enzymatic features and unusual cell localization on the Golgi membrane, NAA60 is an intriguing acetyltransferase that warrants biochemical and clinical investigation. Although it is still poorly studied, this review summarizes current findings concerning the structural hallmarks and biological role of this novel targetable epigenetic enzyme.
Collapse
Affiliation(s)
- Federica Donnarumma
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
| | - Valeria Tucci
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| | - Concetta Ambrosino
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.47422.370000 0001 0724 3038Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Lucia Altucci
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| | - Vincenzo Carafa
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| |
Collapse
|
8
|
Nguyen HP, Tran QD, Nguyen CQ, Hoa TP, Duy Binh T, Nhu Thao H, Hue BTB, Tuan NT, Le Dang Q, Quoc Chau Thanh N, Van Ky N, Pham MQ, Yang SG. Anti-multiple myeloma potential of resynthesized belinostat derivatives: an experimental study on cytotoxic activity, drug combination, and docking studies. RSC Adv 2022; 12:22108-22118. [PMID: 36043105 PMCID: PMC9364358 DOI: 10.1039/d2ra01969h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple myeloma is a deadly cancer that is a complex and multifactorial disease. In the present study, 12 belinostat derivatives (four resynthesized and eight new), HDAC inhibitors, were resynthesized via either Knoevenagel condensation, or Wittig reaction, or Heck reaction. Then an evaluation of the antiproliferative activities against myeloma cells MOPC-315 was carried out. Amongst them, compound 7f was the most bioactive compound with an IC50 of 0.090 ± 0.016 μM, being 3.5-fold more potent than the reference belinostat (IC50 = 0.318 ± 0.049 μM). Furthermore, we also confirmed the inhibitory activity of 7f in a cellular model. Additionally, we found that the inhibitory activity of 7f against histone deacetylase 6 catalytic activity (HDAC6) is more potent than that of belinostat. Finally, we observed the strong synergistic interaction between the derivative 7f and the proteasome bortezomib inhibitor (CI = 0.26), while belinostat and bortezomib showed synergism with a CI value of 0.36. Taken together, the above results suggest that 7f is a promising HDAC inhibitor deserving further investigation.
Collapse
Affiliation(s)
- Hong Phuong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Quang De Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Cuong Quoc Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Tran Phuong Hoa
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Tran Duy Binh
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Huynh Nhu Thao
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Nguyen Trong Tuan
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Quang Le Dang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology Hanoi 10000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | - Nguyen Quoc Chau Thanh
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Nguyen Van Ky
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| |
Collapse
|
9
|
He H, Song A. Design of Fluorogenic Probe Based on Intramolecular Condensation for Specific Detection of HDAC3. Chem Asian J 2022; 17:e202200575. [PMID: 35765155 DOI: 10.1002/asia.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Indexed: 11/10/2022]
Abstract
It is crucial to develop fluorogenic probes for selective targeting of HDACs to explore the roles of HDACs in the tumor onset and progression as well as HDAC-related drug development. However, considerable non-specific signals were produced by spontaneous hydrolysis and undesirable intermolecular attack of the unstable caging moiety in the detection of HDACs with previous probes. To improve the detection specificity, we proposed an intramolecular condensation strategy by the replacement of the traditional acetamide moiety with a trans-enamide unit. Upon deacetylation by HDACs, rapid intramolecular condensation reaction between newly formed terminal aldehyde and hydrazine moiety would occur to afford highly fluorescent hydrazone product. Systematic studies demonstrated that the probe exhibited an extraordinary selectivity for HDAC3 over other HDAC isoforms and interfering substances. The stability and specificity of the indicator make it a powerful tool for HDAC3 activity detection and HDAC3-related drug development.
Collapse
Affiliation(s)
- Huimin He
- Northwestern Polytechnic University, Institute of Medical Research, CHINA
| | - Aiguo Song
- Northwestern Polytechnical University, Institute of Medical Research, 127 West Youyi Road, 710072, Xi'an, CHINA
| |
Collapse
|
10
|
Zhu C, Liu M, Yuan Y, Chen H, Wu L, Cong Z, Zhao Q, Ding H. Exploration of 4-(1H-indol-3-yl)cyclohex-3-en-1-amine analogues as HDAC inhibitors: Design, synthesis, biological evaluation and modelling studies. Bioorg Med Chem Lett 2022; 72:128846. [PMID: 35697181 DOI: 10.1016/j.bmcl.2022.128846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Epigenetics regulate the gene expression and chromatin organization associated with the development and occurrence of cancer. Histone deacetylase inhibitors (HDACis) have been proved to be an effective epigenetic targeting drug for cancer treatment. The structures of most HDACis were divided into four parts, including cap group, connection unit, linker region and zinc binding group. We designed a series of compounds containing the structure of phenoxyacetate for the linker region and cyclohexene for connection unit as a novel type of inhibitors. Representative compound YZ1 exhibited obvious antiproliferative activity against four different cell lines and potent enzymatic inhibitory activities to class I HDACs, which IC50 of HDAC1-3 were 1.6 nM, 1.9 nM and 3.8 nM respectively. In addition, YZ1 concentration-dependently inhibited cell proliferation, induced apoptosis and cycle arrest at G2/M phase in HCT116 cells. With biological activity assessment and docking studies, these results indicate YZ1 has the potential to be a lead compound for further optimization as HDAC inhibitors.
Collapse
Affiliation(s)
- Chengze Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Mingyue Liu
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Limeng Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Zizheng Cong
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Qingchun Zhao
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China; Department of Pharmancy, General Hospital of Northern Theater Command, Shenyang 110840, China.
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
11
|
Discovery of potent HDAC2 inhibitors based on virtual screening in combination with drug repurposing. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Linciano P, Pinzi L, Belluti S, Chianese U, Benedetti R, Moi D, Altucci L, Franchini S, Imbriano C, Sorbi C, Rastelli G. Inhibitors of histone deacetylase 6 based on a novel 3-hydroxy-isoxazole zinc binding group. J Enzyme Inhib Med Chem 2021; 36:2080-2086. [PMID: 34583596 PMCID: PMC8480759 DOI: 10.1080/14756366.2021.1981306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is an established drug target for cancer treatment. Inhibitors of HDAC6 based on a hydroxamic acid zinc binding group (ZBG) are often associated with undesirable side effects. Herein, we describe the identification of HDAC6 inhibitors based on a completely new 3-hydroxy-isoxazole ZBG. A series of derivatives decorated with different aromatic or heteroaromatic linkers, and various cap groups were synthesised and biologically tested. In vitro tests demonstrated that some compounds are able to inhibit HDAC6 with good potency, the best candidate reaching an IC50 of 700 nM. Such good potency obtained with a completely new ZBG make these compounds particularly attractive. The effect of the most active inhibitors on the acetylation levels of histone H3 and α- tubulin and their anti-proliferative activity of DU145 cells were also investigated. Docking studies were performed to evaluate the binding mode of these new derivatives and discuss structure-activity relationships.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Davide Moi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Citarella A, Moi D, Pinzi L, Bonanni D, Rastelli G. Hydroxamic Acid Derivatives: From Synthetic Strategies to Medicinal Chemistry Applications. ACS OMEGA 2021; 6:21843-21849. [PMID: 34497879 PMCID: PMC8412920 DOI: 10.1021/acsomega.1c03628] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/11/2021] [Indexed: 05/03/2023]
Abstract
Since the approval of three hydroxamic acid-based HDAC inhibitors as anticancer drugs, such functional groups acquired even more notoriety in synthetic medicinal chemistry. The ability of hydroxamic acids (HAs) to chelate metal ions makes this moiety an attractive metal binding group-in particular, Fe(III) and Zn(II)-so that HA derivatives find wide applications as metalloenzymes inhibitors. In this minireview, we will discuss the most relevant features concerning hydroxamic acid derivatives. In a first instance, the physicochemical characteristics of HAs will be summarized; then, an exhaustive description of the most relevant methods for the introduction of such moiety into organic substrates and an overview of their uses in medicinal chemistry will be presented.
Collapse
|
14
|
Ariawan AD, Mansour F, Richardson N, Bhadbhade M, Ho J, Hunter L. The Effect of Vicinal Difluorination on the Conformation and Potency of Histone Deacetylase Inhibitors. Molecules 2021; 26:molecules26133974. [PMID: 34209791 PMCID: PMC8271401 DOI: 10.3390/molecules26133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase enzymes (HDACs) are potential targets for the treatment of cancer and other diseases, but it is challenging to design isoform-selective agents. In this work, we created new analogs of two established but non-selective HDAC inhibitors. We decorated the central linker chains of the molecules with specifically positioned fluorine atoms in order to control the molecular conformations. The fluorinated analogs were screened against a panel of 11 HDAC isoforms, and minor differences in isoform selectivity patterns were observed.
Collapse
Affiliation(s)
- A Daryl Ariawan
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Flora Mansour
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Mohan Bhadbhade
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Junming Ho
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Luke Hunter
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|