1
|
Li J, Zhu Y, Sun L, Xu H, Su W, Xue F, Lu C, Tang W, Wu R. The Mitigating Effects of Perilla Leaf Essential Oil on the Phytotoxicity of Fenoxaprop-P-Ethyl in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2946. [PMID: 39458893 PMCID: PMC11510985 DOI: 10.3390/plants13202946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Fenoxaprop-P-ethyl (FE) can effectively control weeds in rice fields, but it has been found to cause phytotoxicity in rice. In this study, the phytotoxicity of FE was mitigated by perilla leaf essential oil (PEO) in rice seedlings. The injury recovery rates (IRRs) for shoot length and fresh weight treated with 800 mg/L of PEO were 101.51% and 99.05%, respectively. Moreover, the damage of s-metolachlor and pretilachlor was also alleviated when co-applied with 800 mg/L PEO; the IRR of s-metolachlor phytotoxicity was 26.07% and 27.34%, respectively, and the IRR of pretilachlor phytotoxicity was 127.27% and 124.39%, respectively. However, PEO had no significant effect on the phytotoxicity of pinoxaden, mesotrione, penoxsulam, mesosulfuron-methyl, and nicosulfuron. The results of GC-MS analysis showed that a total of 23 components were detected in PEO, among which linalool (36.49%), linalyl formate (26.96%), α-terpineol (10.63%), 2-hexanoylfuran (5.81%), geranyl acetate (4.13%), and neryl acetate (2.30%) were the primary components. Among them, 2-hexanoylfuran was the most effective component to alleviate FE damage, for which the IRR of shoot length and fresh weight was 73.17% and 73.02%, respectively, followed by the geranyl acetate, for which the IRR was 72.32% and 60.56%, respectively, and neryl acetate, for which the IRR was 65.28% and 58.11%, respectively. Furthermore, the application of 50 mg/L of 2-hexanofuran significantly improved the tolerance of shoot length and fresh weight to FE stress by factors of 5.32 and 5.35, respectively. This research demonstrates that PEO and 2-hexanoylfuran have the potential to serve as natural safeners to reduce phytotoxicity.
Collapse
Affiliation(s)
- Jiuying Li
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.L.); (L.S.); (H.X.); (W.S.); (C.L.)
- National Demonstration Center for Experimental Plant Science Education, Guangxi Key Laboratory of Agro-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Yinghui Zhu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.L.); (L.S.); (H.X.); (W.S.); (C.L.)
| | - Lanlan Sun
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.L.); (L.S.); (H.X.); (W.S.); (C.L.)
| | - Hongle Xu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.L.); (L.S.); (H.X.); (W.S.); (C.L.)
| | - Wangcang Su
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.L.); (L.S.); (H.X.); (W.S.); (C.L.)
| | - Fei Xue
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.L.); (L.S.); (H.X.); (W.S.); (C.L.)
| | - Chuantao Lu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.L.); (L.S.); (H.X.); (W.S.); (C.L.)
| | - Wenwei Tang
- National Demonstration Center for Experimental Plant Science Education, Guangxi Key Laboratory of Agro-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.L.); (L.S.); (H.X.); (W.S.); (C.L.)
| |
Collapse
|
2
|
Zhao Y, Ye F, Fu Y. Herbicide Safeners: From Molecular Structure Design to Safener Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2451-2466. [PMID: 38276871 DOI: 10.1021/acs.jafc.3c08923] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Herbicide safeners, highly effective antidotes, find widespread application in fields for alleviating the phytotoxicity of herbicides to crops. Designing new herbicide safeners remains a notable issue in pesticide research. This review focuses on discussing and summarizing the structure-activity relationships, molecular structures, physicochemical properties, and molecular docking of herbicide safeners in order to explore how different structures affect the safener activities of target compounds. It also provides insights into the application prospects of computer-aided drug design for designing and synthesizing new safeners in the future.
Collapse
Affiliation(s)
- Yaning Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Deng XL, Li JQ, Yi JM, Lian RJ, Zhang ZY, Li JH, He S, Bai LY. A pH-responsive MOF-functionalized hollow mesoporous silica controlled herbicide delivery system exhibits enhanced activity against ACCase-herbicide-resistant weeds. PEST MANAGEMENT SCIENCE 2023; 79:5237-5249. [PMID: 37595063 DOI: 10.1002/ps.7729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Weeds grow aggressively in agricultural fields, leading to reduced crop yields and an inability to meet the growing demand for food. Herbicides are currently the most effective method for weed control. However, the overuse of herbicides has resulted in the evolution of resistance mutants and has caused environmental pollution. Therefore, new technologies are urgently required to address this global challenge. RESULTS We report a copper-benzene-1,4-dicarboxylate metal organic framework (Cu-BDC MOF)-functionalized carboxyl hollow mesoporous silica (HMS-COOH) delivery system for the pH-controlled release of the acetyl-CoA carboxylase (ACCase)-inhibiting herbicide quizalofop-p-ethyl (QE). The delivery system (QE@HMS@Cu-BDC) enabled the efficient control of barnyard grasses that are susceptible and resistant to ACCase-inhibiting herbicides, which showed 93.33% and 88.33% FW control efficacy at 67.5 g ha-1 , respectively. With the lowest pH value (3), QE and copper ion were released slowly to total 70.30% and 78.55% levels (respectively) from QE@HMS@Cu-BDC after 89 h. QE@HMS@Cu-BDC showed better absorption, conduction, transportation and ACCase activity inhibition performance than that of QE emulsifiable concentrate (EC) in both susceptible and ACCase-herbicide resistant barnyard grasses. In addition, with the safener effect of carrier HMS@Cu-BDC and the aid of the safener fenchlorazole-ethyl (FE), the application of QE@HMS@Cu-BDC was shown to mitigate the damage caused by QE to rice plants. CONCLUSION This work found that the new material HMS-COOH@Cu-BDC can be used to mitigate herbicide-induced oxidative stress and improve rice plant safety. Futhermore, the QE@HMS-COOH@Cu-BDC constructed in this research might be used as an efficient nanopesticide formulation for weed controls in paddy rice fields. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi-le Deng
- Key Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jia-Qing Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ji-Ming Yi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ren-Jie Lian
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhao-Yang Zhang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian-Hong Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lian-Yang Bai
- Key Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
4
|
Peña D, Lápez-Piñeiro A, Fernández D, Light ME, Prieto JM, Santisteban L, Valladares RX, Cintas P, Babiano R. A new series of acylhydrazones derived from metribuzin with modulated herbicidal activity. Heliyon 2023; 9:e21313. [PMID: 37942154 PMCID: PMC10628692 DOI: 10.1016/j.heliyon.2023.e21313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
This paper reports the preparation and herbicidal evaluation of a small library of acylhydrazones based on the synthetic herbicide metribuzin. The hydrazone linkage easily obtained by reaction of metribuzin with aliphatic and aromatic aldehydes, masks efficiently the exocyclic amino group, thereby altering significantly H-bonding with the receptor and increasing the lipophilicity relative to the parent herbicide. The structures of all compounds, including key stereochemical issues on conformation and E/Z configuration around the C[bond, double bond]N bond were thoroughly elucidated by spectroscopic methods, and unambiguously corroborated by X-ray diffraction analysis. The herbicidal assays using an aliphatic and an aromatic acylhydrazone were performed on tomato and rapeseed plants grown in greenhouse. Our results demonstrate, regardless of rate application, that such acylhydrazone formulations do not alter the selectivity of metribuzin. Moreover, the herbicide activity was even higher in the alkyl derivative than that achieved by commercial metribuzin, thus suggesting that this substance can be applied with no need of combination with chemical coadjuvants, unlike most formulations of commercially available herbicides. Therefore, the study shows the promising effect of chemical derivatization of a common herbicide as metribuzin, to improve the herbicide activity without compromising selectivity, and allowing the farmers its use in crop protection safely and effectively.
Collapse
Affiliation(s)
- David Peña
- Área de Edafología y Química Agrícola, Escuela de Ingenierías Agrarias– IACYS, Universidad de Extremadura, Ctra de Cáceres, 06071, Badajoz, Spain
| | - Antonio Lápez-Piñeiro
- Área de Edafología y Química Agrícola, Facultad de Ciencias-IACYS, Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain
| | - Damian Fernández
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias-IACYS, Universidad de Extremadura, Ctra. de Cáceres s/n, 06006, Badajoz, Spain
| | - Mark E. Light
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Juan Manuel Prieto
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Lucía Santisteban
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Richardo Xhavier Valladares
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006, Badajoz, Spain
| |
Collapse
|
5
|
Leng XY, Zhao LX, Gao S, Ye F, Fu Y. Review on the Discovery of Novel Natural Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466454 DOI: 10.1021/acs.jafc.3c03585] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The phytotoxicity of herbicides on crops is a major dilemma in agricultural production. Fortunately, the emergence of herbicide safeners is an excellent solution to this challenge, selectively enhancing the performance of herbicides in controlling weeds while reducing the phytotoxicity to crops. But owing to their potential toxicity, only a tiny proportion of safeners are commercially available. Natural products as safeners have been extensively explored, which are generally safe to mammals and cause little pollution to the environment. They are typically endogenous signal molecules or phytohormones, which are generally difficult to extract and synthesize, and exhibit relatively lower activity than commercial products. Therefore, it is necessary to adopt rational design approaches to modify the structure of natural safeners. This paper reviews the application, safener effects, structural characteristics, and modifications of natural safeners and provides insights on the discovery of natural products as potential safeners in the future.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Zhao Y, Ye F, Fu Y. Research Progress on the Action Mechanism of Herbicide Safeners: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3639-3650. [PMID: 36794646 DOI: 10.1021/acs.jafc.2c08815] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herbicide safeners are agricultural chemicals that protect crops from herbicide injury and improve the safety of herbicides and the effectiveness of weed control. Safeners induce and enhance the tolerance of crops to herbicides through the synergism of multiple mechanisms. The principal mechanism is that the metabolic rate of the herbicide in the crop is accelerated by safeners, resulting in the damaging concentration at the site of action being reduced. We focused on discussing and summarizing the multiple mechanisms of safeners to protect crops in this review. It is also emphasized how safeners alleviate herbicide phytotoxicity to crops by regulating the detoxification process and conducting perspectives on future research on the action mechanism of safeners at the molecular level.
Collapse
Affiliation(s)
- Yaning Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Deng X, Zhao P, Xie Y, Bai L. Self-Assembled Sphere Covalent Organic Framework with Enhanced Herbicidal Activity by Loading Cyhalofop-butyl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1417-1425. [PMID: 36629331 DOI: 10.1021/acs.jafc.2c07616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanopesticides are considered to be a novel and efficient kind of tool for controlling pests in modern agriculture. Covalent organic frameworks (COFs), with high surface areas, ordered structures, and rich functional groups for loading pesticides, are a class of promising carrier materials that can be used to develop efficient nanopesticide delivery systems. However, until now, only a strong ionic interaction between the pesticide and COF can be utilized to achieve the combination between the pesticide and COF. On the basis of this method, charged pesticide molecules are the only choice for COF-based nanopesticides, which limits the exploitation. The way to load the uncharged pesticide molecules into COF still needs to be explored. Herein, in this research, we provided a commonly mild and high-efficacy strategy for loading an uncharged pesticide molecule into COF. The herbicide cyhalofop-butyl (CB), as a neutral model pesticide molecule, was loaded into the sphere COF (SCOF, a model COF synthesized at room temperature) without any ionic interaction via the host-guest strategy. The loading capacity of CB into SCOF (CB@SCOF) was determined at 57% (w/w). Smaller CB@SCOF particles (150-200 nm) can efficiently enter the weed leaves and stems, enhancing the accumulation of the effective concentration in weeds, thus increasing herbicidal activity, in comparison to CB emulsifiable (EC, micrometer scale). Furthermore, CB@SCOF had a solubilization effect for CB in water and can improve the photostability of CB. Thus, the CB-loaded COF nanosphere showed excellent herbicidal activities against the target weeds Echinochloa crus-galli and Leptochloa chinensis compared to commercial CB EC. In conclusion, this study also provides a mild and high-efficacy pesticide loading strategy for COFs. The constructed efficient delivery system and pesticide formulation containing herbicidal COF nanospheres exhibit great potential applications for controlling weeds in sustainable agriculture.
Collapse
Affiliation(s)
- Xile Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan410125, People's Republic of China
| | - Pengyue Zhao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People's Republic of China
| | - Yong Xie
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Lianyang Bai
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan410125, People's Republic of China
| |
Collapse
|
8
|
Jiang H, Dai Y. Vitamin C modified crayfish shells biochar efficiently remove tetracycline from water: A good medicine for water restoration. CHEMOSPHERE 2023; 311:136884. [PMID: 36265698 DOI: 10.1016/j.chemosphere.2022.136884] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In this study, crayfish shell biochar (CSB) was modified by introducing vitamin C (VC) with abundant surface functional groups. CSB was impregnated with VC at different ratios and its capacity to adsorb tetracycline (TC) from water was analyzed. The physicochemical properties of CSB were determined by N2 adsorption-desorption isotherm analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. The effects of various factors on adsorption such as the pH, TC concentration, time, and salt ion concentrations were also investigated. Based on the chemical structure of VC, VC can provide CSB with more oxygen-containing functional groups such as hydroxyl groups. The results showed that the CSB modified with VC (CSB-VC) exhibited excellent adsorption of TC, and CSB-VC2 with an impregnation ratio of 2 (gVC/gCSB) had the greatest adsorption performance (saturated adsorption capacity, Qm = 293.36 mg/g), whereas the adsorption performance of CSB alone was about 50% lower (Qm = 172.16 mg/g). The optimal impregnation ratio VC improved the adsorption performance of CSB after modification to 70.4% of the original. Hydrogen bonding, p-p conjugation, pi-pi electron donor-acceptor effect, and π-π interactions were identified as the main adsorption mechanisms. CSB-VC2 was highly effective over a wide range of pH values and at high ion concentrations. Experiments demonstrated the effective regeneration of the adsorbent after multiple cycles, thereby indicating its excellent reusability. It should be noted that the adsorption capacity was good under different water quality conditions, and thus it should exhibit stable adsorption performance under complex water environment conditions.
Collapse
Affiliation(s)
- Huating Jiang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
9
|
Deng X. A Mini Review on Natural Safeners: Chemistry, Uses, Modes of Action, and Limitations. PLANTS (BASEL, SWITZERLAND) 2022; 11:3509. [PMID: 36559620 PMCID: PMC9784830 DOI: 10.3390/plants11243509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Herbicide injury is a common problem during the application of herbicides in practice. However, applying herbicide safeners can avoid herbicide damage. Safeners selectively protect crops against herbicide injury without affecting the biological activity of herbicides against the target weeds. However, after long-term application, commercial safeners were found to pose risks to the agricultural ecological environment. Natural safeners are endogenous compounds from animals, plants, and microbes, with unique structures and are relatively environment-friendly, and thus can address the potential risks of commercial safeners. This paper summarizes the current progress of the discovery methods, structures, uses, and modes of action of natural safeners. This study also concludes the limitations of natural safeners and prospects the future research directions, offering guidance for the practical application of natural safeners to prevent herbicide injury. This study will also guide the research and development of corresponding products.
Collapse
Affiliation(s)
- Xile Deng
- Key Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No. 2 Yuanda Road, Changsha 410125, China
| |
Collapse
|
10
|
Zhang Y, Liu Q, Su W, Sun L, Xu H, Xue F, Lu C, Wu R. The mechanism of exogenous gibberellin A 3 protecting sorghum shoots from S-metolachlor Phytotoxicity. PEST MANAGEMENT SCIENCE 2022; 78:4497-4506. [PMID: 35797427 DOI: 10.1002/ps.7068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND S-metolachlor (MET) was used to prevent weed infestation in sorghum fields, but inappropriate application could result in phytotoxicity on sorghum. Exogenous gibberellin A3 (GA3 ) has been applied for alleviating the phytotoxicity of MET. However, its detoxification mechanism is still not well known. RESULTS Leaf deformity of sorghum caused by 200 mg/L MET was alleviated by treating sorghum shoots with 800 mg/L GA3 , and the injury recovery rate of growth index was over 73%. More importantly, GA3 could not accelerate the metabolic rate of MET in sorghum. The result of phytohormone metabolomics showed that endogenous GA3 content in sorghum decreased by 78.10% with MET treatment, while abscisic acid (ABA) content increased by 120.2%, resulting in 10.3-fold increase of ABA/GA3 ratio. Content of ABA and GA3 increased by 11.9- and 21.1-fold with MET and GA3 treatment, respectively, leading to ABA/GA3 ratio restoration. Moreover, MET inhibited the expression of genes encoding key enzymes related to GA synthesis including CPS1, KO2, KAO, GA20ox1D and ABA8ox gene related to ABA metabolism. The transcription levels of GA metabolism-related genes CYP714D1 and GA2ox were up-regulated by 11.2- and 7.2-fold, while ABA synthesis-related genes NCED and ZEP were up-regulated by 8.0- and 3.0-fold, respectively, with MET and GA3 treatment. CONCLUSION In this study, exogenous GA3 protecting sorghum shoots from MET phytotoxicity was due to supplement the MET-induced GA3 deficiency by absorbing exogenous GA3 , and restore homeostasis of ABA and GA3 by promoting ABA synthesis, which provides novel insights for mechanism of GA3 alleviating MET phytotoxicity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxin Zhang
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Qinghao Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Wangcang Su
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Lanlan Sun
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Hongle Xu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Fei Xue
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Chuantao Lu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| |
Collapse
|
11
|
Jia L, Zhao LX, Sun F, Peng J, Wang JY, Leng XY, Gao S, Fu Y, Ye F. Diazabicyclo derivatives as safeners protect cotton from injury caused by flumioxazin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105185. [PMID: 36127047 DOI: 10.1016/j.pestbp.2022.105185] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Flumioxazin, a protoporphyrinogen oxidase (PPO; EC 1.3.3.4) inhibitor, has been used in soybean, cotton, grapes, and many other crops to control broad leaf weeds. Unfortunately, it can cause damage to cotton. To ameliorate phytotoxicity of flumioxazin to cotton, this work assessed the protective effects of diazabicyclo derivatives as potential safeners in cotton. A bioactivity assay proved that the phytotoxicity of flumioxazin on cotton was alleviated by some of the compounds. In particular, the activity of glutathione S-transferases (GSTs) was significantly enhanced by Compound 32, which showed good safening activity against flumioxazin injury. The physicochemical properties and absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions proved that the pharmacokinetic properties of Compound 32 are similar to those of the commercial safener BAS 145138. The present work demonstrated that diazabicyclo derivatives are potentially efficacious as herbicide safeners, meriting further investigation.
Collapse
Affiliation(s)
- Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fang Sun
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jie Peng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Yu Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Alanazi M, Arafa WA, Althobaiti IO, Altaleb HA, Bakr RB, Elkanzi NAA. Green Design, Synthesis, and Molecular Docking Study of Novel Quinoxaline Derivatives with Insecticidal Potential against Aphis craccivora. ACS OMEGA 2022; 7:27674-27689. [PMID: 35967065 PMCID: PMC9366785 DOI: 10.1021/acsomega.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
An efficient and environmentally friendly method was established for designing novel 3-amino-1,4-dihydroquinoxaline-2-carbonitrile (1) via the reaction of bromomalononitrile and benzene-1,2-diamine under microwave irradiation in an excellent yield (93%). This targeted amino derivative was utilized for the construction of a series of Schiff bases (8-13). A new series of thiazolidinone derivatives (15-20) were synthesized in high yields (89-96%) via treatment of thioglycolic acid with Schiff bases (8-13) under microwave irradiation in high yields (89-96%). Moreover, new pyrimidine derivatives (26-30 and 35-38) were prepared by treatment of compound 1 with arylidenes (21-25) and/or alkylidenemalononitriles (31-34) using piperidine as a basic catalyst under microwave conditions. Based on elemental analyses and spectral data, the structures of the new assembled compounds were determined. The newly synthesized quinoxaline derivatives were screened and studied as an insecticidal agent against Aphis craccivora. The obtained results indicate that compound 16 is the most toxicological agent against nymphs of cowpea aphids (Aphis craccivora) compared to the other synthesized pyrimidine and thiazolidinone derivatives. The molecular docking study of the new quinoxaline derivatives registered that compound 16 had the highest binding score (-10.54 kcal/mol) and the thiazolidinone moiety formed hydrogen bonds with Trp143.
Collapse
Affiliation(s)
- Mariam
Azzam Alanazi
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
| | - Wael A.A. Arafa
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum 63514, Egypt
| | - Ibrahim O. Althobaiti
- Department
of Chemistry, College of Science and Arts, Jouf University, Sakaka 42421, Saudi Arabia
| | - Hamud A. Altaleb
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Rania B. Bakr
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Nadia A. A. Elkanzi
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
- Chemistry
Department, Faculty of Science, Aswan University, P.O. Box 81528, Aswan 81528, Egypt
| |
Collapse
|
13
|
Wang L, Yang Z, Pan S, Zhu M, Guan A, Sun X, Zhang J, Song Y, Liu C, Yang X. A new potential aphicide against Myzus persicae: Design, synthesis and 3D-QSAR of novel phenoxypyridine derivatives containing 4-aminopyrimidine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Effects of carboxyl and acylamino linkers in synthetic derivatives of aphid alarm pheromone (E)-β-farnesene on repellent, binding and aphicidal activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Lanasa S, Niedzwiecki M, Reber KP, East A, Sivey JD, Salice CJ. Comparative Toxicity of Herbicide Active Ingredients, Safener Additives, and Commercial Formulations to the Nontarget Alga Raphidocelis Subcapitata. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1466-1476. [PMID: 35262227 DOI: 10.1002/etc.5327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Chloroacetanilide herbicides are used worldwide to control weeds that affect crops such as corn, soybeans, and cotton. These herbicides are frequently paired with a "safener," which prevents herbicidal damage to the crop without diminishing weed control. Formulated herbicide products that include safeners and other ingredients are infrequently assessed for toxicity. Our goal was to understand the potential toxicity of safeners and herbicide + safener formulations relative to the toxicity of associated active ingredients. We quantified the concentration of safeners in commercially available formulations and tested effects on nontarget algae, Raphidocelis subcapitata, when exposed to individual herbicide active ingredients, safeners, and commercial formulations. The median effective concentrations (EC50s) causing 50% reduction in population growth for the herbicide active ingredients S-metolachlor and acetochlor were 0.046 and 0.003 ppm, respectively. The safeners benoxacor, AD-67, furilazole, and dichlormid were all substantially less toxic than the herbicides and were not toxic at environmentally relevant concentrations. The commercial formulations Dual II Magnum®, Me-Too-Lachlor II®, Harness®, and Surpass EC® all resulted in EC50 values that fell within the 95% confidence interval of the associated active ingredient herbicide. Interestingly, a significant increase in cell size was observed when algae were exposed to all the formulations, herbicides (acetochlor and S-metolachlor), and safener (dichlormid). The safener furilazole caused a significant decrease in cell size, whereas benoxacor and AD-67 had no observed effect on algae cell size. Significant algae cell size effects all occurred at or above the EC50 concentrations for each chemical, suggesting that other morphological effects may be occurring. Importantly, safeners in commercial formulations appeared not to impact toxicity to R. subcapitata compared with the active ingredient alone. Environ Toxicol Chem 2022;41:1466-1476. © 2022 SETAC.
Collapse
Affiliation(s)
- Sarah Lanasa
- Environmental Science and Studies Program, Towson University, Towson, Maryland, USA
| | - Mark Niedzwiecki
- Department of Chemistry, Towson University, Towson, Maryland, USA
| | - Keith P Reber
- Department of Chemistry, Towson University, Towson, Maryland, USA
| | - Andrew East
- Environmental Science and Studies Program, Towson University, Towson, Maryland, USA
| | - John D Sivey
- Department of Chemistry, Towson University, Towson, Maryland, USA
| | - Christopher J Salice
- Environmental Science and Studies Program, Towson University, Towson, Maryland, USA
| |
Collapse
|
16
|
Jia L, Jin XY, Zhao LX, Fu Y, Ye F. Research Progress in the Design and Synthesis of Herbicide Safeners: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5499-5515. [PMID: 35473317 DOI: 10.1021/acs.jafc.2c01565] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detoxification plays an important role in herbicide action. Herbicide safeners selectively protect crops from herbicide injury without reducing the herbicidal efficiency against the target weeds. With the large-scale use of herbicides, herbicide safeners have been widely used in sorghum, wheat, rice, corn, and other crops. In recent years, an increasing number of unexpected new herbicide safeners have been designed. The varieties, structural characteristics, uses, and synthetic routes of commercial herbicide safeners are reviewed in this paper. The design ideas and structural characteristics of novel herbicide safeners are summarized, which provide a basis for the design of bioactive molecules as new herbicide safeners in the future.
Collapse
Affiliation(s)
- Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xin-Yu Jin
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
17
|
Mendes LL, Varejão JOS, de Souza JA, Carneiro JWDM, Valdo AKSM, Martins FT, Ferreira BW, Barreto RW, da Silva TI, Kohlhoff M, Pilau EJ, V Varejão EV. 2,5-Diketopiperazines via Intramolecular N-Alkylation of Ugi Adducts: A Contribution to the Synthesis, Density Functional Theory Study, X-ray Characterization, and Potential Herbicide Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1799-1809. [PMID: 35130436 DOI: 10.1021/acs.jafc.1c07790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the herbicidal potential of 2,5-diketopiperazines (2,5-DKPs), we applied a known protocol to produce a series of 2,5-DKPs through intramolecular N-alkylation of Ugi adducts. However, the method was not successful for the cyclization of adducts presenting aromatic rings with some substituents at the ortho position. Results from DFT calculations showed that the presence of voluminous groups at the ortho position of a benzene ring results in destabilization of the transition structure. Lower activation enthalpies for the SN2-type cyclization of Ugi adducts were obtained when bromine, instead of a chlorine anion, is the leaving group, indicating that the activation enthalpy for the cyclization step controls the formation of the 2,5-DKP. Some Ugi adducts and 2,5-DKPs formed crystals with suitable qualities for single-crystal X-ray diffraction data collection. Phytotoxic damage of some 2,5-DKPs on leaves of the weed Euphorbia heterophylla did not differ from those caused by the commercial herbicide diquat.
Collapse
Affiliation(s)
- Lorena L Mendes
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36.570-900, Brazil
| | - Jodieh O S Varejão
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36.570-900, Brazil
| | - José Antônio de Souza
- Programa de Pós-graduação em Química, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - José Walkimar de M Carneiro
- Institute of Chemistry, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Ana K S M Valdo
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia 74690-900, Brazil
| | - Felipe T Martins
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia 74690-900, Brazil
| | - Bruno W Ferreira
- Department of Phytopathology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36570-900, Brazil
| | - Robert W Barreto
- Department of Phytopathology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36570-900, Brazil
| | - Toshik I da Silva
- Department of Agronomy, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36570-900, Brazil
| | - Markus Kohlhoff
- Laboratório de Química de Produtos Naturais Bioativos, Fundação Oswaldo Cruz, Instituto René Rachou, Av. Augusto de Lima, 1715, Belo Horizonte, Minas Gerais 30190-009, Brazil
| | - Eduardo J Pilau
- Department of Chemistry, Universidade Federal de Maringá, Avenida Colombo, 5790, Campus Universitário, Maringá, Paraná 87020-900, Brazil
| | - Eduardo V V Varejão
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36.570-900, Brazil
| |
Collapse
|
18
|
Wang ZW, Zhao LX, Gao S, Leng XY, Yu Y, Fu Y, Ye F. Quinoxaline derivatives as herbicide safeners by improving Zea mays tolerance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104958. [PMID: 34802537 DOI: 10.1016/j.pestbp.2021.104958] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Isoxaflutole (IXF), a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, causes injury to crops leading to reductions in grain yield. In order to solve the phytotoxicity caused by IXF, the present work evaluated the protective response of the substituted quinoxaline derivatives as potential safeners on Zea mays. The bioassay results showed that all of the test compounds displayed protection against IXF. In particular, safener I-6 exhibited excellent safener activity against IXF injury via enhancing glutathione (GSH) content, glutathione S transferases (GSTs) and cytochrome P450 monooxygenases (CYP450) activity. The tested compounds induced the activity of CYP450 and GSTs in Z. mays. The physicochemical properties and ADMET properties of safener I-6, benoxacor and diketonitrile (DKN, IXF metabolite) were compared to predict pharmaceutical behavior. The present work demonstrates that the safener I-6 could be considered as a potential candidate for developing novel safeners in the future.
Collapse
Affiliation(s)
- Zi-Wei Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue Yu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
19
|
Li X, Zou C, Li M, Fang C, Li K, Liu Z, Li C. Transcriptome Analysis of In Vitro Fertilization and Parthenogenesis Activation during Early Embryonic Development in Pigs. Genes (Basel) 2021; 12:genes12101461. [PMID: 34680856 PMCID: PMC8535918 DOI: 10.3390/genes12101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Parthenogenesis activation (PA), as an important artificial breeding method, can stably preserve the dominant genotype of a species. However, the delayed development of PA embryos is still overly severe and largely leads to pre-implantation failure in pigs. The mechanisms underlying the deficiencies of PA embryos have not been completely understood. For further understanding of the molecular mechanism behind PA embryo failure, we performed transcriptome analysis among pig oocytes (meiosis II, MII) and early embryos at three developmental stages (zygote, morula, and blastocyst) in vitro fertilization (IVF) and PA group. Totally, 11,110 differentially expressed genes (DEGs), 4694 differentially expressed lincRNAs (DELs) were identified, and most DEGs enriched the regulation of apoptotic processes. Through cis- and trans-manner functional prediction, we found that hub lincRNAs were mostly involved in abnormal parthenogenesis embryonic development. In addition, twenty DE imprinted genes showed that some paternally imprinted genes in IVF displayed higher expression than that in PA. Notably, we identified that three DELs of imprinted genes (MEST, PLAGL1, and DIRAS3) were up regulated in IVF, and there was no significant change in PA group. Disordered expression of key genes for embryonic development might play key roles in abnormal parthenogenesis embryonic development. Our study indicates that embryos derived from different production techniques have varied in vitro development to the blastocyst stage, and they also affect the transcription level of corresponding genes, such as imprinted genes. This work will help future research on these genes and molecular-assisted breeding for pig parthenotes.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kui Li
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Z.L.); (C.L.)
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Z.L.); (C.L.)
| |
Collapse
|
20
|
Bai A, Liu S, Chen A, Chen W, Luo X, Liu Y, Zhang D. Residue changes and processing factors of eighteen field-applied pesticides during the production of Chinese Baijiu from rice. Food Chem 2021; 359:129983. [PMID: 33964658 DOI: 10.1016/j.foodchem.2021.129983] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
The fate of eighteen pesticides in field-collected rice samples during Chinese Baijiu production was systematically studied. The results indicated that steeping decreased flonicamid residue by 73.2% due to its high water-solubility and low octanol/water partition coefficient. The steaming step reduced pesticide residues by 32.0%-75.3% through evaporation or thermal degradation. After steaming, the pesticide residues were further reduced by 39.8-74.2% in fermentation which might be caused by biological degradation. In addition, distillation was shown to be most effective, responsible for greater than 90% losses of the remaining pesticide residues. The processing factors (PFs) were generally lower than 1 for different processes and the whole procedure. These results revealed that the procedure of Chinese Baijiu production could dramatically decrease residues of all the eighteen pesticides. Overall, this study provide important references for monitoring pesticide residue levels during the production of Chinese Baijiu from rice, and ensuring proper risk assessment from pesticide contamination.
Collapse
Affiliation(s)
- Aijuan Bai
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Shaowen Liu
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Deyong Zhang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|