1
|
Si Y, Zhu J, Xu X, Xu Y, Lee J, Park YD. Diphenolic boldine, an aporphine alkaloid: inhibitory effect evaluation on α-glucosidase by molecular dynamics integrating enzyme kinetics. J Biomol Struct Dyn 2025; 43:4227-4239. [PMID: 38189319 DOI: 10.1080/07391102.2024.2301769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Screening α-glucosidase inhibitors with novel structures is an important field in the development of anti-diabetic drugs due to their application in postprandial hyperglycemia control. Boldine is one of the potent natural antioxidants with a wide range of pharmacological activities. Virtual screening and biochemical inhibition kinetics combined with molecular dynamics simulations were conducted to verify the inactivation function of boldine on α-glucosidase. A series of inhibition kinetics and spectrometry detections were conducted to analyze the α-glucosidase inhibition. Computational simulations of molecular dynamics/docking analyses were conducted to detect boldine docking sites' details and evaluate the key binding residues. Boldine displayed a typical reversible and mixed-type inhibition manner. Measurements of circular dichroism and fluorescence spectrum showed boldine changed the secondary structure and loosened the tertiary conformation of target α-glucosidase. The computational molecular dynamics showed that boldine could block the active pocket site through close interaction with binding key residues, and two phenolic hydroxyl groups of boldine play a core function in α-glucosidase inhibition via ligand binding. This investigation reveals the boldine function on interaction with the α-glucosidase active site, which provides a new inhibitor candidate.
Collapse
Affiliation(s)
- Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
- Key Labortary of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, P.R. China
| | - Jiabo Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Xia Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Yueyuan Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Jinhyuk Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| |
Collapse
|
2
|
Valipour M, Zakeri Khatir Z, Kiadaliry K, Mojtabavi S, Faramarzi MA, Sayyad MS, Seyedabadi M, Ghasemian M, Hashemi SM, Irannejad H. Design, synthesis, α-glucosidase inhibition and hypoglycemic activity of 3-aceto(benzo)hydrazide-1,2,4-triazines as potential anti-diabetic agents. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2024; 12:100207. [DOI: 10.1016/j.ejmcr.2024.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Sharma A, Dubey R, Bhupal R, Patel P, Verma SK, Kaya S, Asati V. An insight on medicinal attributes of 1,2,3- and 1,2,4-triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors. Mol Divers 2024; 28:3605-3634. [PMID: 37733243 DOI: 10.1007/s11030-023-10728-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023]
Abstract
Diabetes Mellitus (DM) is the globe's common leading disease which is caused by high consumption of glucose. DM compiles groups of metabolic disorders which are characterized by inadequate secretion of insulin from pancreas, resulting in hyperglycemia condition. Many enzymes play a vital role in the metabolism of carbohydrate known as α-amylase and α-glucosidase which is calcium metalloenzyme that leads to breakdown of complex polysaccharides into glucose. To tackle this problem, search for newer antidiabetic drugs is the utmost need for the treatment and/or management of increasing diabetic burden. The inhibition of α-amylase and α-glucosidase is one of the effective therapeutic approaches for the development of antidiabetic therapeutics. The exhaustive literature survey has shown the importance of medicinally privileged triazole specifically 1,2,3-triazol and 1,2,4-triazoles scaffold tethered, fused and/or clubbed with other heterocyclic rings structures as promising agents for designing and development of novel antidiabetic therapeutics. Molecular hybrids namely pyridazine-triazole, pyrazoline-triazole, benzothiazole-triazole, benzimidazole-triazole, curcumin-triazole, (bis)coumarin-triazole, acridine-9-carboxamide linked triazole, quinazolinone-triazole, xanthone-triazole, thiazolo-triazole, thiosemicarbazide-triazole, and indole clubbed-triazole are few examples which have shown promising antidiabetic activity by inhibiting α-amylase and/or α-glucosidase. The present review summarizes the structure-activity relationship (SAR), enzyme inhibitory activity including IC50 values, percentage inhibition, kinetic studies, molecular docking studies, and patents filed of the both scaffolds as alpha-amylase and alpha-glucosidase inhibitors, which may be used for further development of potent inhibitors against both enzymes.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Ritu Bhupal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Savas Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
4
|
Singh A, Singh K, Sharma A, Kaur U, Kaur K, Mohinder Singh Bedi P. Recent Developments in 1,2,3-Triazole Based α-Glucosidase Inhibitors: Design Strategies, Structure-Activity Relationship and Mechanistic Insights. Chem Biodivers 2024; 21:e202401109. [PMID: 38951966 DOI: 10.1002/cbdv.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Kamaljit Kaur
- Hershey Dental Group, Hershey, Pennsylvania, 17033, USA
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
5
|
Rząd K, Nucia A, Grzelak W, Matysiak J, Kowalczyk K, Okoń S, Matwijczuk A. Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases. Int J Mol Sci 2024; 25:8262. [PMID: 39125838 PMCID: PMC11312687 DOI: 10.3390/ijms25158262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Climate change forces agriculture to face the rapidly growing virulence of biotrophic fungal pathogens, which in turn drives researchers to seek new ways of combatting or limiting the spread of diseases caused by the same. While the use of agrochemicals may be the most efficient strategy in this context, it is important to ensure that such chemicals are safe for the natural environment. Heterocyclic compounds have enormous biological potential. A series of heterocyclic scaffolds (1,3,4-thiadiazole, 1,3-thiazole, 1,2,4-triazole, benzothiazine, benzothiadiazine, and quinazoline) containing 2,4-dihydroxylaryl substituents were investigated for their ability to inhibit the growth and development of biotrophic fungal pathogens associated with several important cereal diseases. Of the 33 analysed compounds, 3 were identified as having high inhibitory potential against Blumeria and Puccinia fungi. The conducted research indicated that the analysed compounds can be used to reduce the incidence of fungal diseases in cereals; however, further thorough research is required to investigate their effects on plant-pathogen systems, including molecular studies to determine the exact mechanism of their activity.
Collapse
Affiliation(s)
- Klaudia Rząd
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Aleksandra Nucia
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.N.); (W.G.); (K.K.)
| | - Weronika Grzelak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.N.); (W.G.); (K.K.)
| | - Joanna Matysiak
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.N.); (W.G.); (K.K.)
| | - Sylwia Okoń
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.N.); (W.G.); (K.K.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
6
|
Seyfi S, Salarinejad S, Moghimi S, Toolabi M, Sadeghian N, Tüzün B, Firoozpour L, Ketabforoosh SHME, Taslimi P, Foroumadi A. Synthesis, biological activities, and molecular docking studies of triazolo[4,3-b]triazine derivatives as a novel class of α-glucosidase and α-amylase inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300628. [PMID: 38501879 DOI: 10.1002/ardp.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
In diabetes mellitus, amylase and glucosidase enzymes are the primary triggers. The main function of these enzymes is to break macromolecules into simple sugar units, which directly affect blood sugar levels by increasing blood permeability. To overcome this metabolic effect, there is a need for a potent and effective inhibitor capable of suppressing the enzymatic conversion of sugar macromolecules into their smaller units. Herein, we reported the discovery of a series of substituted triazolo[4,3-b][1,2,4]triazine derivatives as α-glucosidase and α-amylase inhibitors. All target compounds demonstrated significant inhibitory activities against α-glucosidase and α-amylase enzymes compared with acarbose as the positive control. The most potent compound 10k, 2-[(6-phenyl-[1,2,4]triazolo[4,3-b][1,2,4]triazin-3-yl)thio]-N-[4-(trifluoromethyl)phenyl]acetamide, demonstrated IC50 values of 31.87 and 24.64 nM against α-glucosidase and α-amylase enzymes, respectively. To study their mechanism of action, kinetic studies were also done, which determined the mode of inhibition of both enzymes. Molecular docking was used to confirm the binding interactions of the most active compounds.
Collapse
Affiliation(s)
- Soheila Seyfi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Salarinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima H M E Ketabforoosh
- Department of Medicinal Chemistry, School of Pharmacy, Alborz University of Medical Science, Karaj, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Masoudinia S, Samadizadeh M, Safavi M, Bijanzadeh HR, Foroumadi A. Novel quinazolines bearing 1,3,4-thiadiazole-aryl urea derivative as anticancer agents: design, synthesis, molecular docking, DFT and bioactivity evaluations. BMC Chem 2024; 18:30. [PMID: 38347613 PMCID: PMC10863284 DOI: 10.1186/s13065-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
A novel series of 1-(5-((6-nitroquinazoline-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-phenylurea derivatives 8 were designed and synthesized to evaluate their cytotoxic potencies. The structures of these obtained compounds were thoroughly characterized by IR, 1H, and 13C NMR, MASS spectroscopy and elemental analysis methods. Additionally, their in vitro anticancer activities were investigated using the MTT assay against A549 (human lung cancer), MDA-MB231 (human triple-negative breast cancer), and MCF7 (human hormone-dependent breast cancer). Etoposide was used as a reference marketed drug for comparison. Among the compounds tested, compounds 8b and 8c demonstrated acceptable antiproliferative activity, particularly against MCF7 cells. Considering the potential VEGFR-2 inhibitor potency of these compounds, a molecular docking study was performed for the most potent compound, 8c, to determine its probable interactions. Furthermore, computational investigations, including molecular dynamics, frontier molecular orbital analysis, Fukui reactivity descriptor, electrostatic potential surface, and in silico ADME evaluation for all compounds were performed to illustrate the structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Sara Masoudinia
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Marjaneh Samadizadeh
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Hamid Reza Bijanzadeh
- Department of Environment, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Liu H, Huang P, Wang X, Ma Y, Tong J, Li J, Ding H. Apigenin analogs as α-glucosidase inhibitors with antidiabetic activity. Bioorg Chem 2024; 143:107059. [PMID: 38154388 DOI: 10.1016/j.bioorg.2023.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
This study investigated the inhibitory potential of a series of synthesized compounds (L1-L27) on α-glucosidase. Among them, compound L22 showed significant inhibitory effect. Through enzymatic kinetics studies, we demonstrated that L22 acts via a non-competitive inhibition mode with a Ki value of 2.61 μM, highlighting its high affinity for the enzyme. Molecular docking studies revealed the formation of hydrogen bonds between L22 and α-glucosidase and diverse interactions with neighboring amino acid residues. Furthermore, molecular dynamics simulations confirmed the stability of the L22-α-glucosidase complex. In a mouse model of type 2 diabetes, treatment with L22 significantly lowered fasting blood glucose levels, and reduced insulin resistance, suggesting its potential as a therapeutic agent for type 2 diabetes. Furthermore, L22 showed a protective effect against oxidative stress in the liver and alleviated liver and pancreatic abnormalities. These results provide valuable insights into the mechanism of action of L22 and its potential applications to treat type 2 diabetes, and improve liver health.
Collapse
Affiliation(s)
- Honghui Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China
| | - Xingchen Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China
| | - Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China
| | - Jing Tong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China.
| | - Jing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China.
| |
Collapse
|
9
|
Peytam F, Hosseini FS, Hekmati M, Bayati B, Moghadam MS, Emamgholipour Z, Firoozpour L, Mojtabavi S, Faramarzi MA, Sadat-Ebrahimi SE, Tehrani MB, Foroumadi A. Imidazo[1,2-c]quinazolines as a novel and potent scaffold of α-glucosidase inhibitors: design, synthesis, biological evaluations, and in silico studies. Sci Rep 2023; 13:15672. [PMID: 37735489 PMCID: PMC10514295 DOI: 10.1038/s41598-023-42549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, 1H and 13C NMR spectroscopy, as well as mass spectrometry and elemental analysis. Subsequently, the inhibitory activities of these compounds were evaluated against Saccharomyces cerevisiae α-glucosidase. In present study, acarbose was utilized as a positive control. These imidazoquinazolines exhibited excellent to great inhibitory potencies with IC50 values ranging from 12.44 ± 0.38 μM to 308.33 ± 0.06 μM, which were several times more potent than standard drug with IC50 value of 750.0 ± 1.5 μM. Representatively, compound 11j showed remarkable anti-α-glucosidase potency with IC50 = 12.44 ± 0.38 μM, which was 60.3 times more potent than positive control acarbose. To explore the potential inhibition mechanism, further evaluations including kinetic analysis, circular dichroism, fluorescence spectroscopy, and thermodynamic profile were carried out for the most potent compound 11j. Moreover, molecular docking studies and in silico ADME prediction for all imidazoquinazolines 6a-c and 11a-o were performed to reveal their important binding interactions, as well as their physicochemical and drug-likeness properties, respectively.
Collapse
Affiliation(s)
- Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Firoozpour L, Moghimi S, Salarinejad S, Toolabi M, Rafsanjani M, Pakrad R, Salmani F, Shokrolahi SM, Sadat Ebrahimi SE, Karima S, Foroumadi A. Synthesis, α-Glucosidase inhibitory activity and docking studies of Novel Ethyl 1,2,3-triazol-4-ylmethylthio-5,6-diphenylpyridazine-4-carboxylate derivatives. BMC Chem 2023; 17:66. [PMID: 37365646 DOI: 10.1186/s13065-023-00973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In this work, a novel series of pyridazine-triazole hybrid molecules were prepared and evaluated as inhibitors of rat intestinal α-glucosidase enzyme. Amongst all newly synthesized compounds, 10k showed good inhibition in the series with IC50 value of 1.7 µM which is 100 folds stronger than positive control, acarbose. The cytotoxicity revealed that this compound is not toxic against normal cell line, HDF. The docking studies showed that triazole ring plays an important role in the binding interactions with the active site. The insertion of compound 10k into the active pocket of α-glucosidase and formation of hydrogen bonds with Leu677 was observed from docking studies. The kinetic studies revealed that this compound has uncompetitive mode of inhibition against α-glucosidase enzyme.
Collapse
Affiliation(s)
- Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Salarinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Rafsanjani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Pakrad
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Seyed Mohammad Shokrolahi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | | | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Abdelgawad MA, Bukhari SNA, Musa A, Elmowafy M, Nayl AA, El-Ghorab AH, Sadek Abdel-Bakky M, Omar HA, Hadal Alotaibi N, Hassan HM, Ghoneim MM, Bakr RB. Phthalazone tethered 1,2,3-triazole conjugates: In silico molecular docking studies, synthesis, in vitro antiproliferative, and kinase inhibitory activities. Bioorg Chem 2023; 133:106404. [PMID: 36812829 DOI: 10.1016/j.bioorg.2023.106404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023]
Abstract
New phthalazone tethered 1,2,3-triazole derivatives 12-21 were synthesized utilizing the Cu(I)-catalyzed click reactions of alkyne-functionalized phthalazone 1 with functionalized azides 2-11. The new phthalazone-1,2,3-triazoles structures 12-21 were confirmed by different spectroscopic tools, like IR; 1H, 13C, 2D HMBC and 2D ROESY NMR; EI MS, and elemental analysis. The antiproliferative efficacy of the molecular hybrids 12-21 against four cancer cell lines was evaluated, including colorectal cancer, hepatoblastoma, prostate cancer, breast adenocarcinoma, and the normal cell line WI38. The antiproliferative assessment of derivatives 12-21 showed potent activity of compounds 16, 18, and 21 compared to the anticancer drug doxorubicin. Compound 16 showed selectivity (SI) towardthe tested cell lines ranging from 3.35 to 8.84 when compared to Dox., that showed SI ranged from 0.75 to 1.61. Derivatives 16, 18 and 21 were assessed towards VEGFR-2 inhibitory activity and result in that derivative 16 showed the potent activity (IC50 = 0.123 µM) in comparison with sorafenib (IC50 = 0.116 µM). Compound 16 caused an interference with the cell cycle distribution of MCF7 and increased the percentage of cells in S phase by 1.37-fold. In silico molecular docking of the effective derivatives 16, 18, and 21 against vascular endothelial growth factor receptor-2 (VEGFR-2) confirmed the formation of stable protein-ligand interactions within the pocket.
Collapse
Affiliation(s)
- Mohamed A Abdelgawad
- Department of pharmaceutical chemistry, college of pharmacy, Jouf university, sakaka 72431, Saudi Arabia.
| | - Syed Nasir Abbas Bukhari
- Department of pharmaceutical chemistry, college of pharmacy, Jouf university, sakaka 72431, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - AbdElAziz A Nayl
- Department of chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ahmed H El-Ghorab
- Department of chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
12
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
13
|
Nguyen TH, Amen Y, Wang D, Othman A, Matsumoto M, Nagata M, Shimizu K. Oligomeric Proanthocyanidin Complex from Avocado Seed as A Promising α-glucosidase Inhibitor: Characteristics and Mechanisms. PLANTA MEDICA 2023; 89:316-323. [PMID: 35714650 DOI: 10.1055/a-1878-3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although considered an abundant source of agricultural by-products, avocado (Persea americana Mill.) seed, with several biological activities and bioactive components, might become a promising resource for phytopharmaceutical development. In this study, through bioassay-guided isolation of the main α-glucosidase inhibitors in avocado seed, we discovered the major α-glucosidase inhibitor to be avocado seed oligomeric proanthocyanidin complex (ASOPC). Thiolysis and UPLC-DAD-HRESIMS showed the presence of A- and B-type procyanidins, and B-type propelargonidin with (epi)afzelechin as extension unit. Mean degree of polymerization (mDP) of ASOPC was calculated as 7.3 ± 1. Furthermore, ASOPC appeared to be a strong, reversible, competitive inhibitor of α-glucosidase, with IC50 value of 0.1 µg/mL, which was significantly lower than Acarbose (IC50 = 75.6 µg/mL), indicated that ASOPC is a potential natural α-glucosidase inhibitor. These findings would contribute to the direction of utilizing avocado seed bioactive components with the possibility to be used as natural anti-diabetic agents.
Collapse
Affiliation(s)
- Thien Huu Nguyen
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
- Faculty of Chemical Engineering and Food Technology, Nong Lam University - Ho Chi Minh city, Vietnam
| | - Yhiya Amen
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dongmei Wang
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
| | - Ahmed Othman
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Masako Matsumoto
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
| | - Maki Nagata
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
| | - Kuniyoshi Shimizu
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
| |
Collapse
|
14
|
Design, synthesis and α-glucosidase inhibition study of novel pyridazin-based derivatives. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
15
|
Kumar V, Lal K, Kumar A, Tittal RK, Singh MB, Singh P. Efficient synthesis, antimicrobial and molecular modelling studies of 3-sulfenylated oxindole linked 1,2,3-triazole hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Alshamari AK. Design and Synthesis of Novel 1,2,3-Triazole Levonorgestrel Derivatives via Click Chemistry. Anticancer Activity and Molecular Docking. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802212017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
17
|
Benzothiazole-tethered 1,2,3-triazoles: Synthesis, antimicrobial, antioxidant, and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Radwan HA, Ahmad I, Othman IM, Gad-Elkareem MA, Patel H, Aouadi K, Snoussi M, Kadri A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Fallah Z, Tajbakhsh M, Alikhani M, Larijani B, Faramarzi MA, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Mehmood R, Sadiq A, Alsantali RI, Mughal EU, Alsharif MA, Naeem N, Javid A, Al-Rooqi MM, Chaudhry GES, Ahmed SA. Synthesis and Evaluation of 1,3,5-Triaryl-2-Pyrazoline Derivatives as Potent Dual Inhibitors of Urease and α-Glucosidase Together with Their Cytotoxic, Molecular Modeling and Drug-Likeness Studies. ACS OMEGA 2022; 7:3775-3795. [PMID: 35128286 PMCID: PMC8811919 DOI: 10.1021/acsomega.1c06694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 05/04/2023]
Abstract
In the present work, a concise library of 1,3,5-triaryl-2-pyrazolines (2a-2q) was designed and synthesized by employing a multistep strategy, and the newly synthesized compounds were screened for their urease and α-glucosidase inhibitory activities. The compounds (2a-2q) were characterized using a combination of several spectroscopic techniques including FT-IR, 1H NMR, 13C NMR, and EI-MS. All the synthesized compounds, except compound 2i, were potent against urease as compared to the standard inhibitor thiourea (IC50 = 21.37 ± 0.26 μM). These analogs disclosed varying degrees of urease inhibitory activities ranging from 9.13 ± 0.25 to 18.42 ± 0.42 μM. Compounds 2b, 2g, 2m, and 2q having IC50 values of 9.36 ± 0.27, 9.13 ± 0.25, 9.18 ± 0.35, and 9.35 ± 0.35 μM, respectively, showed excellent inhibitory activity as compared to standard thiourea (IC50 = 21.37 ± 0.26 μM). A kinetic study of compound 2g revealed that compound 2g inhibited urease in a competitive mode. Among the synthesized pyrazolines, the compounds 2c, 2k, 2m, and 2o exhibited excellent α-glucosidase inhibitory activity with the lowest IC50 values of 212.52 ± 1.31, 237.26 ± 1.28, 138.35 ± 1.32, and 114.57 ± 1.35 μM, respectively, as compared to the standard acarbose (IC50 = 375.82 ± 1.76 μM). The compounds (2a-2q) showed α-glucosidase IC50 values in the range of 114.57 ± 1.35 to 462.94 ± 1.23 μM. Structure-activity relationship revealed that the size and electron-donating or -withdrawing effects of substituents influenced the activities, which led to the urease and α-glucosidase inhibiting properties. Compound 2m was a dual potent inhibitor against urease and α-glucosidase due to the presence of 2-CF3 electron-withdrawing functionality on the phenyl ring. To the best of our knowledge, these synthetic compounds were found to be the most potent dual inhibitors of urease and α-glucosidase with minimum IC50 values. The cytotoxicity of the compounds (2a-2q) was also investigated against human cell lines MCF-7 and HeLa. Compound 2l showed moderate cytotoxic activity against MCF-7 and HeLa cell lines. Moreover, in silico studies on most active compounds were also performed to understand the binding interaction of most active compounds with active sites of urease and α-glucosidase enzymes. Some compounds exhibited drug-like characteristics due to their lower cytotoxic and good ADME profiles.
Collapse
Affiliation(s)
- Rabia Mehmood
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | - Reem I. Alsantali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Meshari A. Alsharif
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Asif Javid
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Munirah M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Gul-e-Saba Chaudhry
- Institute
of Marine Biotechnology, Universiti Malaysia
Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
- Microbiology
and Biotechnology Research Lab, Fatima Jinnah
Women University, Rawalpindi 23451, Pakistan
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| |
Collapse
|
21
|
Demirci S, Sahiner M, Ari B, Sunol AK, Sahiner N. Chondroitin Sulfate-Based Cryogels for Biomedical Applications. Gels 2021; 7:127. [PMID: 34462411 PMCID: PMC8406096 DOI: 10.3390/gels7030127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
Cryogels attained from natural materials offer exceptional properties in applications such as tissue engineering. Moreover, Halloysite Nanotubes (HNT) at 1:0.5 weight ratio were embedded into CS cryogels to render additional biomedical properties. The hemolysis index of CS cryogel and CS:HNT cryogels was calculated as 0.77 ± 0.41 and 0.81 ± 0.24 and defined as non-hemolytic materials. However, the blood coagulation indices of CS cryogel and CS:HNT cryogels were determined as 76 ± 2% and 68 ± 3%, suggesting a mild blood clotting capability. The maximum% swelling capacity of CS cryogel was measured as 3587 ± 186%, 4014 ± 184%, and 3984 ± 113%, at pH 1.0, pH 7.4 and pH 9.0, respectively, which were reduced to 1961 ± 288%, 2816 ± 192, 2405 ± 73%, respectively, for CS:HNT cryogel. It was found that CS cryogels can hydrolytically be degraded 41 ± 1% (by wt) in 16-day incubation, whereas the CS:HNT cryogels degraded by 30 ± 1 wt %. There is no chelation for HNT and 67.5 ± 1% Cu(II) chelation for linear CS was measured. On the other hand, the CS cryogel and CS:HNT cryogel revealed Cu(II) chelating capabilities of 60.1 ± 12.5%, and 43.2 ± 17.5%, respectively, from 0.1 mg/mL Cu(II) ion stock solution. Additionally, at 0.5 mg/mL CS, CS:HNT, and HNT, the Fe(II) chelation capacity of 99.7 ± 0.6, 86.2 ± 4.7% and only 11.9 ± 4.5% were measured, respectively, while no Fe(II) was chelated by linear CS chelated Fe(II). As the adjustable and controllable swelling properties of cryogels are important parameters in biomedical applications, the swelling properties of CS cryogels, at different solution pHs, e.g., at the solution pHs of 1.0, 7.4 and 9.0, were measured as 3587 ± 186%, 4014 ± 184%, and 3984 ± 113%, respectively, and the maximum selling% values of CS:HNT cryogels were determined as 1961 ± 288%, 2816 ± 192, 2405 ± 73%, respectively, at the same conditions. Alpha glucosidase enzyme interactions were investigated and found that CS-based cryogels can stimulate this enzyme at any CS formulation.
Collapse
Affiliation(s)
- Sahin Demirci
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; (S.D.); (B.A.)
| | - Mehtap Sahiner
- Faculty of Canakkale School of Applied Science, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey;
| | - Betul Ari
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; (S.D.); (B.A.)
| | - Aydin K. Sunol
- Department of Chemical & Biomedical Engineering, and Materials Science and Engineering, University of South Florida, Tampa, FL 33620, USA;
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; (S.D.); (B.A.)
- Department of Chemical & Biomedical Engineering, and Materials Science and Engineering, University of South Florida, Tampa, FL 33620, USA;
- Department of Ophthalmology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
22
|
Synthesis, antimalarial and antioxidant activity of coumarin appended 1,4-disubstituted 1,2,3-triazoles. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02821-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|