1
|
Kokuszi LTF, Paes YM, Faria ALS, Alvarado-Huayhuaz J, Balboni MDC, Dos Santos MC, Dos Santos SC, de Menezes Vicenti JR, Parize AL, Werhli AV, Dos Santos Machado K, de Lima VR. Benzohydroxamate and nitrobenzohydroxamate affect membrane order: Correlations between spectroscopic and molecular dynamics to approach tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184378. [PMID: 39163923 DOI: 10.1016/j.bbamem.2024.184378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
This work correlates the effects of benzohydroxamate (BH) and nitrobenzohydroxamate (NBH) anions in two membrane models which may be used for anti-tuberculosis (anti-TB) spectroscopic studies and/or computational studies. Firstly, the BH and NBH influence in the physico-chemical properties of soy asolectin (ASO)-based large multilamellar vesicles (MLVs) were evaluated by spectroscopic and calorimetric studies. In parallel, the BH and NBH interaction with a Mycobacterium tuberculosis (Mtb) inner membrane model, composed of phosphatidyl-myo-inositol-dimannoside (PIM2), was investigated by molecular dynamics (MD) simulations. Spectroscopic data showed a localization of BH close to the lipid phosphate group, while NBH was found close to the choline region. The BH ordered the ASO choline, phosphate and carbonyl regions and disrupted the acyl methylenes, reducing the membrane packing of the lipid hydrophobic region. On the other hand, NBH showed an ordering effect in all the lipid groups (polar, interface and hydrophobic ones). By MD studies, it was found that NBH enhanced the stability of the PIM2 membrane more than BH, while also being positioned closer to its mannosyl oxygens. As in ASO MLVs, BH was localized close to the PIM2 phosphate group and disrupted its acyl chains. However, higher values of lateral diffusion were observed for NBH than BH. Despite this, BH and NBH increased the membrane thickness by 35 %, which suggests a global ordering effect of both drugs. Findings of this work reinforce the accordance and complementarity between MLVs based on ASO and the PIM2 MD model results to study the drug effects in Mtb membrane properties.
Collapse
Affiliation(s)
- Lucas Thadeu Felipe Kokuszi
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Yago Mendes Paes
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Aline Loise Santana Faria
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Jesus Alvarado-Huayhuaz
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Maurício Dornelles Caldeira Balboni
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Marinalva Cardoso Dos Santos
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Sandra Cruz Dos Santos
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Juliano Rosa de Menezes Vicenti
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Alexandre Luis Parize
- Programa de Pós-Graduação em Química-PPGQ, Departamento de Química, Centro de Ciências Físicas e Matemáticas-CFM, Universidade Federal de Santa Catarina-UFSC, Campus Universitário Trindade, Caixa Postal 476, Florianópolis, SC 88040-900, Brazil
| | - Adriano Velasque Werhli
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Karina Dos Santos Machado
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Vânia Rodrigues de Lima
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
2
|
Liang X, Liu Z, Wang Y, Zhang Y, Deng W, Liu Q, Lu Z, Li K, Chang Y, Wei L. Progress in the study of mefloquine as an antibiotic adjuvant for combination bacterial inhibition treatment. Front Cell Infect Microbiol 2024; 14:1470891. [PMID: 39669268 PMCID: PMC11634880 DOI: 10.3389/fcimb.2024.1470891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024] Open
Abstract
Antimicrobial resistance is among the greatest threats to public health globally, and drug repurposing strategies may be advantageous to addressing this problem. Mefloquine, a drug traditionally used to treat malaria, has emerged as a promising antibiotic adjuvant, due to its ability to enhance the effectiveness of conventional antibiotics against resistant bacterial strains. In this paper, we first outline the enhancement properties of mefloquine and its mechanisms of action as an adjuvant antibiotic against multidrug-resistant bacteria. Mefloquine exhibits synergistic bacteriostatic effects when combined with colistin, β-lactams, antituberculosis drugs, quinolones, and linezolid. Potential mechanisms underlying its synergistic effects include inhibition of antibiotic efflux, disruption of bacterial cell membrane integrity, and disturbance of biofilm formation. In addition, we explore the bacteriostatic effects of several mefloquine derivatives against Mycobacterium tuberculosis and some fungi. Further, we summarize the findings of recent studies on other aspects of mefloquine activity, including its antiviral and antitumor effects. Finally, the advantages and challenges of mefloquine use as an antibiotic adjuvant in combination with antibiotics for bacterial inhibition are discussed. Overall, mefloquine shows excellent potential as an antibiotic adjuvant therapy against multidrug-resistant bacteria and is a promising candidate for combination therapy; however, further studies are needed to fully elucidate its mechanism of action and address the challenges associated with its clinical application.
Collapse
Affiliation(s)
- Xiaofang Liang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Zhihong Liu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yulin Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yu Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenbo Deng
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Qianqian Liu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Zhangping Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Keke Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yanbing Chang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Lianhua Wei
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Hanscheid T, Del Portal Luyten CR, Hermans SM, Grobusch MP. Repurposing of anti-malarial drugs for the treatment of tuberculosis: realistic strategy or fanciful dead end? Malar J 2024; 23:132. [PMID: 38702649 PMCID: PMC11067164 DOI: 10.1186/s12936-024-04967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Drug repurposing offers a strategic alternative to the development of novel compounds, leveraging the known safety and pharmacokinetic profiles of medications, such as linezolid and levofloxacin for tuberculosis (TB). Anti-malarial drugs, including quinolones and artemisinins, are already applied to other diseases and infections and could be promising for TB treatment. METHODS This review included studies on the activity of anti-malarial drugs, specifically quinolones and artemisinins, against Mycobacterium tuberculosis complex (MTC), summarizing results from in vitro, in vivo (animal models) studies, and clinical trials. Studies on drugs not primarily developed for TB (doxycycline, sulfonamides) and any novel developed compounds were excluded. Analysis focused on in vitro activity (minimal inhibitory concentrations), synergistic effects, pre-clinical activity, and clinical trials. RESULTS Nineteen studies, including one ongoing Phase 1 clinical trial, were analysed: primarily investigating quinolones like mefloquine and chloroquine, and, to a lesser extent, artemisinins. In vitro findings revealed high MIC values for anti-malarials versus standard TB drugs, suggesting a limited activity. Synergistic effects with anti-TB drugs were modest, with some synergy observed in combinations with isoniazid or pyrazinamide. In vivo animal studies showed limited activity of anti-malarials against MTC, except for one study of the combination of chloroquine with isoniazid. CONCLUSIONS The repurposing of anti-malarials for TB treatment is limited by high MIC values, poor synergy, and minimal in vivo effects. Concerns about potential toxicity at effective dosages and the risk of antimicrobial resistance, especially where TB and malaria overlap, further question their repurposing. These findings suggest that focusing on novel compounds might be both more beneficial and rewarding.
Collapse
Affiliation(s)
- Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Claire Ruiz Del Portal Luyten
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Sabine M Hermans
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
- Institute of Tropical Medicine, German Centre for Infection Research (DZIF), University of Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon.
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone.
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
Khalifa Z, Upadhyay R, Patel AB. Arylidene and amino spacer-linked rhodanine-quinoline hybrids as upgraded antimicrobial agents. Chem Biol Drug Des 2023; 102:1632-1642. [PMID: 37697906 DOI: 10.1111/cbdd.14345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Antibiotic resistance associated with various microorganisms such as Gram-positive, Gram-negative, fungal strains, and multidrug-resistant tuberculosis increases the risk of healthcare survival. Preliminary therapeutics becoming ineffective that might lead to noteworthy mortality presents a crucial challenge for the scientific community. Hence, there is an urgent need to develop hybrid compounds as antimicrobial agents by combining two or more bioactive heterocyclic moieties into a single molecular framework with fewer side effects and a unique mode of action. This review highlights the recent advances (2013-2023) in the pharmacology of rhodanine-linked quinoline hybrids as more effective antimicrobial agents. In the drug development process, linker hybrids acquire the top position due to their excellent π-stacking and Van der Waals interaction with the DNA active sites of pathogens. A molecular hybridization strategy has been optimized, indicating that combining these two bioactive moieties with an arylidene and an amino spacer linker increases the antimicrobial potential and reduces drug resistance. Moreover, the structure-activity relationship study is discussed to express the role of various functional groups in improving and decrementing antimicrobial activities for rational drug design. Also, a linker approach may accelerate the development of dynamic antimicrobial agents through molecular hybridization.
Collapse
Affiliation(s)
- Zebabanu Khalifa
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Rachana Upadhyay
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
5
|
Li R, Shen X, Li Z, Shen J, Tang H, Xu H, Shen J, Xu Y. Combination of AS101 and Mefloquine Inhibits Carbapenem-Resistant Pseudomonas aeruginosa in vitro and in vivo. Infect Drug Resist 2023; 16:7271-7288. [PMID: 38023412 PMCID: PMC10664714 DOI: 10.2147/idr.s427232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background In recent years, carbapenem-resistant Pseudomonas aeruginosa (CRPA) has spread around the world, leading to a high mortality and close attention of medical community. In this study, we aim to find a new strategy of treatment for CRPA infections. Methods Eight strains of CRPA were collected, and PCR detected the multi-locus sequence typing (MLST). The antimicrobial susceptibility test was conducted using the VITEK@2 compact system. The minimum inhibitory concentration (MIC) for AS101 and mefloquine was determined using the broth dilution method. Antibacterial activity was tested in vitro and in vivo through the chessboard assay, time killing assay, and a mouse model. The mechanism of AS101 combined with mefloquine against CRPA was assessed through the biofilm formation inhibition assay, electron microscopy, and detection of reactive oxygen species (ROS). Results The results demonstrated that all tested CRPA strains exhibited multidrug resistance. Moreover, our investigation revealed a substantial synergistic antibacterial effect of AS101-mefloquine in vitro. The assay for inhibiting biofilm formation indicated that AS101-mefloquine effectively suppressed the biofilm formation of CRPA-5 and CRPA-6. Furthermore, AS101-mefloquine were observed to disrupt the bacterial cell wall and enhance the permeability of the cell membrane. This effect was achieved by stimulating the production of ROS, which in turn hindered the growth of CRPA-3. To evaluate the therapeutic potential, a murine model of CRPA-3 peritoneal infection was established. Notably, AS101-mefloquine administration resulted in a significant reduction in bacterial load within the liver, kidney, and spleen of mice after 72 hours of treatment. Conclusion The present study showed that the combination of AS101 and mefloquine yielded a notable synergistic bacteriostatic effect both in vitro and in vivo, suggesting a potential clinical application of this combination in the treatment of CRPA.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Xuhang Shen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengyuan Li
- Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jilong Shen
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Hao Tang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Huaming Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
6
|
Crystal structures, DFT calculations and Hirshfeld surface analysis of two (E)-3-(aryl)-1-(naphthalen-1-yl)prop-2-en-1-one chalcone derivatives, potential Mycobacterium tuberculosis Enoyl ACP reductase (InhA) inhibitors and optical materials: conformational differences within the prop-2-en-1-one unit. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|