1
|
Wang R, Piggott AM, Chooi YH, Li H. Discovery, bioactivity and biosynthesis of fungal piperazines. Nat Prod Rep 2023; 40:387-411. [PMID: 36374102 DOI: 10.1039/d2np00070a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Covering: up to the end of July, 2022Fungi are prolific producers of piperazine alkaloids, which have been shown to exhibit an array of remarkable biological activities. Since the first fungal piperazine, herquline A, was reported from Penicillium herquei Fg-372 in 1979, a plethora of structurally diverse piperazines have been isolated and characterised from various fungal strains. Significant advancements have been made in recent years towards unravelling the biosynthesis of fungal piperazines and numerous synthetic routes have been proposed. This review provides a comprehensive summary of the current knowledge of the discovery, classification, bioactivity and biosynthesis of piperazine alkaloids reported from fungi, and discusses the perspectives for exploring the structural diversity of fungal piperazines via genome mining of the untapped piperazine biosynthetic pathways.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Hang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| |
Collapse
|
2
|
Li J, Hu X, Zhang H, Peng Y, Li S, Xiong Y, Jiang W, Wang Z. N-2-(Phenylamino) Benzamide Derivatives as Dual Inhibitors of COX-2 and Topo I Deter Gastrointestinal Cancers via Targeting Inflammation and Tumor Progression. J Med Chem 2022; 65:10481-10505. [PMID: 35868003 DOI: 10.1021/acs.jmedchem.2c00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the close association between inflammation and cancer, combining anti-inflammation therapy is prominent to improve the anticancer effect. Based on I-1, a series of agents targeting COX-2 and Topo I were designed by combining fenamates and phenols. The optimal compound 1H-30 displayed an enhanced inhibitory effect on COX-2 compared to tolfenamic acid and I-1 and showed better inhibition of Topo I than I-1. Importantly, 1H-30 showed potential anticancer effects and suppressed the activation of the NF-κB pathway in cancer cells. 1H-30 inhibited the nuclear translocation of NF-κB and suppressed the production of NO, COX-2, and IL-1β in RAW264.7. In vivo, 1H-30 showed acceptable pharmacokinetic parameters, decreased the tumor growth without affecting the body weight, down-regulated COX-2 and MMP-9, and induced apoptosis in the CT26.WT tumor-bearing mice. Accordingly, 1H-30 as a potential Topo I/COX-2 inhibitor which possessed anti-inflammatory and anticancer effects, with inhibition of the NF-κB pathway, is promising for gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuang Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.,School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Fan X, Deng J, Shi T, Wen H, Li J, Liang Z, Lei F, Liu D, Zhang H, Liang Y, Hao X, Wang Z. Design, synthesis and bioactivity study of evodiamine derivatives as multifunctional agents for the treatment of hepatocellular carcinoma. Bioorg Chem 2021; 114:105154. [PMID: 34378540 DOI: 10.1016/j.bioorg.2021.105154] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Topoisomerase has been found extremely high level of expression in hepatocellular carcinoma (HCC) and proven to promote the proliferation and survival of HCC. Cancer-associated fibroblasts (CAFs) as a kind of key reactive stromal cell that abundantly present in the microenvironment of HCC, could enhance the metastatic ability and drug resistance of HCC. Therefore, developing new drugs that address the above conundrums would be of the upmost significant in the fight against HCC. Evodiamine, as a multi-target natural product, has been found to exert various biological activities such as anti-cancer and anti-hepatic fibrosis via blocking topoisomerase, NF-κB, TGF-β/HGF, and Smad2/3. Inspired by these facts, 15 evodiamine derivatives were designed and synthesized for HCC treatment by simultaneously targeting Topo I and CAFs. Most of them displayed preferable anti-HCC activities on three HCC cell lines and low cytotoxicity on one normal hepatic cell. In particular, compound 8 showed the best inhibitory effect on HCC cell lines and a good inhibition on Topo I in vitro. Meanwhile, it also induced obvious G2/M arrest and apoptosis, and significantly decreased the migration and invasion capacity of HCC cells. In addition, compound 8 down-regulated the expression of type I collagen in the activated HSC-T6 cells, and induced the apoptosis of activated HSC-T6 cells. In vivo studies demonstrated that compound 8 markedly decreased the volume and weight of tumor (TGI = 40.53%). In vitro and in vivo studies showed that its effects were superior to those of evodiamine. This preliminary attempt may provide a promising strategy for developing anti-HCC lead compounds taking effect through simultaneous inhibition on Topo I and CAFs.
Collapse
Affiliation(s)
- Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jiedan Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Huaixiu Wen
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ziyi Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fang Lei
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Zhen Wang
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|