1
|
Guo J, Zhu Y, Zhi J, Lou Q, Bai R, He Y. Antioxidants in anti-Alzheimer's disease drug discovery. Ageing Res Rev 2025; 107:102707. [PMID: 40021094 DOI: 10.1016/j.arr.2025.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Oxidative stress is widely recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). While not the sole factor, it is closely linked to critical pathological features, such as the formation of senile plaques and neurofibrillary tangles. The development of agents with antioxidant properties has become an area of growing interest in AD research. Between 2015 and 2024, several antioxidant-targeted drugs for AD progressed to clinical trials, with increasing attention to the evaluation of antioxidant properties during their development. Oxidative stress plays a pivotal role in linking various AD hypotheses, underscoring its importance in understanding the disease mechanisms. Despite this, comprehensive reviews addressing advancements in AD drug development from the perspective of antioxidant capacity remain limited, hindering the design of novel compounds. This review aims to explore the mechanistic relationship between oxidative stress and AD, summarize methods for assessing antioxidant capacity, and provide an overview of antioxidant compounds with anti-AD properties reported over the past decade. The goal is to offer strategies for identifying effective antioxidant-based therapies for AD and to deepen our understanding of the role of oxidative stress in AD pathology.
Collapse
Affiliation(s)
- Jianan Guo
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| | - Yalan Zhu
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Jia Zhi
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiuwen Lou
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yiling He
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| |
Collapse
|
2
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
3
|
Diaconu D, Savu M, Ciobanu C, Mangalagiu V, Mangalagiu II. Current strategies in design and synthesis of antifungals hybrid and chimeric diazine derivatives. Bioorg Med Chem 2025; 119:118069. [PMID: 39818112 DOI: 10.1016/j.bmc.2025.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In the last decades fungal infections became a major threat to human health having an unacceptably occurrence, a high rate of mortality and the number of patients at risk for these infections continue to increase every year. An effective, modern and very useful strategy in antifungal therapy is represented by the use of chimeric and hybrid drugs, most of them being with azaheterocycle skeleton. In this review, we present an overview from the last five years of the most representative achievements in the field of chimeric and hybrid diazine derivatives with antifungal properties. Within this work we emphasize the most relevant data concerning the synthesis, design, Structure Activity Relationships (SAR) correlations and antifungal activity of the main classes of diazine: 1,2-diazine (pyridazine), 1,3-diazine (pyrimidine), 1,4-diazine (pyrazine) and their fused derivatives.
Collapse
Affiliation(s)
- Dumitrela Diaconu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania; Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, RECENT-AIR Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Marius Savu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania
| | - Catalina Ciobanu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Violeta Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania; Stefan Cel Mare University of Suceava, Faculty of Food Engineering, 13 Universitatii Str., 720229 Suceava, Romania
| | - Ionel I Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania.
| |
Collapse
|
4
|
Liu ZQ, Zhang Q, Liu YL, Yu XQ, Chui RH, Zhang LL, Zhao B, Ma LY. Recent contributions of pyridazine as a privileged scaffold of anticancer agents in medicinal chemistry: An updated review. Bioorg Med Chem 2024; 111:117847. [PMID: 39121679 DOI: 10.1016/j.bmc.2024.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Pyridazine, as a privileged scaffold, has been extensively utilized in drug development due to its multiple biological activities. Especially around its distinctive anticancer property, a massive number of pyridazine-containing compounds have been synthesized and evaluated that target a diverse array of biological processes involved in cancer onset and progression. These include glutaminase 1 (GLS1) inhibitors, tropomyosin receptor kinase (TRK) inhibitors, and bromodomain containing protein (BRD) inhibitors, targeting aberrant tumor metabolism, cell signal transduction and epigenetic modifications, respectively. Pyridazine moieties functioned as either core frameworks or warheads in the above agents, exhibiting promising potential in cancer treatment. Therefore, the review aims to summarize the recent contributions of pyridazine derivatives as potent anticancer agents between 2020 and 2024, focusing mainly on their structure-activity relationships (SARs) and development strategies, with a view to show that the application of the pyridazine scaffold by different medicinal chemists provides new insights into the rational design of anticancer drugs.
Collapse
Affiliation(s)
- Zi-Qiang Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yu-Lin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xiao-Qian Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Rui-Hao Chui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Lin-Lin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Bing Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian 463000, PR China.
| |
Collapse
|
5
|
Yu G, Shi Y, Cong S, Wu C, Liu J, Zhang Y, Liu H, Liu X, Deng H, Tan Z, Deng Y. Synthesis and evaluation of butylphthalide-scutellarein hybrids as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 265:116099. [PMID: 38160618 DOI: 10.1016/j.ejmech.2023.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
A series of butylphthalide and scutellarein hybrids 3-(alkyl/alkenyl) hydroxyphthalide derivatives were designed, synthesized and evaluated as multifunctional agents against Alzheimer's disease. In vitro bioactivity assays indicated that most of the compounds displayed excellent antioxidant activity and moderate to good inhibition activities of self-induced Aβ1-42 aggregation. Among them, compound 7c was demonstrated as a potential and balanced multifunctional candidate displaying the best inhibitory effects on self- and Cu2+-induced Aβ1-42 aggregation (90.2 % and 35.4 %, respectively) and moderate activity for disaggregation of Aβ1-42 aggregation (42.5 %). In addition, 7c also displayed excellent antioxidant (2.42 Trolox equivalents), metal ions chelating, oxidative stress alleviation, neuroprotective and anti-neuroinflammatory activities. Furthermore, in vivo study demonstrated that 7c could ameliorate the learning and memory impairment induced by sodium nitrite and Aβ1-42 in the step-down passive avoidance test. These balanced multifunctional profiles supporting compound 7c as a novel potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yichun Shi
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shiqin Cong
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengxun Wu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hongyan Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiuxiu Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Haixing Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2270781. [PMID: 37955252 PMCID: PMC10653629 DOI: 10.1080/14756366.2023.2270781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive brain disease characterised by progressive memory loss and cognition impairment, ultimately leading to death. There are three FDA-approved acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine, AChEIs) for the symptomatic treatment of AD. Monoamine oxidase B (MAO-B) has been considered to contribute to pathologies of AD. Therefore, we reviewed the dual inhibitors of acetylcholinesterase (AChE) and MAO-B developed in the last five years. In this review, these dual-target inhibitors were classified into six groups according to the basic parent structure, including chalcone, coumarin, chromone, benzo-fused five-membered ring, imine and hydrazine, and other scaffolds. Their design strategies, structure-activity relationships (SARs), and molecular docking studies with AChE and MAO-B were analysed and discussed, giving valuable insights for the subsequent development of AChE and MAO-B dual inhibitors. Challenges in the development of balanced and potent AChE and MAO-B dual inhibitors were noted, and corresponding solutions were provided.
Collapse
Affiliation(s)
- Dajiang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Ezzat MAF, Abdelhamid SM, Fouad MA, Abdel-Aziz HA, Allam HA. Design, synthesis, in vitro, and in vivo evaluation of novel phthalazinone-based derivatives as promising acetylcholinesterase inhibitors for treatment of Alzheimer's disease. Drug Dev Res 2023; 84:1231-1246. [PMID: 37243322 DOI: 10.1002/ddr.22082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Twenty novel phthalazinone-based compounds were designed as acetylcholinesterase (hAChE) inhibitors. Compounds 7e and 17c demonstrated comparable or superior activity compared to donepezil, respectively, in in vitro enzyme assay. Moreover, both compounds 7e and 17c possess minimal toxicity on hepatic and neuroblastoma cell lines. Besides, it was proved that compounds 7e and 17c have percentage alternations and a transfer latency time comparable to donepezil and can alleviate the cognitive impairment caused by the scopolamine-induced model in mice. The kinetic analysis for compound 17c suggested this compound as a mixed-type inhibitor that could bind to both the peripheral (PAS) and the catalytic site (CAS) of the hAChE enzyme. The synthesized molecules were subjected to in silico analyses, including molecular docking studies, and the outcomes were consistent with the in vitro findings.
Collapse
Affiliation(s)
| | | | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, Egypt
| | | |
Collapse
|
8
|
Ma M, Yao W, Lv K, Xie Z, Chen X. Catalyst-Free Green Synthesis of Phthalazinones at Room Temperature. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Shi WY, Bai M, Zhang X, Qin SY, Yao GD, Lin B, Song SJ, Huang XX. Diverse guaiane-type sesquiterpenoids from the root of Daphne genkwa based on molecular networking. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
6-Benzyloxyphthalides as selective and reversible monoamine oxidase B inhibitors with antioxidant and anti-neuroinflammatory activities for Parkinson’s disease treatment. Bioorg Chem 2022; 120:105623. [DOI: 10.1016/j.bioorg.2022.105623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
|
11
|
Mi J, He Y, Yang J, Zhou Y, Zhu G, Wu A, Liu W, Sang Z. Development of naringenin-O-carbamate derivatives as multi-target-directed liagnds for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2022; 60:128574. [PMID: 35065231 DOI: 10.1016/j.bmcl.2022.128574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/23/2021] [Accepted: 01/15/2022] [Indexed: 12/15/2022]
Abstract
In this work, a series of naringenin-O-carbamate derivatives was designed and synthesized as multifunctional agents for the treatment of Alzheimer's disease (AD) through multi-target-directed ligands (MTDLs) strategy. The biological activity in vitro showed that compound 3c showed good antioxidant potency (ORAC = 1.0 eq), and it was a reversible huAChE (IC50 = 9.7 μM) inhibitor. In addition, compound 3c significantly inhibited self-induced Aβ1-42 aggregation, and it could activate UPS degradation pathway in HT22 cells and clear the aggregated proteins associated with AD. Moreover, compound 3c was a selective metal chelator, and it significantly inhibited and disaggregated Cu2+-mediated Aβ1-42 aggregation. Furthermore, compound 3c displayed remarkable neuroprotective effect and anti-inflammatory property. Interestingly, compound 3c displayed good hepatoprotective effect by its antioxidant activity. More importantly, compound 3c demonstrated favourable blood-brain barrier penetration in vitro and drug-like property. Therefore, compound 3c was a promising multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ying He
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jing Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yi Zhou
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Southwest Medical University, Luzhou 646000, China.
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
12
|
Shi Y, Zhang H, Song Q, Yu G, Liu Z, Zhong F, Tan Z, Liu X, Deng Y. Development of novel 2-aminoalkyl-6-(2-hydroxyphenyl)pyridazin-3(2H)-one derivatives as balanced multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 230:114098. [PMID: 35026532 DOI: 10.1016/j.ejmech.2021.114098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/31/2022]
Abstract
Based on multitarget-directed ligands approach, through two rounds of screening, a series of 2-aminoalkyl-6-(2-hydroxyphenyl)pyridazin-3(2H)-one derivatives were designed, synthesized and evaluated as innovative multifunctional agents against Alzheimer's disease. In vitro biological assays indicated that most of the hybrids were endowed with great AChE inhibitory activity, excellent antioxidant activity and moderate Aβ1-42 aggregation inhibition. Taken both efficacy and balance into account, 12a was identified as the optimal multifunctional ligand with significant inhibition of AChE (EeAChE, IC50 = 0.20 μM; HuAChE, IC50 = 37.02 nM) and anti-Aβ activity (IC50 = 1.92 μM for self-induced Aβ1-42 aggregation; IC50 = 1.80 μM for disaggregation of Aβ1-42 fibrils; IC50 = 2.18 μM for Cu2+-induced Aβ1-42 aggregation; IC50 = 1.17 μM for disaggregation of Cu2+-induced Aβ1-42 fibrils; 81.7% for HuAChE-induced Aβ1-40 aggregation). Moreover, it was equipped with the potential to serve as antioxidant (3.03 Trolox equivalents), metals chelator and anti-neuroinflammation agent for synergetic treatment. Finally, in vivo study demonstrated that 12a, with suitable BBB permeability (log BB = -0.61), could efficaciously ameliorate cognitive dysfunction on scopolamine-treated mice by regulating cholinergic system and oxidative stress simultaneously. Altogether, these results highlight the potential of 12a as an innovative balanced multifunctional candidate for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Yichun Shi
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qing Song
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhuoling Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Feng Zhong
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xiuxiu Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|