1
|
Schwalm MP, Knapp S, Rogov VV. Toward effective Atg8-based ATTECs: Approaches and perspectives. J Cell Biochem 2024; 125:e30380. [PMID: 36780422 DOI: 10.1002/jcb.30380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Induction of Atg8-family protein (LC3/GABARAP proteins in human) interactions with target proteins of interest by proximity-inducing small molecules offers the possibility for novel targeted protein degradation approaches. However, despite intensive screening campaigns during the last 5 years, no potent ligands for LC3/GABARAPs have been developed, rendering this approach largely unexplored and unsuitable for therapeutic exploitation. In this Viewpoint, we analyze the reported attempts identifying LC3/GABARAP inhibitors and provide our own point of view why no potent inhibitors have been found. Additionally, we designate reasonable directions for the identification of potent and probably selective LC3/GABARAP inhibitors for alternative therapeutic applications.
Collapse
Affiliation(s)
- Martin P Schwalm
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Vladimir V Rogov
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
2
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
3
|
Xiang H, Zhou M, Li Y, Zhou L, Wang R. Drug discovery by targeting the protein-protein interactions involved in autophagy. Acta Pharm Sin B 2023; 13:4373-4390. [PMID: 37969735 PMCID: PMC10638514 DOI: 10.1016/j.apsb.2023.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023] Open
Abstract
Autophagy is a cellular process in which proteins and organelles are engulfed in autophagosomal vesicles and transported to the lysosome/vacuole for degradation. Protein-protein interactions (PPIs) play a crucial role at many stages of autophagy, which present formidable but attainable targets for autophagy regulation. Moreover, selective regulation of PPIs tends to have a lower risk in causing undesired off-target effects in the context of a complicated biological network. Thus, small-molecule regulators, including peptides and peptidomimetics, targeting the critical PPIs involved in autophagy provide a new opportunity for innovative drug discovery. This article provides general background knowledge of the critical PPIs involved in autophagy and reviews a range of successful attempts on discovering regulators targeting those PPIs. Successful strategies and existing limitations in this field are also discussed.
Collapse
Affiliation(s)
- Honggang Xiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
4
|
O’Connor S, Le Bihan YV, Westwood IM, Liu M, Mak OW, Zazeri G, Povinelli APR, Jones AM, van Montfort R, Reynisson J, Collins I. Discovery and Characterization of a Cryptic Secondary Binding Site in the Molecular Chaperone HSP70. Molecules 2022; 27:817. [PMID: 35164081 PMCID: PMC8839746 DOI: 10.3390/molecules27030817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
Heat Shock Protein 70s (HSP70s) are key molecular chaperones that are overexpressed in many cancers and often associated with metastasis and poor prognosis. It has proven difficult to develop ATP-competitive, drug-like small molecule inhibitors of HSP70s due to the flexible and hydrophilic nature of the HSP70 ATP-binding site and its high affinity for endogenous nucleotides. The aim of this study was to explore the potential for the inhibition of HSP70 through alternative binding sites using fragment-based approaches. A surface plasmon resonance (SPR) fragment screen designed to detect secondary binding sites in HSP70 led to the identification by X-ray crystallography of a cryptic binding site in the nucleotide-binding domain (NBD) of HSP70 adjacent to the ATP-binding site. Fragment binding was confirmed and characterized as ATP-competitive using SPR and ligand-observed NMR methods. Molecular dynamics simulations were applied to understand the interactions with the protein upon ligand binding, and local secondary structure changes consistent with interconversion between the observed crystal structures with and without the cryptic pocket were detected. A virtual high-throughput screen (vHTS) against the cryptic pocket was conducted, and five compounds with diverse chemical scaffolds were confirmed to bind to HSP70 with micromolar affinity by SPR. These results identified and characterized a new targetable site on HSP70. While targeting HSP70 remains challenging, the new site may provide opportunities to develop allosteric ATP-competitive inhibitors with differentiated physicochemical properties from current series.
Collapse
Affiliation(s)
- Suzanne O’Connor
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK; (S.O.); (Y.-V.L.B.); (I.M.W.); (M.L.); (R.v.M.)
| | - Yann-Vaï Le Bihan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK; (S.O.); (Y.-V.L.B.); (I.M.W.); (M.L.); (R.v.M.)
| | - Isaac M. Westwood
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK; (S.O.); (Y.-V.L.B.); (I.M.W.); (M.L.); (R.v.M.)
| | - Manjuan Liu
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK; (S.O.); (Y.-V.L.B.); (I.M.W.); (M.L.); (R.v.M.)
| | - Oi Wei Mak
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (O.W.M.); (J.R.)
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriel Zazeri
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.Z.); (A.P.R.P.); (A.M.J.)
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, São José do Rio Preto 15054-000, Brazil
| | - Ana P. R. Povinelli
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.Z.); (A.P.R.P.); (A.M.J.)
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, São José do Rio Preto 15054-000, Brazil
| | - Alan M. Jones
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.Z.); (A.P.R.P.); (A.M.J.)
| | - Rob van Montfort
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK; (S.O.); (Y.-V.L.B.); (I.M.W.); (M.L.); (R.v.M.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (O.W.M.); (J.R.)
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK; (S.O.); (Y.-V.L.B.); (I.M.W.); (M.L.); (R.v.M.)
| |
Collapse
|