1
|
Tantra T, Rahaman T A A, Nandini, Chaudhary S. Therapeutic role of NLRP3 inflammasome inhibitors against Alzheimer's disease. Bioorg Chem 2024; 153:107912. [PMID: 39504636 DOI: 10.1016/j.bioorg.2024.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that plays a vital role in regulating inflammatory signaling and the innate immune system. Activation of NLRP3 by accumulation of Aβ leads to its oligomerization and the activation of caspase-1, resulting in the secretion of pro-cytokines such as IL-18 and IL-1β. These pro-cytokines can contribute to cognitive impairment and neurodegeneration. The activation of NLRP3 is associated with neuroinflammation in animal models of Alzheimer's disease (AD). Therefore, the NLRP3 inflammasome is considered a potential therapeutic target for AD. Various natural and synthetic molecules have gained attention as NLRP3 inhibitors against AD. In this review, we will summarize the sources, chemical structures, synthesis, and biological activity of NLRP3 inhibitors as anti-Alzheimer's agents. Additionally, we will critically analyze the structure-activity relationship (SAR) of NLRP3 inhibitors. This detailed examination of the SAR-based investigation of NLRP3 inhibitors and their derivatives offers insights into the design and development of novel NLRP3 inhibitors as anti-Alzheimer's agents. It is expected that this review will assist researchers in developing innovative and effective NLRP3 inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Tanmoy Tantra
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Abdul Rahaman T A
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Nandini
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Sandeep Chaudhary
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India.
| |
Collapse
|
2
|
Xiao YC, Chen FE. The vinyl sulfone motif as a structural unit for novel drug design and discovery. Expert Opin Drug Discov 2024; 19:239-251. [PMID: 37978948 DOI: 10.1080/17460441.2023.2284201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Vinyl sulfones are a special sulfur-containing structural unit that have attracted considerable attention, owing to their important role in serving as key structural motifs of various biologically active compounds as well as serving as versatile building blocks for organic transformations. The synthetic strategy of vinyl sulfone derivatives has been substantially upgraded over the past 30 years, and the wide application of this functional group in drug design and discovery has been promoted. AREA COVERED In this review, the authors review the application of vinyl sulfones in drug discovery and select optimized compounds which might have significant impact or potential inspiration for drug design. EXPERT OPINION Vinyl sulfones have been reported to target various macromolecular targets via non-covalent or covalent interactions, including multiple kinases, tubulin, cysteine protease, transcription factor, and so on. Thus, it has been significantly applied as a privileged scaffold in the design of anticancer, anti-infective, anti-inflammatory, and neuroprotective agents. However, much work remains to be done to improve the drug-like properties, such as chemical and metabolic stability, ADME, and toxicity. Besides, the chemical space of vinyl sulfones needs to be expanded, including but not limited to the design of constrained endocyclic and exocyclic vinyl sulfones.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem 2024; 31:2021-2051. [PMID: 38310392 DOI: 10.2174/0109298673289984231127062528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Inflammasomes are multimeric protein complexes that can detect various physiological stimuli and danger signals. As a result, they perform a crucial function in the innate immune response. The NLRP3 inflammasome, as a vital constituent of the inflammasome family, is significant in defending against pathogen invasion and preserving cellhomeostasis. NLRP3 inflammasome dysregulation is connected to various pathological conditions, including inflammatory diseases, cancer, and cardiovascular and neurodegenerative diseases. This profile makes NLRP3 an applicable target for treating related diseases, and therefore, there are rising NLRP3 inhibitors disclosed for therapy. Herein, we summarized the updated advances in the structure, function, and inhibitors of NLRP3 inflammasome. Moreover, we aimed to provide an overview of the existing products and future directions for drug research and development.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
4
|
Duan M, Sun L, He X, Wang Z, Hou Y, Zhao Y. Medicinal chemistry strategies targeting NLRP3 inflammasome pathway: A recent update from 2019 to mid-2023. Eur J Med Chem 2023; 260:115750. [PMID: 37639823 DOI: 10.1016/j.ejmech.2023.115750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Nod-like receptor protein 3 (NLRP3), a therapeutic target that has a close relationship with inflammatory diseases, has drawn significant attention from researchers in the field. An increasing number of NLRP3 inhibitors have been reported since NLRP3 was identified as a biomarker and inflammatory therapeutic target. Inhibiting NLRP3 has been widely studied as therapeutics for the treatment of cryopyrin associated periodic syndrome (CAPS), inflammatory bowel disease (IBD), nonalcoholic steatohepatitis (NASH), arthrolithiasis, Alzheimer's disease (AD) and Parkinson's disease (PD). This review updates the recently reported (2019 to mid-2023) molecule inhibitors targeting the NLRP3 inflammasome pathway, summarizes their structure-activity relationships (SARs), and discusses the therapeutic effects on inflammatory diseases. I hope this review will contribute to the development of novel inhibitors targeting NLRP3 inflammasome pathway as potential drugs.
Collapse
Affiliation(s)
- Meibo Duan
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Lei Sun
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xinzi He
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Zechen Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
Li N, Zhang R, Tang M, Zhao M, Jiang X, Cai X, Ye N, Su K, Peng J, Zhang X, Wu W, Ye H. Recent Progress and Prospects of Small Molecules for NLRP3 Inflammasome Inhibition. J Med Chem 2023; 66:14447-14473. [PMID: 37879043 DOI: 10.1021/acs.jmedchem.3c01370] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
NLRP3 inflammasome is a multiprotein complex involved in host immune response─which exerts various biological effects by mediating the maturation and secretion of IL-1β and IL-18─and pyroptosis. However, its aberrant activation could cause amplification of inflammatory effects, thereby triggering a range of ailments, including Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, gout, type 2 diabetes mellitus, and cancer. For the past few years, as an attractive anti-inflammatory target, NLRP3-targeting small-molecule inhibitors have been widely reported by both the academic and the industrial communities. In order to deeply understand the advancement of NLRP3 inflammasome inhibitors, we provide comprehensive insights and commentary on drugs currently under clinical investigation, as well as other NLRP3 inflammasome inhibitors from a chemical structure point of view, with an aim to provide new insights for the further development of clinical drugs for NLRP3 inflammasome-mediated diseases.
Collapse
Affiliation(s)
- Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
7
|
Tun SL, Shivers GN, Pigge FC. C-Sulfonylation of 4-Alkylpyridines: Formal Picolyl C-H Activation via Alkylidene Dihydropyridine Intermediates. J Org Chem 2023; 88:3998-4002. [PMID: 36848377 PMCID: PMC10028608 DOI: 10.1021/acs.joc.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
4-Picoline derivatives are converted to the corresponding aryl picolyl sulfones upon treatment with aryl sulfonyl chlorides and Et3N in the presence of catalytic DMAP. The reaction proceeds smoothly for a variety of alkyl and aryl picolines using a range of aryl sulfonyl chlorides. The reaction is believed to involve N-sulfonyl 4-alkylidene dihydropyridine intermediates and results in formal sulfonylation of unactivated picolyl C-H bonds.
Collapse
Affiliation(s)
- Soe L Tun
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Grant N Shivers
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - F Christopher Pigge
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|