1
|
Wang H, Gui Y, Cui S, Long X, Fan W, Tang C. Design, synthesis, and biological evaluation of novel aminopyrimidine derivatives as EGFR inhibitors. Bioorg Med Chem Lett 2025; 122:130188. [PMID: 40089036 DOI: 10.1016/j.bmcl.2025.130188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
The treatment of non-small cell lung cancer (NSCLC) is significantly challenged by the development of acquired resistance to third-generation epidermal growth factor receptor (EGFR) inhibitors, such as Osimertinib, which limits their therapeutic efficacy. Using the EGFR L858R/T790M/C797S inhibitor Brigatinib as a reference compound, we designed and synthesized 24 target compounds with aminopyrimidine as the core structure. Among these, the representative compound IIB-5 demonstrated potent inhibition of EGFRL858R/T790M/C797S, achieving an IC50 value of 18.81 nM. It also exhibited strong inhibition against Ba/F3-EGFRL858R/T790M/C797S cells with an IC50 of 97.12 nM, showing a five-fold potency increase over Brigatinib. Compound IIB-5 provides a valuable reference for further research on EGFR inhibitors.
Collapse
Affiliation(s)
- Huabing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yule Gui
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Shengkai Cui
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xinyi Long
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Weizheng Fan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Zhao M, Wu D, Qiu W, Zhang H, Chen M, Zhou H, Ye X, Han Z, Shi X. A novel Quinazoline derivative exerts anti-tumor effects in non-small cell lung cancer through Wnt/β-catenin pathway inhibition. Bioorg Chem 2025; 160:108481. [PMID: 40253763 DOI: 10.1016/j.bioorg.2025.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
4-anilinoquinazoline scaffold, a key structure in the development of EGFR-TKI anticancer drugs such as Gefitinib and Erlotinib, continues to drive advancements in non-small cell lung cancer (NSCLC) therapy. In this study, we synthesized a series of novel derivatives (B3-B11). Structure-activity relationship (SAR) analysis revealed that electron-donating groups para-substituted at the 4-anilino position significantly enhanced antiproliferative activity. Notably, B10 incorporating an acrylamide group at the 4-anilino position demonstrated the most potent activity against NSCLC, with an IC50 of 1.28 μM in A549 cells, nearly six times more effective than Gefitinib (7.81 μM). Acute toxicity studies confirmed that B10 is safe at doses below 50 mg/kg. In vivo studies using an A549 xenograft model showed a 46 % tumor growth inhibition (TGI) with B10 (25 mg/kg), surpassing the 21 % inhibition of Gefitinib at the same dose. Mechanistic studies revealed that B10 inhibited the AKT/GSK-3β/β-catenin signaling pathway, downregulating Wnt target genes (c-Myc, c-Jun), and reduced COX2 expression and IL-8 levels, showcasing its dual anti-inflammatory and antitumor effects. These results position B10 as a promising NSCLC therapeutic candidate, combining potent efficacy with a favorable safety profile, and enhance our understanding of the SAR and mechanism of action of 4-anilinoquinazoline derivatives.
Collapse
Affiliation(s)
- Menglong Zhao
- Clinical Research Center, Shantou Central Hospital, Shantou 515041, PR China
| | - Danqing Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Weiqian Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongchen Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Min Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haixia Zhou
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, PR China
| | - Xiaoxia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Zhong Han
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, PR China
| | - Xiangchao Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
3
|
Patel KB, Heppner DE. Lazertinib: breaking the mold of third-generation EGFR inhibitors. RSC Med Chem 2025; 16:1049-1066. [PMID: 39867588 PMCID: PMC11758113 DOI: 10.1039/d4md00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Small molecules targeting activating mutations within the epidermal growth factor receptor (EGFR) are efficacious anticancer agents, particularly in non-small cell lung cancer (NSCLC). Among these, lazertinib, a third-generation tyrosine kinase inhibitor (TKI), has recently gained FDA approval for use in combination with amivantamab, a dual EGFR/MET-targeting monoclonal antibody. This review delves into the discovery and development of lazertinib underscoring the improvements in medicinal chemistry properties, especially in comparison with osimertinib. Analysis of its structure-activity relationships (SAR), as outlined in the patent literature, reveals the structural diversity explored enroute to the candidate molecule. The resulting structure of lazertinib is distinguished among other TKIs due to the combination of the hydrophobic phenyl and hydrophilic amine substituents on the pyrazole. The structural basis for the selectivity against the T790M mutation is enabled by the substituted pyrazole moiety, which facilitates both van der Waals and H-bonding interactions with the EGFR kinase domain. Insights from this case study offer lessons that can inform the future design of kinase inhibitors with improved safety and efficacy profiles for cancer treatment and other diseases.
Collapse
Affiliation(s)
- Kishan B Patel
- Department of Chemistry, The State University of New York at Buffalo Natural Sciences Complex Buffalo NY 14260 USA
| | - David E Heppner
- Department of Chemistry, The State University of New York at Buffalo Natural Sciences Complex Buffalo NY 14260 USA
- Jacobs School of Medicine and Biomedical Sciences, Department of Structural Biology, The State University of New York at Buffalo Buffalo NY USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo NY USA
| |
Collapse
|
4
|
Tang T, Luo J, Zhang D, Lu Y, Liao W, Zhang J. Innovative design and potential applications of covalent strategy in drug discovery. Eur J Med Chem 2025; 284:117202. [PMID: 39756145 DOI: 10.1016/j.ejmech.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Covalent inhibitors provide persistent inhibition while maintaining excellent selectivity and efficacy by creating stable covalent connections with specific amino acids in target proteins. This technique enables the precise inhibition of previously undruggable targets, lowering the frequency of administration and potentially bypassing drug resistance. Because of these advantages, covalent inhibitors have tremendous potential in treating cancer, inflammation, and infectious illnesses, making them extremely important in modern pharmacological research. Covalent inhibitors targeting EGFR, BTK, and KRAS (G12X), which overcome drug resistance and off-target, non-"medicinal" difficulties, as well as covalent inhibitors targeting SARS-CoV-2 Mpro, have paved the way for the development of new antiviral medicines. Furthermore, the use of covalent methods in drug discovery procedures, such as covalent PROTACs, covalent molecular gels, covalent probes, CoLDR, and Dual-targeted covalent inhibitors, preserves these tactics' inherent features while incorporating the advantages of covalent inhibitors. This synthesis opens up new therapeutic opportunities. This review comprehensively examines the use of covalent techniques in drug discovery, emphasizing their transformational potential for future drug development.
Collapse
Affiliation(s)
- Tianyong Tang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxiang Luo
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Wittlinger F, Chitnis SP, Pham CD, Damghani T, Patel KB, Möllers M, Schaeffner IK, Abidakun O, Deng MQ, Ogboo BC, Rasch A, Beyett TS, Buckley B, Feru F, Shaurova T, Knappe C, Eck MJ, Hershberger PA, Scott DA, Brandt AL, Laufer SA, Heppner DE. Tilting the Scales toward EGFR Mutant Selectivity: Expanding the Scope of Bivalent "Type V" Kinase Inhibitors. J Med Chem 2024; 67:21438-21469. [PMID: 39626019 PMCID: PMC12054702 DOI: 10.1021/acs.jmedchem.4c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Binding multiple sites within proteins with bivalent compounds is a strategy for developing uniquely active agents. A new class of dual-site inhibitors has emerged targeting the epidermal growth factor receptor (EGFR) anchored to both the orthosteric (ATP) and allosteric sites. Despite proof-of-concept successes, enabling selectivity against oncogenic activating mutations has not been achieved and classifying these inhibitors among kinase inhibitors remains underexplored. This study investigates the structure-activity relationships, binding modes, and biological activity of ATP-allosteric bivalent inhibitors (AABIs). We find that AABIs selectively inhibit drug-resistant EGFR mutants (L858R/T790M and L858R/T790M/C797S) by anchoring a methyl isoindolinone moiety along the αC-helix channel of the allosteric site. In contrast, related Type I1/2 inhibitors target wild-type EGFR but are less effective against resistant mutants. This shift in selectivity demonstrates that mutant-selective AABIs classify as "Type V" bivalent inhibitors.
Collapse
Affiliation(s)
- Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Surbhi P. Chitnis
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Calvin D. Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Tahereh Damghani
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Kishan B. Patel
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Mareike Möllers
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Ilse K. Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Omobolanle Abidakun
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Matthew Q. Deng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Blessing C. Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Alexander Rasch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tyler S. Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
- Present Address: Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 5119 Rollins Research Center, 1510 Clifton Rd, Atlanta, GA 30322, USA
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY,14203, USA
| | - Frederic Feru
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY,14203, USA
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael J. Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Pamela A. Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY,14203, USA
| | - David A. Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA
| | - Asher L. Brandt
- Department of Chemistry, University of Saint Joseph, West Hartford, CT, 06117 USA
| | - Stefan A. Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - David E. Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY,14203, USA
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
6
|
Das D, Xie L, Hong J. Next-generation EGFR tyrosine kinase inhibitors to overcome C797S mutation in non-small cell lung cancer (2019-2024). RSC Med Chem 2024:d4md00384e. [PMID: 39246743 PMCID: PMC11376191 DOI: 10.1039/d4md00384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for the major portion (80-85%) of all lung cancer cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are commonly used as the targeted therapy for EGFR-mutated NSCLC. The FDA has approved first-, second- and third-generation EGFR-TKIs as therapeutics options. Osimertinib, the third-generation irreversible EGFR-TKI, has been approved for the treatment of NSCLC patients with the EGFRT790M mutation. However, due to the EGFRC797S mutation in the kinase domain of EGFR, resistance to osimertinib is observed and that limits the long-term effectiveness of the drug. The C797S mutation is one of the major causes of drug resistance against the third-generation EGFR TKIs. The C797S mutations including EGFR double mutations (19Del/C797S or L858R/C797S) and or EGFR triple mutations (19Del/T790M/C797S or L858R/T790M/C797S) cause major resistance to the third-generation EGFR-TKIs. Therefore, the discovery and development of fourth-generation EGFR-TKIs to target triple mutant EGFR with C797S mutation is a challenging topic in medicinal chemistry research. In this review, we discuss the discovery of novel fourth-generation EGFR TKIs, medicinal chemistry approaches and the strategies to overcome the C797S mutations. In vitro activities of EGFR-TKIs (2019-2024) against mutant EGFR TK, anti-proliferative activities, structural modifications, binding modes of the inhibitors and in vivo efficacies in animal models are discussed here.
Collapse
Affiliation(s)
- Debasis Das
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Lingzhi Xie
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Jian Hong
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| |
Collapse
|
7
|
Hoyt KW, Urul DA, Ogboo BC, Wittlinger F, Laufer SA, Schaefer EM, May EW, Heppner DE. Pitfalls and Considerations in Determining the Potency and Mutant Selectivity of Covalent Epidermal Growth Factor Receptor Inhibitors. J Med Chem 2024; 67:2-16. [PMID: 38134304 DOI: 10.1021/acs.jmedchem.3c01502] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Enzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors. We showcase how liquid handling and assay reagents impact kinetic parameters and potency interpretations, which are critical for structure-kinetic relationships and covalent drug design. Additionally, we include benchmark kinetic values with reference inhibitors, which are imperative, as covalent EGFR inhibitor kinetic values are infrequently consistent in the literature. This overview seeks to inform best practices for developing new covalent inhibitors and highlight appropriate steps to address gaps in knowledge presently limiting assay reliability and reproducibility.
Collapse
Affiliation(s)
- Kristopher W Hoyt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Erik M Schaefer
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Structural Biology, The State University of New York, Buffalo, New York 14203, United States
| |
Collapse
|
8
|
Xi XX, Zhao HY, Mao YZ, Xin M, Zhang SQ. Modification of osimertinib to discover new potent EGFR C797S-TK inhibitors. Eur J Med Chem 2023; 261:115865. [PMID: 37839342 DOI: 10.1016/j.ejmech.2023.115865] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
The EGFRC797S mutation is a dominant mechanism of acquired resistance after the treatment of non-small cell lung cancer (NSCLC) with osimertinib in clinic. To date, there is no inhibitor approved to overcome the resistance caused by osimertinib. In this study, a series of compounds with phenylamino-pyrimidine scaffold deriving from osimertinib were designed, synthesized and evaluated as fourth-generation EGFRC797S-TK inhibitors. Consequently, compound Os30 exhibited potent inhibitory activities against both EGFRDel19/T790M/C797S TK and EGFRL858R/T790M/C797S TK with IC50 values of 18 nM and 113 nM, respectively. Moreover, Os30 can powerfully inhibit the proliferation of KC-0116 (BaF3-EGFRDel19/T790M/C797S) and KC-0122 (BaF3-EGFRL858R/T790M/C797S) cells. In addition, Os30 can suppress EGFR phosphorylation in a concentration-dependent manner in KC-0116 cells, arrest KC-0116 cells at G1 phase and induce the apoptosis of KC-0116 cells. More importantly, Os30 showed potent antitumor efficacy in the KC-0116 cells xenograft nude mice tumor model with the tumor growth inhibitory rate of 77.6% at a dosage of 40 mg/kg. These findings demonstrate that modification of osimertinib can discover new potent EGFRC797S-TK inhibitors, and compound Os30 is a potent fourth-generation EGFR inhibitor to treat NSCLC with EGFmRC797S mutation.
Collapse
Affiliation(s)
- Xiao-Xiao Xi
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yu-Ze Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
9
|
Mao YZ, Xi XX, Zhao HY, Zhang YL, Zhang SQ. Design, synthesis and evaluation of new pyrimidine derivatives as EGFR C797S tyrosine kinase inhibitors. Bioorg Med Chem Lett 2023; 91:129381. [PMID: 37336419 DOI: 10.1016/j.bmcl.2023.129381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
The clinical use of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer was limited by the drug resistance caused by EGFRC797S mutation. Therefore, in order to overcome the drug resistance, we designed and synthesized a series of 2-aminopyrimidine derivatives as EGFRC797S-TKIs. Among these compounds, compounds A5 and A13 showed significant anti-proliferative activity against the KC-0116 (EGFRdel19/T790M/C797S) cell line with high selectivity. A5 inhibited EGFR phosphorylation and induced apoptosis of KC-0116 cell, arrested KC-0116 cell at G2/M phase. Molecular docking results showed that A5 and brigatinib bind to EGFR in a similar pattern. In addition to forming two important hydrogen bonds with Met793 residue, A5 also formed a hydrogen bond with Lys745 residues, which may play an important role for the potent inhibitory activity against EGFRdel19/T790M/C797S. Based on these results, A5 turned out to be effective reversible EGFRC797S-TKIs which can be further developed.
Collapse
Affiliation(s)
- Yu-Ze Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Xiao-Xiao Xi
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Yin-Liang Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
10
|
Li P, Li B, Yang N, Xu T, Zheng Z. The next generation of EGFR inhibitors: a patenting perspective of PROTACs based EGFR degraders. Expert Opin Ther Pat 2023; 33:477-492. [PMID: 37873645 DOI: 10.1080/13543776.2023.2262176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Abnormal expression of epidermal growth factor receptor (EGFR) contributes to tumor development, especially in non-small cell lung cancer (NSCLC). Although multiple inhibitors have been developed to target diverse EGFR mutations and several have been approved, the inevitable drug resistance and side effect remain a challenge, which motivates novel strategies. Proteolysis-targeting chimeras (PROTACs) have been gaining momentum for their potential as novel therapeutics for human diseases by triggering protein degradation. To date, various potent and specific EGFR PROTACs have been discovered and some of them have entered clinical trials. AREAS COVERED This review provides an overview of EGFR degraders in patents from 2016 to 2022. It provides an update of the discovery strategies, chemical structures, and molecular profiling of all available EGFR PROTACs. SciFinder, PubMed, Web of Science, EPO, and CNIPA databases were used for searching the literature and patents for EGFR PROTACs. EXPERT OPINION By employing the PROTAC technology, highly potent and selective EGFR degraders based on four generation EGFR inhibitors have been developed, which offer a new strategy to target EGFR mutations and overcome the drug resistance. Despite the satisfactory result in vitro and in vivo studies, their therapeutic value awaits more rigorous preclinical testing and clinical investigation.
Collapse
Affiliation(s)
- Pengyun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bingkun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Yang
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tingting Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhibing Zheng
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
11
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Rahman HM, Abdel-Aziz M. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: a critical review. RSC Adv 2023; 13:18825-18853. [PMID: 37350862 PMCID: PMC10282734 DOI: 10.1039/d3ra02347h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Lung cancer is the second most common cause of morbidity and mortality among cancer types worldwide, with non-small cell lung cancer (NSCLC) representing the majority of most cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are among the most commonly used targeted therapy to treat NSCLC. Recent years have seen the evaluation of many synthetic EGFR TKIs, most of which showed therapeutic activity in pertinent models and were classified as first, second, and third-generation. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are ineffective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism. This review covers the fourth-generation EGFR-TKIs' most recent design with their essential binding interactions, the clinical difficulties, and the potential outcomes of treating patients with EGFR mutation C797S resistant to third-generation EGFR-TKIs was also discussed. Moreover, the utilization of various therapeutic strategies, including multi-targeting drugs and combination therapies, has also been reviewed.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA) Assiut 2014101 Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
12
|
Damghani T, Wittlinger F, Beyett TS, Eck MJ, Laufer SA, Heppner DE. Structural elements that enable specificity for mutant EGFR kinase domains with next-generation small-molecule inhibitors. Methods Enzymol 2023; 685:171-198. [PMID: 37245901 PMCID: PMC10445336 DOI: 10.1016/bs.mie.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Specificity for a desired enzyme target is an essential property of small-molecule inhibitors. Molecules targeting oncogenic driver mutations in the epidermal growth factor receptor (EGFR) kinase domain have had a considerable clinical impact due to their selective binding to cancer-causing mutants compared to wild type. Despite the availability of clinically approved drugs for cancers driven by EGFR mutants, persistent challenges in drug resistance in the past decades have led to newer generations of drugs with divergent chemical structures. The current clinical challenges are mainly due to acquired resistance to third-generation inhibitors, including by the acquisition of the C797S mutation. Several diverse fourth-generation candidates and tool compounds that inhibit the C797S mutant have emerged, and their structural characterization has revealed molecular factors that allow for EGFR mutant selective binding. Here, we have reviewed all known structurally-characterized EGFR TKIs targeting clinically-relevant mutations to identify specific features that enable C797S inhibition. Newer generation EGFR inhibitors exhibit consistent and previously underutilized hydrogen bonding interactions with the conserved K745 and D855 residue side chains. We also consider binding modes and hydrogen bonding interactions of inhibitors targeting the classical ATP and the more unique allosteric sites.
Collapse
Affiliation(s)
- Tahereh Damghani
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, Tübingen, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Tübingen, Germany
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.
| |
Collapse
|
13
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Heppner DE, Wittlinger F, Beyett TS, Shaurova T, Urul DA, Buckley B, Pham CD, Schaeffner IK, Yang B, Ogboo BC, May EW, Schaefer EM, Eck MJ, Laufer SA, Hershberger PA. Structural Basis for Inhibition of Mutant EGFR with Lazertinib (YH25448). ACS Med Chem Lett 2022; 13:1856-1863. [DOI: 10.1021/acsmedchemlett.2c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- David E. Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tyler S. Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Daniel A. Urul
- AssayQuant Technologies, Inc., 260 Cedar Hill St., Marlboro, Massachusetts 01752, United States
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Calvin D. Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ilse K. Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bo Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Blessing C. Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Earl W. May
- AssayQuant Technologies, Inc., 260 Cedar Hill St., Marlboro, Massachusetts 01752, United States
| | - Erik M. Schaefer
- AssayQuant Technologies, Inc., 260 Cedar Hill St., Marlboro, Massachusetts 01752, United States
| | - Michael J. Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stefan A. Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Pamela A. Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| |
Collapse
|