1
|
Guo HH, Li CX, Yang M, Li FF, Yang HY, Yin M, Wang JP, Wang FS. Gentidelasides A-G: Loganin derivatives from Gentiana delavayi with reducing Aβ secretion via suppressing BACE1 expression. PHYTOCHEMISTRY 2025; 230:114333. [PMID: 39547491 DOI: 10.1016/j.phytochem.2024.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Gentidelasides A-G (1-7) seven unreported loganin derivatives and fourteen known compounds (8-21) were isolated from the flowers of Gentiana delavayi Franch. Their structures including absolute configurations were unambiguously elucidated by analysis of extensive NMR spectroscopy, ECD, and HRESIMS, as well as enzymatic hydrolysis. In vitro bioassay, compound 7 showed obvious inhibitory effects on the production of Aβ40 and Aβ42, with IC50 values of 0.052 ± 0.0023 nM and 1.52 ± 0.95 nM, respectively, which probably exert their prevention of Alzheimer's disease by inhibiting the expression of β-site amyloid precursor protein cleaving enzyme 1. The molecular docking simulation revealed that compound 7 inhibited BACE1 through hydrophilic and hydrophobic interactions in the active site cavities.
Collapse
Affiliation(s)
- Hai-Hui Guo
- College of Pharmacy, Dali University, Dali, 671000, Yunnan Province, China
| | - Chun-Xu Li
- College of Pharmacy, Dali University, Dali, 671000, Yunnan Province, China
| | - Min Yang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan Province, China
| | - Feng-Feng Li
- College of Pharmacy, Dali University, Dali, 671000, Yunnan Province, China
| | - Hui-Yun Yang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan Province, China
| | - Ming Yin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia-Peng Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, 671000, Yunnan Province, China.
| | - Fu-Sheng Wang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan Province, China.
| |
Collapse
|
2
|
Cairone F, Cesa S, Arpante I, Di Simone SC, Mendez AH, Ferrante C, Menghini L, Filippi A, Fraschetti C, Zengin G, Carradori S, Gallorini M, Mannina L, Spano M. Pomegranate Juices: Analytical and Bio-Toxicological Comparison of Pasteurization and High-Pressure Processing in the Development of Healthy Products. Foods 2025; 14:315. [PMID: 39856982 PMCID: PMC11765445 DOI: 10.3390/foods14020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Two different produced and packaged commercial typologies of pomegranate juice were analyzed for their physicochemical, nutritional, and biological properties. The effects of classical pasteurization (PJ) and high-pressure processing (HP), applied during the productive cycle, were evaluated through several advanced analytical methods, such as CIEL*a*b* colorimetry, HPLC-DAD, DI-ESI-MS and MS/MS, and NMR analyses. Moreover, the exerted biological activity of the two pomegranate juices was monitored through Total Phenolic and Total Flavonoid Contents, antiradical, antioxidant and chelating activity. The potential inhibition of key enzymes of degenerative processes (cholinesterases, tyrosinase) and diabetes (amylase, glucosidase), the allelopathy toward Cichorium intybus, Dicondra repens, and Diplotaxis tenuifolia, and the in vivo toxicity on brine shrimp were also evaluated. The two different applied processing techniques analyzed impacted the bioactive compound's preservation differently, modifying the phytocomplex profile. HP significantly degrades punicalins and punicalagins, better preserving anthocyanins, if compared to PJ's impact. Sensory qualities, antioxidant activity, enzymatic inhibition, and ecotoxicological potential were differently impacted by the two applied processes. The obtained results can be beneficial for finding the optimal processing conditions that balance microbial safety with nutritional value preservation, contributing to the development of healthy pomegranate juice products.
Collapse
Affiliation(s)
- Francesco Cairone
- Department of Chemistry and Technologies of Drug, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (I.A.); (A.H.M.); (A.F.); (C.F.); (L.M.); (M.S.)
| | - Stefania Cesa
- Department of Chemistry and Technologies of Drug, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (I.A.); (A.H.M.); (A.F.); (C.F.); (L.M.); (M.S.)
| | - Irene Arpante
- Department of Chemistry and Technologies of Drug, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (I.A.); (A.H.M.); (A.F.); (C.F.); (L.M.); (M.S.)
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.C.D.S.); (C.F.); (L.M.); (S.C.); (M.G.)
| | - Alejandro Han Mendez
- Department of Chemistry and Technologies of Drug, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (I.A.); (A.H.M.); (A.F.); (C.F.); (L.M.); (M.S.)
| | - Claudio Ferrante
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.C.D.S.); (C.F.); (L.M.); (S.C.); (M.G.)
| | - Luigi Menghini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.C.D.S.); (C.F.); (L.M.); (S.C.); (M.G.)
| | - Antonello Filippi
- Department of Chemistry and Technologies of Drug, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (I.A.); (A.H.M.); (A.F.); (C.F.); (L.M.); (M.S.)
| | - Caterina Fraschetti
- Department of Chemistry and Technologies of Drug, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (I.A.); (A.H.M.); (A.F.); (C.F.); (L.M.); (M.S.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.C.D.S.); (C.F.); (L.M.); (S.C.); (M.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.C.D.S.); (C.F.); (L.M.); (S.C.); (M.G.)
| | - Luisa Mannina
- Department of Chemistry and Technologies of Drug, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (I.A.); (A.H.M.); (A.F.); (C.F.); (L.M.); (M.S.)
| | - Mattia Spano
- Department of Chemistry and Technologies of Drug, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (I.A.); (A.H.M.); (A.F.); (C.F.); (L.M.); (M.S.)
| |
Collapse
|
3
|
Samal M, Srivastava V, Khan M, Insaf A, Penumallu NR, Alam A, Parveen B, Ansari SH, Ahmad S. Therapeutic Potential of Polyphenols in Cellular Reversal of Patho-Mechanisms of Alzheimer's Disease Using In Vitro and In Vivo Models: A Comprehensive Review. Phytother Res 2025; 39:25-50. [PMID: 39496498 DOI: 10.1002/ptr.8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer's disease (AD) is considered one of the most common neurological conditions associated with memory and cognitive impairment and mainly affects people aged 65 or above. Even with tremendous progress in modern neuroscience, a permanent remedy or cure for this crippling disease is still unattainable. Polyphenols are a group of naturally occurring potent compounds that can modulate the neurodegenerative processes typical of AD. The present comprehensive study has been conducted to find out the preclinical and clinical potential of polyphenols and elucidate their possible mechanisms in managing AD. Additionally, we have reviewed different clinical studies investigating polyphenols as single compounds or cotherapies, including those currently recruiting, completed, terminated, withdrawn, or suspended in AD treatment. Natural polyphenols were systematically screened and identified through electronic databases including Google Scholar, PubMed, and Scopus based on in vitro cell line studies and preclinical data demonstrating their potential for neuroprotection. A total of 63 significant polyphenols were identified. A multimechanistic pathway for polyphenol's mode of action has been proposed in the study. Out of 63, four potent polyphenols have been identified as promising potential candidates, based on their reported clinical efficacy. Polyphenols hold tremendous scope for the development of a future drug molecule as a phytopharmaceutical that may be incorporated as an adjuvant to the therapeutic regime. However, more high-quality studies with novel delivery methods and combinatorial approaches are required to overcome obstacles such as bioavailability and blood-brain barrier crossing to underscore the therapeutic potential of these compounds in AD management.
Collapse
Affiliation(s)
- Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Naveen Reddy Penumallu
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aftab Alam
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shahid Hussain Ansari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Cordiano R, Gammeri L, Di Salvo E, Gangemi S, Minciullo PL. Pomegranate ( Punica granatum L.) Extract Effects on Inflammaging. Molecules 2024; 29:4174. [PMID: 39275022 PMCID: PMC11396831 DOI: 10.3390/molecules29174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Pomegranate is a notable source of nutrients, containing a considerable proportion of organic acids, polysaccharides, vitamins, fatty acids, and polyphenols such as flavonoids, phenolic acids, and tannins. It is also rich in nutritionally important minerals and chemical elements such as K, P, Na, Ca, Mg, and N. The presence of several bioactive compounds and metabolites in pomegranate has led to its incorporation into the functional food category, where it is used for its numerous therapeutic properties. Pomegranate's bioactive compounds have shown antioxidant, anti-inflammatory, and anticancer effects. Aging is a process characterized by the chronic accumulation of damages, progressively compromising cells, tissues, and organs over time. Inflammaging is a chronic, subclinical, low-grade inflammation that occurs during the aging process and is linked to many age-related diseases. This review aims to summarize and discuss the evidence of the benefits of pomegranate extract and its compounds to slow the aging processes by intervening in the mechanisms underlying inflammaging. These studies mainly concern neurodegenerative and skin diseases, while studies in other fields of application need to be more practical. Furthermore, no human studies have demonstrated the anti-inflammaging effects of pomegranate. In the future, supplementation with pomegranate extracts, polyphenols, or urolithins could represent a valuable low-risk complementary therapy for patients with difficult-to-manage diseases, as well as a valid therapeutic alternative for the topical or systemic treatment of skin pathologies.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Luca Gammeri
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
5
|
Singh YP, Kumar H. Tryptamine: A privileged scaffold for the management of Alzheimer's disease. Drug Dev Res 2023; 84:1578-1594. [PMID: 37675624 DOI: 10.1002/ddr.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease associated with aging. It is characterized by the progressive loss of memory and other cognitive functions. Although the exact etiology of AD is not well explored, several factors, such as the deposition of amyloid-β (Aβ) plaques, hyperphosphorylation of tau protein, presence of low levels of acetylcholine, and generation of oxidative stress, are key mediators in the progression of AD. Currently, the clinical treatment options for AD are limited and are based on cholinesterase (ChE) inhibitors (e.g., donepezil, rivastigmine, and galantamine), N-methyl- d-aspartic acid receptor antagonists (e.g., memantine), and the recently approved Aβ modulator (e.g., aducanumab). Tryptamine (2-(1H-indol-3-yl)ethan-1-amine) is a small molecule that contains an indole nucleus and an ethylamine side chain. It is also the active metabolite of tryptophan. It possesses a wide range of biological activities related to neurodegenerative disorders, such as ChE inhibition, Aβ aggregation inhibition, antioxidant effects, monoamine-oxidase inhibition, and neuroprotection. Several tryptamine-based hybrid analogs are currently being investigated as multifunctional agents for the development of novel hybrids for AD treatment. Thus, this review article aims to provide in-depth insights into the research progress and strategies for designing multifunctional agents used in Alzheimer's therapy.
Collapse
Affiliation(s)
- Yash P Singh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Harish Kumar
- Government College of Pharmacy, Shimla, Himachal Pradesh, India
- Department of Technical Education Vocational and Industrial Training, Sunder Nagar, Himachal Pradesh, India
| |
Collapse
|
6
|
Zaa CA, Marcelo ÁJ, An Z, Medina-Franco JL, Velasco-Velázquez MA. Anthocyanins: Molecular Aspects on Their Neuroprotective Activity. Biomolecules 2023; 13:1598. [PMID: 38002280 PMCID: PMC10669056 DOI: 10.3390/biom13111598] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Anthocyanins are a type of flavonoids that give plants and fruits their vibrant colors. They are known for their potent antioxidant properties and have been linked to various health benefits. Upon consumption, anthocyanins are quickly absorbed and can penetrate the blood-brain barrier (BBB). Research based on population studies suggests that including anthocyanin-rich sources in the diet lower the risk of neurodegenerative diseases. Anthocyanins exhibit neuroprotective effects that could potentially alleviate symptoms associated with such diseases. In this review, we compiled and discussed a large body of evidence supporting the neuroprotective role of anthocyanins. Our examination encompasses human studies, animal models, and cell cultures. We delve into the connection between anthocyanin bioactivities and the mechanisms underlying neurodegeneration. Our findings highlight how anthocyanins' antioxidant, anti-inflammatory, and anti-apoptotic properties contribute to their neuroprotective effects. These effects are particularly relevant to key signaling pathways implicated in the development of Alzheimer's and Parkinson's diseases. In conclusion, the outcome of this review suggests that integrating anthocyanin-rich foods into human diets could potentially serve as a therapeutic approach for neurological conditions, and we identify promising avenues for further exploration in this area.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Álvaro J. Marcelo
- School of Biology, Universidad Nacional Federico Villarreal, Lima 15088, Peru;
| | - Zhiqiang An
- Texas Therapeutic Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - José L. Medina-Franco
- DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutic Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico
| |
Collapse
|
7
|
Ali MY, Jannat S, Chang MS. Discovery of Potent Angiotensin-Converting Enzyme Inhibitors in Pomegranate as a Treatment for Hypertension. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384918 DOI: 10.1021/acs.jafc.3c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Pomegranate (Punica granatum L.) is associated with numerous health benefits due to its high levels of antioxidant polyphenolic substances. Since pomegranate extract has been shown to inhibit angiotensin-converting enzyme (ACE), the potential inhibitory effect of most of its main constituents against ACE is unknown. Therefore, we tested the activities of 24 major compounds, the majority of which significantly inhibited ACE. Notably, pedunculagin, punicalin, and gallagic acid were the most effective ACE inhibitors with IC50 values of 0.91, 1.12, and 1.77 μM, respectively. As demonstrated in molecular docking studies, compounds block ACE by forming multiple hydrogen bonds and hydrophobic interactions with catalytic residues and zinc ions in ACE's C- and N-domains, consequently inhibiting ACE's catalytic activity. Also, the most active pedunculagin stimulated nitric oxide (NO) production, activated the endothelial nitric oxide synthase enzyme (eNOS), and significantly increased eNOS protein expression levels up to 5.3-fold in EA.hy926 cells. Furthermore, pedunculagin increased in cellular calcium (Ca2+) concentration promoted eNOS enzyme activation and reduced the production of reactive oxygen species (ROS). In addition, the active compounds improved glucose uptake in insulin-resistant C2C12 skeletal muscle cells in a dose-dependent manner. The results of these computational, in vitro, and cellular experiments provide further evidence to the traditional medicine that involves using pomegranates to treat cardiovascular diseases like hypertension.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Susoma Jannat
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mun Seog Chang
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, 26 Kyunghee dae-ro, Seoul 02447, Korea
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
8
|
Munir R, Zaib S, Zia-ur-Rehman M, Hussain N, Chaudhry F, Younas MT, Zahra FT, Tajammul Z, Javid N, Dera AA, Ogaly HA, Khan I. Ultrasound-Assisted Synthesis of Piperidinyl-Quinoline Acylhydrazones as New Anti-Alzheimer's Agents: Assessment of Cholinesterase Inhibitory Profile, Molecular Docking Analysis, and Drug-like Properties. Molecules 2023; 28:molecules28052131. [PMID: 36903376 PMCID: PMC10004187 DOI: 10.3390/molecules28052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Alzheimer's disease (AD) is one of the progressive neurological disorders and the main cause of dementia all over the world. The multifactorial nature of Alzheimer's disease is a reason for the lack of effective drugs as well as a basis for the development of new structural leads. In addition, the appalling side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with the marketed treatment modalities and many failed clinical trials significantly limit the use of drugs and alarm for a detailed understanding of disease heterogeneity and the development of preventive and multifaceted remedial approach desperately. With this motivation, we herein report a diverse series of piperidinyl-quinoline acylhydrazone therapeutics as selective as well as potent inhibitors of cholinesterase enzymes. Ultrasound-assisted conjugation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes (4a,b) and (un)substituted aromatic acid hydrazides (7a-m) provided facile access to target compounds (8a-m and 9a-j) in 4-6 min in excellent yields. The structures were fully established using spectroscopic techniques such as FTIR, 1H- and 13C NMR, and purity was estimated using elemental analysis. The synthesized compounds were investigated for their cholinesterase inhibitory potential. In vitro enzymatic studies revealed potent and selective inhibitors of AChE and BuChE. Compound 8c showed remarkable results and emerged as a lead candidate for the inhibition of AChE with an IC50 value of 5.3 ± 0.51 µM. The inhibitory strength of the optimal compound was 3-fold higher compared to neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 8g exhibited the highest potency and inhibited the BuChE selectively with an IC50 value of 1.31 ± 0.05 µM. Several compounds, such as 8a-c, also displayed dual inhibitory strength, and acquired data were superior to the standard drugs. In vitro results were further supported by molecular docking analysis, where potent compounds revealed various important interactions with the key amino acid residues in the active site of both enzymes. Molecular dynamics simulation data, as well as physicochemical properties of the lead compounds, supported the identified class of hybrid compounds as a promising avenue for the discovery and development of new molecules for multifactorial diseases, such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Rubina Munir
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
- Correspondence: (R.M.); (S.Z.); (I.K.)
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Correspondence: (R.M.); (S.Z.); (I.K.)
| | | | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Faryal Chaudhry
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Fatima Tuz Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zainab Tajammul
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Noman Javid
- Chemistry Department (C-Block), Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (R.M.); (S.Z.); (I.K.)
| |
Collapse
|
9
|
Bayazid AB, Lim BO. Quercetin Is An Active Agent in Berries against Neurodegenerative Diseases Progression through Modulation of Nrf2/HO1. Nutrients 2022; 14:5132. [PMID: 36501161 PMCID: PMC9737775 DOI: 10.3390/nu14235132] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Berries are well-known fruits for their antioxidant effects due to their high content of flavonoids, and quercetin is one of the potent bioactive flavonoids. Although oxidative stress is an inevitable outcome in cells due to energy uptake and metabolism and other factors, excessive oxidative stress is considered a pivotal mediator for the cell death and leads to the progression of neurodegenerative diseases (NDDs). Furthermore, oxidative stress triggers inflammation that leads to neuronal cell loss. Alzheimer's, Parkinson's, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and so on are the main neurodegenerative diseases. Hence, AD and PD are the most affected NDDs and cause the most lethality without any effective cure. Since AD and PD are the most common NDDs, therefore, in this study, we will describe the effect of oxidative stress on AD and PD. Targeting oxidative stress could be a very effective way to prevent and cure NDDs. Thus, the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO1) are potent endogenous antioxidant modulatory pathways, which also show cytoprotective activities. Modulation of Nrf2/HO1 signaling pathways through a biological approach could be an effective way to treat with NDDs. Quercetin is a natural polyphenol, which protects neurodegeneration, remarkably by suppressing oxidative stress and inflammation. Thus, quercetin could be a very effective agent against NDDs. We will discuss the benefits and challenges of quercetin to treat against NDDs, focusing on molecular biology.
Collapse
Affiliation(s)
- Al Borhan Bayazid
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Beong Ou Lim
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
- Human Bioscience Corporate R&D Center, Human Bioscience Corp. 268 Chungwondaero, Chungju 27478, Republic of Korea
| |
Collapse
|