1
|
Yan F, Sun Y, Zhang S, Jia Y, Zhang J, Huang L, Xu Q, Zhang Y, Chen S, Wu X, Li R. Computer aided design of CGA-N9 derived peptides based on oligopeptide transporters and their antifungal evaluations. Bioorg Chem 2025; 160:108485. [PMID: 40267776 DOI: 10.1016/j.bioorg.2025.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
CGA-N9 is an antifungal peptide that primarily targets Candida spp. with a mild activity. Our preceding research confirmed that the CGA-N9 crosses cell membrane with the assistance of C. tropicalis oligopeptide transporter (CtOPT) -1 and - 9. In this study, CGA-N9-derived peptides were designed following the molecular docking results with CtOPT-1 and -9. Compared with CGAN9, they exhibit higher transmembrane efficiency with the assistance of CtOPT-1 during the early phase of transmembrane processes and CtOPT-9 in the late phase. And they displayed significantly enhanced antifungal activity, with lower minimum inhibitory concentrations (MICs) against C. tropicalis, C. albicans, and C. parapsilosis, as well as improved biosafety. Among them, CGAN93 was the most optimizing, with a therapeutic index of 145.33. Furthermore, in a mouse model of systemic candidiasis, CGAN93 demonstrated a therapeutic effect comparable to fluconazole, significantly improving the survival rate of mice, attenuating organ damage, and enhancing the immune organ index. In conclusion, OPTs-based computer aided design is an effective strategy for enhancing the activities of antimicrobial peptides (AMPs) by improving transmembrane transport efficiency. CGAN93 is a promising drug candidate for treating Candidiasis.
Collapse
Affiliation(s)
- Fu Yan
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Yiqing Sun
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shaojie Zhang
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Yifan Jia
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Jinhua Zhang
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Liang Huang
- School of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Qiang Xu
- Zhengzhou Giant Biochemical Group Co., Ltd, 450001 Zhengzhou, Henan, PR China
| | - Yinzhi Zhang
- Zhengzhou Giant Biochemical Group Co., Ltd, 450001 Zhengzhou, Henan, PR China
| | - Shihua Chen
- School of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Xingquan Wu
- School of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ruifang Li
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
2
|
Zhang S, Sun Y, Yin K, Zhang J, Du L, Wang S, Zheng D, Li R. ML-AMPs designed through machine learning show antifungal activity against C. albicans and therapeutic potential on mice model with candidiasis. Life Sci 2025; 366-367:123485. [PMID: 39983817 DOI: 10.1016/j.lfs.2025.123485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/12/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
AIMS C. albicans resistant strains have led to increasingly severe treatment challenges. Antimicrobial peptides with low resistance-inducing propensity for pathogens have been developed. A series of antimicrobial peptides de novo designed through machine learning by our research team were named ML-AMPs. In the present research, the antifungal activity of ML-AMPs against C. albicans and its therapeutic potential on Candidiasis mice model were studied. MAIN METHODS MTT methodology was performed to measure the minimum inhibitory concentrations. Absorbance photometry was utilized to evaluate the erythrocyte toxicity. Optical microscopy was operated to observe C. albicans hyphae. Crystal violet staining was employed to assess biofilm inhibition and reduction. Colony counting was performed to determine the time-kill kinetics. Scanning electron microscopy and fluorescent staining were used to investigate the underlying mechanism of antifungal action. Candidiasis mice model was established to evaluate the in vivo efficacy of ML-AMP2. KEY FINDINGS ML-AMPs exhibited strong anti-Candida activity, with minimum inhibitory concentrations against C. albicans ranging from 3.85 to 12.37 μg/mL. Notably, they exhibited robust fungicidal effects on fluconazole-resistant C. albicans. Moreover, they exhibited fast-killing kinetics, as well as low resistance potential. Additionally, ML-AMPs could effectively inhibit the formation of mycelium and biofilm, and more prominently, their ability to reduce biofilm was higher than that of fluconazole. ML-AMPS increased the permeability of C. albicans cell membrane and induced ROS accumulation. Among ML-AMPs, ML-AMP2 performed the best, which promoted the recovery of Candidiasis mice model. SIGNIFICANCE ML-AMP2 holds great promise as a candidate molecule for effectively treating drug-resistant C. albicans infections.
Collapse
Affiliation(s)
- Shaojie Zhang
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001, Zhengzhou, Henan, PR China
| | - Yiqing Sun
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001, Zhengzhou, Henan, PR China
| | - Kedong Yin
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Information Science and Engineering, Henan University of Technology, 450001, Zhengzhou, Henan, PR China
| | - Jinhua Zhang
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001, Zhengzhou, Henan, PR China
| | - Lingguang Du
- Henan University of Technology - Golden Lily Microecological Joint Research and Development Center, 450001, Zhengzhou, Henan, PR China; Golden Lily Microecology Group Co., LTD, 450001 Zhengzhou, Henan, PR China
| | - Shusong Wang
- Henan University of Technology - Golden Lily Microecological Joint Research and Development Center, 450001, Zhengzhou, Henan, PR China; Golden Lily Microecology Group Co., LTD, 450001 Zhengzhou, Henan, PR China
| | - Dongge Zheng
- Henan University of Technology - Golden Lily Microecological Joint Research and Development Center, 450001, Zhengzhou, Henan, PR China; Golden Lily Microecology Group Co., LTD, 450001 Zhengzhou, Henan, PR China
| | - Ruifang Li
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Biological Engineering, Henan University of Technology, 450001, Zhengzhou, Henan, PR China; Henan University of Technology - Golden Lily Microecological Joint Research and Development Center, 450001, Zhengzhou, Henan, PR China.
| |
Collapse
|
3
|
Yin K, Li R, Zhang S, Sun Y, Huang L, Jiang M, Xu D, Xu W. Deep Learning Combined with Quantitative Structure‒Activity Relationship Accelerates De Novo Design of Antifungal Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412488. [PMID: 39921483 PMCID: PMC11967820 DOI: 10.1002/advs.202412488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Indexed: 02/10/2025]
Abstract
Novel antifungal drugs that evade resistance are urgently needed for Candida infections. Antifungal peptides (AFPs) are potential candidates due to their specific mechanism of action, which makes them less prone to developing drug resistance. An AFP de novo design method, Deep Learning-Quantitative Structure‒Activity Relationship Empirical Screening (DL-QSARES), is developed by integrating deep learning and quantitative structure‒activity relationship empirical screening. After generating candidate AFPs (c_AFPs) through the recombination of dominant amino acids and dipeptide compositions, natural language processing models are utilized and quantitative structure‒activity relationship (QSAR) approaches based on physicochemical properties to screen for promising c_AFPs. Forty-nine promising c_AFPs are screened, and their minimum inhibitory concentrations (MICs) against C. albicans are determined to be 3.9-125 µg mL-1, of which four leading c_AFPs (AFP-8, -10, -11, and -13) has MICs of <10 µg mL-1 against the four tested pathogenic fungi, and AFP-13 has excellent therapeutic efficacy in the animal model.
Collapse
Affiliation(s)
- Kedong Yin
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical ResearchHenan University of TechnologyZhengzhouHenan450001P. R. China
- College of Information Science and EngineeringHenan University of TechnologyZhengzhouHenan450001P. R. China
| | - Ruifang Li
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical ResearchHenan University of TechnologyZhengzhouHenan450001P. R. China
- School of Biological EngineeringHenan University of TechnologyZhengzhouHenan450001P. R. China
| | - Shaojie Zhang
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical ResearchHenan University of TechnologyZhengzhouHenan450001P. R. China
- School of Biological EngineeringHenan University of TechnologyZhengzhouHenan450001P. R. China
| | - Yiqing Sun
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical ResearchHenan University of TechnologyZhengzhouHenan450001P. R. China
- School of Biological EngineeringHenan University of TechnologyZhengzhouHenan450001P. R. China
| | - Liang Huang
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical ResearchHenan University of TechnologyZhengzhouHenan450001P. R. China
- School of Biological EngineeringHenan University of TechnologyZhengzhouHenan450001P. R. China
| | - Mengwan Jiang
- School of Artificial Intelligence and Big DataHenan University of TechnologyZhengzhouHenan450001P. R. China
| | - Degang Xu
- College of Information Science and EngineeringHenan University of TechnologyZhengzhouHenan450001P. R. China
| | - Wen Xu
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical ResearchHenan University of TechnologyZhengzhouHenan450001P. R. China
- Law CollegeHenan University of TechnologyZhengzhouHenan450001P. R. China
| |
Collapse
|
4
|
Mishra SK, Yasir M, Kuppusamy R, Wong EHH, Hui A, Sørensen K, Lin JS, Jenssen H, Barron AE, Willcox M. Antimicrobial activity of peptoids against Metallo-β-lactamase-producing Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and other WHO priority pathogens, including Candida auris. J Appl Microbiol 2025; 136:lxaf031. [PMID: 39933590 PMCID: PMC11879280 DOI: 10.1093/jambio/lxaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/13/2025]
Abstract
AIMS The World Health Organization has identified ESKAPE bacteria and Candida auris as priority pathogens, emphasizing an urgent need for novel antimicrobials to combat them. This study aimed to explore the therapeutic potential of antimicrobial peptidomimetics, specifically peptoids with sequence-specific N-substituted glycines, against ESKAPEE pathogens, including metallo-β-lactamase (MBL) producers, as well as C. auris strains. METHODS AND RESULTS This study evaluated activity of the peptoids against the multidrug-resistant priority pathogens. The peptoid TM8 (with an N-decyl alkyl chain) demonstrated a geometric mean minimum inhibitory concentration (MIC) of 7.8 μg ml-1 against MBL-producing bacteria, and 5.5 μg ml-1 against C. auris. TM8 showed synergy with ciprofloxacin, enhancing its effectiveness 4-fold against NDM-1-producing Klebsiella pneumoniae. No antagonism was seen when TM8 was used with either conventional antibiotics or antifungals. Peptoids that had therapeutic indices below 3 were generally more hydrophobic, due to either alkyl chains or bromine. Scanning electron microscopy and live-dead staining assay on peptoid-treated C. auris confirmed morphological changes and killing activity, respectively. Furthermore, the peptoid could effectively inhibit biofilm formation by C. auris. CONCLUSION Peptoids demonstrated antibacterial activity against ESKAPEE, particularly against MBL-producing Gram-negative bacteria. Additionally, they exhibited antifungal and anti-biofilm activities against C. auris strains.
Collapse
Affiliation(s)
- Shyam Kumar Mishra
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu 44600, Nepal
| | - Muhammad Yasir
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Edgar H H Wong
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alex Hui
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kristian Sørensen
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jennifer S Lin
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94305, USA
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Zou K, Yin K, Ren S, Zhang R, Zhang L, Zhao Y, Li R. Activity and mechanism of action of antimicrobial peptide ACPs against Candida albicans. Life Sci 2024; 350:122767. [PMID: 38843993 DOI: 10.1016/j.lfs.2024.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
AIMS Candida albicans is the most prevalent pathogenic fungus, exhibiting escalating multidrug resistance (MDR). Antimicrobial peptides (AMPs) represent promising candidates for addressing this issue. In this research, five antimicrobial peptides, ACP1 to ACP5 which named ACPs were studied as alternative fungicidal molecules. MAIN METHODS CD assay was used to analyze the 2D structures, Absorbance method was used to test the antimicrobial activity, haemolytic activity, time-kill kinetics, biofilm inhibition and reduction activity, resistance induction activity and assessment against fluconazole-resistant C. albicans. SEM, TEM, CLSM, flow cytometer and FM were carried out to provide insight into the mechanisms of anti-Candida action. KEY FINDINGS ACPs possessed an α-helical structure and strong anti-Candida activities, with minimum inhibitory concentrations (MICs) from 3.9 to 15.6 μg/mL. In addition, ACPs did not produce hemolysis at concentrations lower than 10 or 62 × MIC, indicating their low cytotoxicity. Fungicidal kinetics showed that they completely killed C. albicans within 8 h at 2 to 4 × MIC. Notably, ACPs were highly fungicidal against fluconazole-resistant C. albicans and showed low resistance. In addition, they were effective in inhibiting mycelium and biofilm formation. Fluorescence microscopy revealed that while fluconazole had minimal to no inhibitory effect on biofilm-forming cells, ACPs induced apoptosis in all of them. The research on mechanism of action revealed that ACPs disrupted the cell membranes, with ROS increasing and cellular mitochondrial membrane potential decreasing. SIGNIFICANCE ACPs could be promising candidates for combating fluconazole-resistant C. albicans infections.
Collapse
Affiliation(s)
- Kuiming Zou
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Kedong Yin
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shiming Ren
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ruiling Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Economics and Trade, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Lan Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Yingyuan Zhao
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ruifang Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
6
|
Yin K, Xu W, Ren S, Xu Q, Zhang S, Zhang R, Jiang M, Zhang Y, Xu D, Li R. Machine Learning Accelerates De Novo Design of Antimicrobial Peptides. Interdiscip Sci 2024; 16:392-403. [PMID: 38416364 DOI: 10.1007/s12539-024-00612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Efficient and precise design of antimicrobial peptides (AMPs) is of great importance in the field of AMP development. Computing provides opportunities for peptide de novo design. In the present investigation, a new machine learning-based AMP prediction model, AP_Sin, was trained using 1160 AMP sequences and 1160 non-AMP sequences. The results showed that AP_Sin correctly classified 94.61% of AMPs on a comprehensive dataset, outperforming the mainstream and open-source models (Antimicrobial Peptide Scanner vr.2, iAMPpred and AMPlify) and being effective in identifying AMPs. In addition, a peptide sequence generator, AP_Gen, was devised based on the concept of recombining dominant amino acids and dipeptide compositions. After inputting the parameters of the 71 tridecapeptides from antimicrobial peptides database (APD3) into AP_Gen, a tridecapeptide bank consisting of de novo designed 17,496 tridecapeptide sequences were randomly generated, from which 2675 candidate AMP sequences were identified by AP_Sin. Chemical synthesis was performed on 180 randomly selected candidate AMP sequences, of which 18 showed high antimicrobial activities against a wide range of the tested pathogenic microorganisms, and 16 of which had a minimal inhibitory concentration of less than 10 μg/mL against at least one of the tested pathogenic microorganisms. The method established in this research accelerates the discovery of valuable candidate AMPs and provides a novel approach for de novo design of antimicrobial peptides.
Collapse
Affiliation(s)
- Kedong Yin
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
- College of Information Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wen Xu
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
- Law College, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Shiming Ren
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
| | - Qingpeng Xu
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Shaojie Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ruiling Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
- School of Economics and Trade, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Mengwan Jiang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yuhong Zhang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Degang Xu
- College of Information Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Ruifang Li
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
7
|
Zhang L, Huang Y, Duan X, Si H, Luo H, Chen S, Liu L, He H, Wang Z, Liao S. Antifungal Activity and Mechanism of Camphor Derivatives against Rhizoctonia solani: A Promising Alternative Antifungal Agent for Rice Sheath Blight. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11415-11428. [PMID: 38727515 DOI: 10.1021/acs.jafc.4c02865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Rice sheath blight, caused by the fungus Rhizoctonia solani, poses a significant threat to rice cultivation globally. This study aimed to investigate the potential mechanisms of action of camphor derivatives against R. solani. Compound 4o exhibited superior fungicidal activities in vitro (EC50 = 6.16 mg/L), and in vivo curative effects (77.5%) at 500 mg/L were significantly (P < 0.01) higher than the positive control validamycin·bacillus (66.1%). Additionally, compound 4o exhibited low cytotoxicity and acute oral toxicity for adult worker honeybees of Apis mellifera L. Mechanistically, compound 4o disrupted mycelial morphology and microstructure, increased cell membrane permeability, and inhibited both PDH and SDH enzyme activities. Molecular docking and molecular dynamics analyses indicated a tight interaction of compound 4o with PDH and SDH active sites. In summary, compound 4o exhibited substantial antifungal efficacy against R. solani, serving as a promising lead compound for further optimization of antifungal agents.
Collapse
Affiliation(s)
- Li Zhang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yizhong Huang
- College of Life Sciences, Nanchang Normal University, Nanchang 330032, China
| | | | - Hongyan Si
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hai Luo
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shangxing Chen
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | | | - Haohua He
- College of Agronomy, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zongde Wang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shengliang Liao
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Zou K, Zhang S, Yin K, Ren S, Zhang M, Li X, Fan L, Zhang R, Li R. Studies on the in vitro mechanism and in vivo therapeutic effect of the antimicrobial peptide ACP5 against Trichophyton mentagrophytes. Peptides 2024; 175:171177. [PMID: 38354953 DOI: 10.1016/j.peptides.2024.171177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Trichophyton mentagrophytes is a zoophilic dermatophyte that can cause dermatophytosis in humans and animals. Antimicrobial peptides (AMPs) are considered as a promising agent to overcome the drug-resistance of T. mentagrophytes. Our findings suggest that cationic antimicrobial peptide (ACP5) not only possesses stronger activity against T. mentagrophytes than fluconazole, but also shows lower toxicity to L929 mouse fibroblast cells than terbinafine. Notably, its resistance development rate after resistance induction was lower than terbinafine. The present study aimed to evaluate the fungicidal mechanism of ACP5 in vitro and its potential to treat dermatophyte infections in vivo. ACP5 at 1 ×MIC completely inhibited T. mentagrophytes spore germination in vitro. ACP5 severely disrupts the mycelial morphology, leading to mycelial rupture. Mechanistically, ACP5 induces excessive ROS production, damaging the integrity of the cell membrane and decreasing the mitochondrial membrane potential, causing irreversible damage in T. mentagrophytes. Furthermore, 1% ACP5 showed similar efficacy to the commercially available drug 1% terbinafine in a guinea pig dermatophytosis model, and the complete eradication of T. mentagrophytes from the skin by ACP5 was verified by tissue section observation. These results indicate that ACP5 is a promising candidate for the development of new agent to combat dermatophyte resistance.
Collapse
Affiliation(s)
- Kuiming Zou
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shaojie Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Kedong Yin
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shiming Ren
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Mengjun Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Xiatong Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Lixin Fan
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ruiling Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Economics and Trade, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| | - Ruifang Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
9
|
Li R, Gao H, Zhang R, Zhang B, Wang X, Zhang X, Li R. Biocompatible formulation of a hydrophobic antimicrobial peptide L30 through nanotechnology principles and its potential role in mouse pneumonia model infected with Staphylococcus aureus. Colloids Surf B Biointerfaces 2024; 236:113823. [PMID: 38442502 DOI: 10.1016/j.colsurfb.2024.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Hydrophobic antimicrobial peptide L30, a potential antibiotic candidate, has poor water solubility and hemolytic activity. Herein, a biocompatible nano-formulation composed of liposomes and dendritic mesoporous silica encapsulation (LDMSNs@L30) was constructed for L30 to solve the limits for its clinical development. The characterization, antimicrobial activity and therapeutic effect of LDMSNs@L30 on Staphylococcus aureus 9 (cfr+) infected mice models were investigated. LDMSNs@L30 displayed a smooth, spherical, and monodisperse nanoparticle with a hydrodynamic diameter of 177.40 nm, an encapsulation rate of 56.13%, a loading efficiency of 32.26%, a release rate of 66.5%, and effective slow-release of L30. Compared with free L30, the formulation could significantly increase the solubility of L30 in PBS with the maximum concentration from 8 μg/mL to 2.25 mg/mL and decrease the hemolytic activity of hydrophobic peptide L30 with the HC5 from 65.36 μg/mL to more than 500 μg/mL. The nano delivery system LDMSNs@L30 also exhibited higher therapeutic effects on mice models infected with S. aureus 9 (cfr+) than those of free L30 after 7 days of treatment by reducing the lung inflammation and the inflammatory cytokines levels in plasma, showing better health score and pulmonary pathological improvement. Our research suggests that nano-formulation can be expected to be a promising strategy for peptide drugs in therapeutic applications.
Collapse
Affiliation(s)
- Ruihua Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huiping Gao
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ruiling Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; School of Economics and Trade, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Beibei Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xueqin Wang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xinhui Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ruifang Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
10
|
Almeida CV, de Oliveira CFR, Almeida LHDO, Ramalho SR, Gutierrez CDO, Sardi JDCO, Franco OL, Cardoso MH, Macedo MLR. Computer-made peptide RQ18 acts as a dual antifungal and antibiofilm peptide though membrane-associated mechanisms of action. Arch Biochem Biophys 2024; 753:109884. [PMID: 38218361 DOI: 10.1016/j.abb.2024.109884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The spread of fungi resistant to conventional drugs has become a threatening problem. In this context, antimicrobial peptides (AMPs) have been considered as one of the main alternatives for controlling fungal infections. Here, we report the antifungal and antibiofilm activity and some clues about peptide RQ18's mechanism of action against Candida and Cryptococcus. This peptide inhibited yeast growth from 2.5 μM and killed all Candida tropicalis cells within 2 h incubation. Moreover, it showed a synergistic effect with antifungal agent the amphotericin b. RQ18 reduced biofilm formation and promoted C. tropicalis mature biofilms eradication. RQ18's mechanism of action involves fungal cell membrane damage, which was confirmed by the results of RQ18 in the presence of free ergosterol in the medium and fluorescence microscopy by Sytox green. No toxic effects were observed in murine macrophage cell lines and Galleria mellonella larvae, suggesting fungal target selectivity. Therefore, peptide RQ18 represents a promising strategy as a dual antifungal and antibiofilm agent that contributes to infection control without damaging mammalian cells.
Collapse
Affiliation(s)
- Claudiane Vilharroel Almeida
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Luís Henrique de Oliveira Almeida
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Suellen Rodrigues Ramalho
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Camila de Oliveira Gutierrez
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Janaina de Cassia Orlandi Sardi
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Marlon Henrique Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
11
|
Li R, Hao P, Yin K, Xu Q, Ren S, Zhao Y, Zhang L, Zhang B. Activities of a broad-spectrum antimicrobial peptide analogue SAMP-A4-C8 and its combat against pneumonia in Staphylococcus aureus-infected mice. J Pept Sci 2023; 29:e3497. [PMID: 37088557 DOI: 10.1002/psc.3497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
Antimicrobial peptides and their analogues have become substitutes for antibiotics in recent years. The antimicrobial peptide analogue SAMP-A4-C8 (n-octanoic-VRLLRRRI) with high antimicrobial activity was found in our lab. We speculate that it may kill pathogens by some lethal mechanism of action. In the present investigation, the microbicidal activities of SAMP-A4-C8 and its mechanism of action were investigated. The results demonstrated that SAMP-A4-C8 had lethal activities against Staphylococcus aureus and Candida albicans by cell disruption. Based on its microbicidal activities, we believe that it is worth further research for its potential as drug candidate. The results showed that SAMP-A4-C8, with low propensity to induce the resistance of S. aureus and C. albicans, could kill the persister cells of S. aureus and C. albicans, exhibited biofilm forming inhibition activity and preformed biofilm eradication ability against S. aureus and C. albicans, and displayed therapeutic potential on pneumonia in S. aureus-infected mice by reducing lung inflammation. The present study provided a promising drug candidate in the war against multidrug resistance.
Collapse
Affiliation(s)
- Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Pu Hao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Kedong Yin
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Qingpeng Xu
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Shiming Ren
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yingyuan Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Lan Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Beibei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| |
Collapse
|
12
|
Efremenko E, Aslanli A, Stepanov N, Senko O, Maslova O. Various Biomimetics, Including Peptides as Antifungals. Biomimetics (Basel) 2023; 8:513. [PMID: 37999154 PMCID: PMC10669293 DOI: 10.3390/biomimetics8070513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetics, which are similar to natural compounds that play an important role in the metabolism, manifestation of functional activity and reproduction of various fungi, have a pronounced attraction in the current search for new effective antifungals. Actual trends in the development of this area of research indicate that unnatural amino acids can be used as such biomimetics, including those containing halogen atoms; compounds similar to nitrogenous bases embedded in the nucleic acids synthesized by fungi; peptides imitating fungal analogs; molecules similar to natural substrates of numerous fungal enzymes and quorum-sensing signaling molecules of fungi and yeast, etc. Most parts of this review are devoted to the analysis of semi-synthetic and synthetic antifungal peptides and their targets of action. This review is aimed at combining and systematizing the current scientific information accumulating in this area of research, developing various antifungals with an assessment of the effectiveness of the created biomimetics and the possibility of combining them with other antimicrobial substances to reduce cell resistance and improve antifungal effects.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|