1
|
Shang J, Gao W, Cai J, Yang Y, Wang C, Zhao N, Wang H, Zhang Y. A Novel Near-Infrared Fluorescent Probe for the Detection of Endogenous Peroxynitrite (ONOO -) in Living Cells. J Fluoresc 2025; 35:3091-3098. [PMID: 38722498 DOI: 10.1007/s10895-024-03733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/17/2024] [Indexed: 05/23/2025]
Abstract
In this study, we present a novel near-infrared (NIR) fluorescent probe Nile-ONO designed for the selective and sensitive detection of ONOO-. The probe Nile-ONO employed Nile red as the fluorophore, with diphenylphosphinate serving as the reaction site. In the presence of ONOO-, the probe Nile-ONO exhibits remarkable fluorescence enhancement at 659 nm, with a response time of less than 20 min and a low detection limit of 0.32 µM. Importantly, MTT assays demonstrate low cytotoxicity in living cells. Furthermore, Nile-ONO has excellent imaging capabilities for endogenous ONOO-. Overall, this work introduces a valuable new method for the rapid detection of ONOO- in biological systems.
Collapse
Affiliation(s)
- Jinting Shang
- Huazhong University of Science and Technology, Wuhan, China
- Advanced Technology Institute of Suzhou Chinese Academy of Science, Co., Ltd, Suzhou, China
| | - Wanxia Gao
- Huazhong University of Science and Technology, Wuhan, China
- Advanced Technology Institute of Suzhou Chinese Academy of Science, Co., Ltd, Suzhou, China
| | - Junluan Cai
- Huazhong University of Science and Technology, Wuhan, China
- Advanced Technology Institute of Suzhou Chinese Academy of Science, Co., Ltd, Suzhou, China
| | - Yan Yang
- Huazhong University of Science and Technology, Wuhan, China
- Advanced Technology Institute of Suzhou Chinese Academy of Science, Co., Ltd, Suzhou, China
| | - Chen Wang
- Huazhong University of Science and Technology, Wuhan, China
- Advanced Technology Institute of Suzhou Chinese Academy of Science, Co., Ltd, Suzhou, China
| | - Na Zhao
- Huazhong University of Science and Technology, Wuhan, China
- Advanced Technology Institute of Suzhou Chinese Academy of Science, Co., Ltd, Suzhou, China
| | - Haiping Wang
- Huazhong University of Science and Technology, Wuhan, China
- Advanced Technology Institute of Suzhou Chinese Academy of Science, Co., Ltd, Suzhou, China
| | - Yibin Zhang
- Huazhong University of Science and Technology, Wuhan, China.
- Advanced Technology Institute of Suzhou Chinese Academy of Science, Co., Ltd, Suzhou, China.
| |
Collapse
|
2
|
Li L, Wang C, Hu J, Chen WH. Recent progress in organelle-targeting fluorescent probes for the detection of peroxynitrite. Chem Commun (Camb) 2024; 60:13629-13640. [PMID: 39480200 DOI: 10.1039/d4cc03452j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Peroxynitrite (ONOO-), as an important reactive nitrogen species, plays a pivotal role in the regulation of intracellular redox homeostasis, signal transduction, cell growth and metabolism, and other physiological processes. Organelles are important for regulating ONOO-, and the dysregulation of ONOO- in organelles is closely related to various diseases. Therefore, it is essential to monitor ONOO- in cellular organelles, including mitochondria, lysosome, endoplasmic reticulum (ER), Golgi apparatus, and lipid droplets. However, the latest advances in organelle-targeting ONOO- fluorescent probes have not been reviewed systematically. In this review, we focus on the design, sensing mechanism, and organelle-targeting imaging applications of ONOO- fluorescent probes that were reported since 2018. This review will help to facilitate the comprehension of organelle-targeting fluorescent probes for the detection of ONOO-.
Collapse
Affiliation(s)
- Lanqing Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China.
| | - Chunzheng Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China.
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China.
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China.
| |
Collapse
|
3
|
Dong Y, Yang Y, Tao Y, Fang M, Li C, Zhu W. A Carbazole-based Fluorescent Probe with AIE Performance and a Large Stokes Shift for Peroxynitrite Detection and Imaging in Live Cells. J Fluoresc 2024:10.1007/s10895-024-03961-w. [PMID: 39368045 DOI: 10.1007/s10895-024-03961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
A carbazole-based fluorescent probe YCN with AIE performance and a large Stokes shift (242 nm) shift was synthesized by attaching 4-acetonitrile pyridine to the 3-phenylaldehyde butylcarbazole. Its structure was characterized by 1H NMR, 13C NMR and MS. Probe YCN has high selectivity and sensitivity toward ONOO-. The addition of ONOO- to the probe YCN solution results in a noticeable color change from pale yellow to colorless under natural light, and a fluorescent color change from bright orange-yellow to bright yellow-green under a 365 nm UV lamp, which can be distinguished by the naked eye. The research results on the reaction mechanism showed that when YCN reacted with ONOO-, -C = C- was oxidized and broken into -CHO, and the ICT effect was significantly inhibited, resulting in changes in UV absorption and fluorescence emission phenomenon. The recognition mechanism was verified by 1H NMR, mass spectrometry (MS) and density function theory (DFT) calculations. The experiments of live cells imaging suggested that compound YCN can be used as a fluorescent probe for the detection of ONOO- in HeLa cells. This result indicates that YCN has potential application prospects in the biological aspects.
Collapse
Affiliation(s)
- Yun Dong
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, PR China
| | - Yixian Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, PR China
| | - Yana Tao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, PR China
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, PR China
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei, 230601, PR China
| | - Cun Li
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, PR China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, PR China
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, PR China.
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, PR China.
| |
Collapse
|
4
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
5
|
Shen Y, Pan M, Gao H, Zhang Y, Wang R, Li J, Mao Z. New azole derivatives linked to indole/indoline moieties combined with FLC against drug-resistant Candida albicans. RSC Med Chem 2024; 15:1236-1246. [PMID: 38665837 PMCID: PMC11042159 DOI: 10.1039/d4md00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
Candida albicans is the most common fungal pathogen associated with human opportunistic infections. Invasive infections caused by C. albicans are becoming increasingly serious. However, with the rising incidence of fungal infection, many fungi are resistant to commonly used drugs. Therefore, there is an urgent need for exploring new anti-fungal drugs that fungi are not resistant to. A series of novel azole derivatives linked to indole/indoline moieties were prepared, and in vitro antifungal activity evaluated. All compounds combined with FLC showed excellent activity against drug-resistant C. albicans with low toxicity. A preliminary mechanistic study indicated that S1 combined with FLC could inhibit the formation of C. albicans biofilms as well as destroy the integrity of cell-membrane structure and mitochondrial function. S1 could be considered a new fungal agent for further study.
Collapse
Affiliation(s)
- Yunhong Shen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Min Pan
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Hui Gao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Jun Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| |
Collapse
|
6
|
Li Y, Zhou Y, Liu X, Lei J, Qin X, Li G, Yang Z. A NIR ratiometric fluorescence probe for rapid, sensitive detection and bioimaging of hypochlorous acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123102. [PMID: 37421698 DOI: 10.1016/j.saa.2023.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Hypochlorous acid (HClO) is a condition where there is not enough oxygen in body tissues due to an imbalance between oxygen supply and consumption for cellular functions. In order to comprehend the biological functions of HClO within cells, the development of an effective and selective detection method is of great crucial. In this paper, a near-infrared ratiometric fluorescent probe (YQ-1) for detecting HClO was exploited based on a benzothiazole derivative. YQ-1's fluorescence shifted from red to green with a large blue shift (165 nm) in the presence of HClO, and the solution's color changed from pink to yellow. YQ-1 quickly detected HClO (within 40 s) with a low detection limit (4.47 × 10-7 mol/L) and was not affected by other interferences. The mechanism of YQ-1's response to HClO was confirmed by HRMS, 1H NMR and density functional theory (DFT) calculations. Moreover, due to its low toxicity, YQ-1 successfully utilized for fluorescence imaging for HClO both endogenous and exogenous in cells.
Collapse
Affiliation(s)
- Yaqian Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Yi Zhou
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Xiu Liu
- Zhuzhou qianjin Pharmaceutical Co. Ltd, Zhuzhou 412003, PR China
| | - Jieni Lei
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Xin Qin
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Guangyi Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Zi Yang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China.
| |
Collapse
|