1
|
Chen Q, Wu Z, Zhu H, Zhang X, Yu Y, Chen W. A Prostate-Specific Membrane Antigen-Targeting Small Molecule-Drug Conjugate Strategy to Overcome the Hematological Toxicity of Olaparib. J Med Chem 2024; 67:19586-19611. [PMID: 39482858 DOI: 10.1021/acs.jmedchem.4c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
PARP inhibitors have gained attention in the treatment of metastatic castration-resistant prostate cancer, but approximately half of patients have to abort treatment due to severe hematological toxicity. Herein, we proposed a prostate-specific membrane antigen (PSMA)-targeting small molecule-drug conjugate (SMDC) strategy to address this issue. This led to CQ-16, which achieved its targeting to prostate tumor cells through binding to PSMA. Also, CQ-16 retained the PARP inhibitory activity and exhibited highly selective antiproliferative activities between PSMA-positive and PSMA-negative prostate cells. Moreover, the hematological toxicity observed in Olaparib was not showing in the group of CQ-16 even at a high dose of 390 mg/kg. Moreover, oral administration of CQ-16 exerted significant tumor growth inhibition in the 22Rv1 xenograft mouse model. These above findings not only highlight the potential of CQ-16 to overcome the hematological toxicity associated with PARP inhibitors but also provide a strategy to develop an SMDC with enhanced safety profiles.
Collapse
Affiliation(s)
- Qi Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenying Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiying Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Xi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
| |
Collapse
|
2
|
Shirke AA, Walker E, Chavali S, Ramamurthy G, Zhang L, Panigrahi A, Basilion JP, Wang X. A Synergistic Strategy Combining Chemotherapy and Photodynamic Therapy to Eradicate Prostate Cancer. Int J Mol Sci 2024; 25:7086. [PMID: 39000194 PMCID: PMC11241360 DOI: 10.3390/ijms25137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Prostate cancer is the most prevalent cancer among men in the United States and is a leading cause of cancer-related death. Prostate specific membrane antigen (PSMA) has been established as a biomarker for prostate cancer diagnosis and treatment. This study aimed to develop a novel theranostic agent, PSMA-1-MMAE-Pc413, which integrates a PSMA-targeting ligand, the photosensitizer Pc413, and the microtubular inhibitor monomethyl auristatin E (MMAE) for synergistic therapeutic efficacy. In vitro uptake studies revealed that PSMA-1-MMAE-Pc413 demonstrated selective and specific uptake in PSMA-positive PC3pip cells but not in PSMA-negative PC3flu cells, with the uptake in PC3pip cells being approximately three times higher. In vitro cytotoxicity assays showed that, when exposed to light, PSMA-1-MMAE-Pc413 had a synergistic effect, leading to significantly greater cytotoxicity in PSMA-positive cells (IC50 = 2.2 nM) compared to PSMA-1-Pc413 with light irradiation (IC50 = 164.9 nM) or PSMA-1-MMAE-Pc413 without light irradiation (IC50 = 12.6 nM). In vivo imaging studies further demonstrated the selective uptake of PSMA-1-MMAE-Pc413 in PC3pip tumors. In in vivo studies, PSMA-1-MMAE-Pc413 dramatically improves the therapeutic outcome for prostate cancer by providing a synergistic effect that surpasses the efficacy of each treatment modality alone in PC3pip tumors. These findings suggest that PSMA-1-MMAE-Pc413 has strong potential for clinical application in improving prostate cancer treatment.
Collapse
Affiliation(s)
- Aditi A. Shirke
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
| | - Sriprada Chavali
- Department of Biochemistry, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA;
| | - Gopalakrishnan Ramamurthy
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - Lifang Zhang
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - Abhiram Panigrahi
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - James P. Basilion
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
| |
Collapse
|
3
|
Obara T, Kawano N, Tatsumi K, Katsuyama A, Nakajima K, Ogawa M, Ichikawa S. Development of small molecule-drug conjugates based on derivatives of natural proteasome inhibitors that exhibit selectivity for PSMA-expressing cancer cells. Bioorg Med Chem 2024; 108:117773. [PMID: 38850999 DOI: 10.1016/j.bmc.2024.117773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
In this study, we have developedsmall molecule drug conjugates (SMDCs)consisting ofa prostate specific membrane antigen (PSMA) ligandand syringolin derivatives, which are potent proteasome inhibitors, to selectively deliver syringolin derivatives to prostate cancer cells. Two parent compounds were used for syringolin derivatives with different linkage sites. These SMDCs exhibited PSMA-expressing cell-selective cytotoxicity and they could potentially be used for safer treatment of cancer.
Collapse
Affiliation(s)
- Takahiro Obara
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Nanami Kawano
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kengo Tatsumi
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kohei Nakajima
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
4
|
Aboshouk DR, Youssef MA, Bekheit MS, Hamed AR, Girgis AS. Antineoplastic indole-containing compounds with potential VEGFR inhibitory properties. RSC Adv 2024; 14:5690-5728. [PMID: 38362086 PMCID: PMC10866129 DOI: 10.1039/d3ra08962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Cancer is one of the most significant health challenges worldwide. Various techniques, tools and therapeutics/materials have been developed in the last few decades for the treatment of cancer, together with great interest, funding and efforts from the scientific society. However, all the reported studies and efforts seem insufficient to combat the various types of cancer, especially the advanced ones. The overexpression of tyrosine kinases is associated with cancer proliferation and/or metastasis. VEGF, an important category of tyrosine kinases, and its receptors (VEGFR) are hyper-activated in different cancers. Accordingly, they are known as important factors in the angiogenesis of different tumors and are considered in the development of effective therapeutic approaches for controlling many types of cancer. In this case, targeted therapeutic approaches are preferable to the traditional non-selective approaches to minimize the side effects and drawbacks associated with treatment. Several indole-containing compounds have been identified as effective agents against VEGFR. Herein, we present a summary of the recent indolyl analogs reported within the last decade (2012-2023) with potential antineoplastic and VEGFR inhibitory properties. The most important drugs, natural products, synthesized potent compounds and promising hits/leads are highlighted. Indoles functionalized and conjugated with various heterocycles beside spiroindoles are also considered.
Collapse
Affiliation(s)
- Dalia R Aboshouk
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| | - M Adel Youssef
- Department of Chemistry, Faculty of Science, Helwan University Helwan Egypt
| | - Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department, National Research Centre Dokki Giza 12622 Egypt
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|