1
|
Ai M, Lin Y, Zhong X, Zou Z, Diao P, Zhang Y, Chen J, Zhao P, Zhu Z. Design, synthesis and evaluation of novel cycloalkylthiophene-based aminopyrimidine derivatives as potent PLK1 inhibitors. Bioorg Med Chem Lett 2025; 124:130260. [PMID: 40311783 DOI: 10.1016/j.bmcl.2025.130260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
PLK1 plays a pivotal role in cell-cycle regulation and has been well-characterized as a promising target for cancer therapy. Here, we synthesized a series of fused-thiophene based aminopyrimidine derivatives, and discovered a novel and potent PLK1 inhibitor compound 7n with an IC50 value of 38.5 nM. Analogue 7n exhibited remarkable antiproliferative efficacy toward HepG2, Huh7, H1299, and A549 cells, and hasn't any noticeable cytotoxic activity on the non-tumoural cell line HEK-293. Further mechanism studies indicated 7n arrested the cell cycle at the G2/M phase and induced apoptosis in HepG2 cells with a concentration-dependent manner. Molecular docking presented that 7n could occupy well the ATP-binding site of PLK1 with a U-shaped conformation. Collectively, these results provide new insights into the further development of fused-thiophene based aminopyrimidines as PLK1 inhibitors.
Collapse
Affiliation(s)
- Meixue Ai
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine,Southern Medical University, Guangzhou 510315, PR China
| | - Yukang Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaoyu Zhong
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine,Southern Medical University, Guangzhou 510315, PR China
| | - Zhongkai Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pengcheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yanting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jingkao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Peiliang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| | - Zhibo Zhu
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine,Southern Medical University, Guangzhou 510315, PR China.
| |
Collapse
|
2
|
Sun J, Yang D, Huang Y, Jiao Z, Yu S, Liu Y, Gong K, Zhao G. The discovery of novel N-heterocyclic-based AKT inhibitors with potential efficacy against prostate cancer. Eur J Med Chem 2025; 289:117435. [PMID: 40020427 DOI: 10.1016/j.ejmech.2025.117435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
AKT, a serine/threonine protein kinase that plays a pivotal role in the PI3K/AKT/mTOR pathway, is overexpressed or hyperactivated in various cancers, including prostate, breast, and lung cancers. A series of novel nitrogen-containing aromatic heterocyclic compounds were designed, synthesized, and evaluated for AKT inhibition and anticancer activities. Among these, JL16 and JL18 emerged as potent inhibitors of AKT1 kinase, with IC50 values of 7.1 ± 1.2 nM and 8.8 ± 1.3 nM, respectively. Both compounds also demonstrated significant antiproliferative effects against PC-3 prostate cancer cells, with IC50 values of 2.9 ± 0.7 μM (JL16) and 3.0 ± 0.6 μM (JL18). Mechanistic studies revealed that JL16 and JL18 reduced phosphorylated GSK3β levels, confirming AKT target engagement in cells. Notably, JL18 exhibited favorable pharmacokinetic properties in mice, including rapid oral absorption (Tmax = 0.5 h) and 41 % bioavailability. These findings highlight JL16 and JL18 as promising AKT inhibitors for further preclinical development.
Collapse
Affiliation(s)
- Jinxiao Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Dezhi Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yongmi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Zhihao Jiao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Shangzhe Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yiru Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Kexin Gong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
3
|
Zhang B, Li Y, Lin Y, Wang T, Chen L, Cai J, Ji T, Diao P, Ma Y, Zhang Y, You W, Chen J, Zhao P. Structure-Guided Discovery of Novel N4-(Substituted Thiazol-2-yl)- N2-(4-Substituted phenyl)pyrimidine-2,4-Diamines as Potent CDK2 and CDK9 Dual Inhibitors with High Oral Bioavailability. J Med Chem 2025; 68:1693-1715. [PMID: 39772543 DOI: 10.1021/acs.jmedchem.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
CDK2 and CDK9 play pivotal roles in cell cycle progression and gene transcription, respectively, making them promising targets for cancer treatment. Herein, we discovered a series of N4-(substituted thiazol-2-yl)-N2-(4-substituted phenyl)pyrimidine-2,4-diamines as highly potent CDK2/9 dual inhibitors. Especially, compound 20a significantly inhibited CDK2 (IC50 = 0.004 μM) and CDK9 (IC50 = 0.009 μM), achieving a 1000- and 2800-fold improvement over lead compound 11, and demonstrating broad antitumor efficacy. Mechanistic studies indicated that 20a effectively and simultaneously suppressed CDK2 and CDK9 proteins in the HCT116 cell line, leading to G2/M cell cycle arrest and cell apoptosis by regulating cell cycle- and apoptosis-related protein expression. Most importantly, 20a exhibited 86.7% oral bioavailability in rats and effectively inhibited tumor growth in HCT116 xenograft and C6 glioma rat models without significant toxicity. Overall, these observations clearly confirmed the promising therapeutic strategy of CDK2/9 dual inhibitors and provided a novel potent candidate for cancer therapy.
Collapse
Affiliation(s)
- Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yanhong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yukang Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ting Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jianfan Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Tangyang Ji
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Pengcheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yufeng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yanting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenwei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jingkao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Peiliang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
4
|
Hawash M. Advances in Cancer Therapy: A Comprehensive Review of CDK and EGFR Inhibitors. Cells 2024; 13:1656. [PMID: 39404419 PMCID: PMC11476325 DOI: 10.3390/cells13191656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA clearance in recent decades. Protein kinases have emerged as primary objectives for therapeutic interventions, particularly in the context of cancer treatment. At present, 69 therapeutics have been approved by the FDA that target approximately 24 protein kinases, which are specifically prescribed for the treatment of neoplastic illnesses. These novel agents specifically inhibit certain protein kinases, such as receptor protein-tyrosine kinases, protein-serine/threonine kinases, dual-specificity kinases, nonreceptor protein-tyrosine kinases, and receptor protein-tyrosine kinases. This review presents a comprehensive overview of novel targets of kinase inhibitors, with a specific focus on cyclin-dependent kinases (CDKs) and epidermal growth factor receptor (EGFR). The majority of the reviewed studies commenced with an assessment of cancer cell lines and concluded with a comprehensive biological evaluation of individual kinase targets. The reviewed articles provide detailed information on the structural features of potent anticancer agents and their specific activity, which refers to their ability to selectively inhibit cancer-promoting kinases including CDKs and EGFR. Additionally, the latest FDA-approved anticancer agents targeting these enzymes were highlighted accordingly.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
5
|
Ning J, Zhan N, Wu Z, Li Y, Zhang D, Shi Y, Zhou Y, Chen CH, Jin W. In vitro identification of oridonin hybrids as potential anti-TNBC agents inducing cell cycle arrest and apoptosis by regulation of p21, γH2AX and cleaved PARP. RSC Med Chem 2024:d4md00580e. [PMID: 39246742 PMCID: PMC11376098 DOI: 10.1039/d4md00580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
TNBC has been recognized as the most highly aggressive breast cancer without chemotherapeutic drugs. A collection of oridonin hybrids consisting of conventional antitumor pharmacophores including nitrogen mustards and adamantane-1-carboxylic acid were synthesized by deletion or blockade of multiple hydroxyl groups and structural rearrangement. Compound 11a showed the most promising anti-TNBC activity with nearly 15-fold more potent antiproliferative effects than oridonin against MDA-MB-231 and HCC1806. Moreover, 11a significantly inhibited HCC1806, MDA-MB-231 and MDA-MB-468 cell proliferation by arresting cells at the G2/M phase in a dose-dependent manner. Furthermore, 11a could trigger dose-dependently early and late apoptosis in those indicated cell lines. More importantly, 11a could significantly increase p21, γH2AX and cleaved PARP accumulation in a dose-dependent manner. Furthermore, compound 11a exhibited better stability than oridonin in a plasma assay. Taken together, all results demonstrated that 11a may warrant further investigation as a promising anticancer drug candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Jinhua Ning
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Nini Zhan
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Zhanpan Wu
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Yuzhe Li
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Die Zhang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Yadian Shi
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Yingxun Zhou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Chuan-Huizi Chen
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Wenbin Jin
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| |
Collapse
|
6
|
Wu YC, Lu MT, Kuo SC, Chu PC, Chang CS. Synthesis and SAR investigation of biphenylaminoquinoline derivatives with benzyloxy substituents as promising anticancer agents. Chem Biol Drug Des 2024; 103:e14509. [PMID: 38684369 DOI: 10.1111/cbdd.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
The biphenyl scaffold represents a prominent privileged structure within the realms of organic chemistry and drug development. Biphenyl derivatives have demonstrated notable biological activities, including antimicrobial, anti-inflammatory, anti-HIV, and the treatment of neuropathic pain. Importantly, their anticancer abilities should not be underestimated. In this context, the present study involves the design and synthesis of a series of biphenyl derivatives featuring an additional privileged structure, namely the quinoline core. We have also diversified the substituents attached to the benzyloxy group at either the meta or para position of the biphenyl ring categorized into two distinct groups: [4,3']biphenylaminoquinoline-substituted and [3,3']biphenylaminoquinoline-substituted compounds. We embarked on an assessment of the cytotoxic activities of these derivatives in colorectal cancer cell line SW480 and prostate cancer cell line DU145 for exploring the structure-activity relationship. Furthermore, we determined the IC50 values of selected compounds that exhibited superior inhibitory effects on cell viability against SW480, DU145 cells, as well as MDA-MB-231 and MiaPaCa-2 cells. Notably, [3,3']biphenylaminoquinoline derivative 7j displayed the most potent cytotoxicity against these four cancer cell lines, SW480, DU145, MDA-MB-231, and MiaPaCa-2, with IC50 values of 1.05 μM, 0.98 μM, 0.38 μM, and 0.17 μM, respectively. This highly promising outcome underscores the potential of [3,3']biphenylaminoquinoline 7j for further investigation as a prospective anticancer agent in future research endeavors.
Collapse
Affiliation(s)
- Yu-Chieh Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Meng-Tien Lu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Sheng-Chu Kuo
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Chih-Shiang Chang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Zhang P, Shi C, Dong T, Song J, Du G. The anticancer therapeutic potential of pyrimidine-sulfonamide hybrids. Future Med Chem 2024; 16:905-924. [PMID: 38624011 PMCID: PMC11249161 DOI: 10.4155/fmc-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Peng Zhang
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Congcong Shi
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Tongbao Dong
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Juntao Song
- Hematology & Oncology Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Gang Du
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| |
Collapse
|
8
|
He Y, Zhang SS, Wei MX. Design, synthesis and biological evaluation of rhein-piperazine-furanone hybrids as potential anticancer agents. RSC Med Chem 2024; 15:848-855. [PMID: 38516604 PMCID: PMC10953484 DOI: 10.1039/d3md00619k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 03/23/2024] Open
Abstract
Novel rhein-piperazine-furanone hybrids, 5, were designed and synthesized efficiently from rhein. Cytotoxicity of all hybrids 5a-j against A549 human lung cancer cells was superior to the parent rhein and the reference cytarabine (CAR). Hybrid 5e (IC50 = 5.74 μM), the most potent compound, was 46- and 35-fold more toxic against A549 cells than rhein (IC50 = 265.59 μM) and CAR (IC50 = 202.57 μM), respectively. Moreover, hybrid 5e (IC50 = 69.28 μM) was less toxic to normal WI-38 human lung fibroblast cells with good selectivity (WI-38/A549, SI ≈ 12), being much higher than rhein (SI ≈ 1) and CAR (SI ≈ 2). Structure-activity relationship (SAR) analysis showed that cytotoxicity and selectivity against A549 lung cancer cells were greatly enhanced when methoxy-containing furanone was introduced to the hybrids (5e and 5h). Further, hybrid 5e showed better cytotoxicity against four types of human lung cancer cells (H460, A549, PC-9, and Calu-1; IC50 = 4.35-15.39 μM) than six other types of human cancer cells (SK-BR-3, SK-OV-3, 786-O, Huh-7, HCT116, and HeLa; IC50 = 13.77-60.45 μM), showing specificity. In particular, hybrid 5e showed the highest cytotoxicity (IC50 = 4.35 μM) and the highest selectivity (WI-38/H460, SI ≈ 16) against H460 human lung cancer cells. Flow cytometric analysis showed that hybrid 5e induced apoptosis in a concentration-dependent manner in H460 cells. The results show that the cytotoxicity and selectivity of rhein can be greatly enhanced by hybridization with furanone. Hybrid 5e is expected to be a leading candidate for anti-lung cancer drugs.
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Si-Si Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Meng-Xue Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| |
Collapse
|