1
|
Gao C, Wang W, Liu T, Li X, Yu Y, Wu J. Annual review of EGFR inhibitors in 2024. Eur J Med Chem 2025; 292:117677. [PMID: 40328037 DOI: 10.1016/j.ejmech.2025.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025]
Abstract
Epidermal growth factor receptor (EGFR) inhibitors play a crucial role in the treatment of EGFR mutation-driven cancers, such as non-small cell lung cancer (NSCLC). In 2024, significant breakthroughs were made in new drug development, resistance mechanisms, and combination therapy strategies. This review summarizes the key studies published in 2024, with a focus on the design strategies, structure-activity relationships (SAR), mechanisms of action, and both in vitro and in vivo activities of EGFR inhibitors. The aim is to provide new research perspectives and theoretical foundations for developing highly effective and selective inhibitors targeting diverse EGFR mutations.
Collapse
Affiliation(s)
- Chao Gao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wanning Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tong Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xingyu Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yongbo Yu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Husseiny EM, Abdelnaby RM, Altwaijry N, Saleh A, Anwer KE. Comparison between conventional, grinding, and microwave synthesis of methylpyrazoles as VEGFR-2/HSP90 dual inhibitors. Future Med Chem 2025; 17:899-913. [PMID: 40162742 DOI: 10.1080/17568919.2025.2485866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
AIM Embracing structure extension and substitution variation, methylpyrazolones 2-6 and dimethylpyrazoles 8-14 were synthesized as VEGFR-2/HSP90 dual inhibitors. MATERIALS AND METHODS The eco-friendly synthesis of the desired analogs was performed by conventional, grinding, and microwave-assisted methods. RESULTS All entities have been tested for their antitumor action against three carcinomas, whereas compounds 6, 12, and 13 showed significant cytotoxicity and selectivity toward the examined carcinomas. The consecutive molecular mechanistic studies proved that 6 and 12 exhibited dual inhibition of VEGFR-2 and HSP90 and prompted MCF-7 cycle arrest at G2/M phase followed by apoptosis stimulation. CONCLUSION Molecular docking revealed strong interaction between the potent analogs and VEGFR-2/HSP90 active sites inspiring these congeners to be potential drug candidates in cancer treatment.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Rana M Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kurls E Anwer
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
3
|
Abulkhair HS, El-Adl K. A decade of research effort in synthesis, biological activity assessments, and mechanistic investigations of sulfamethazine-incorporating molecules. Arch Pharm (Weinheim) 2025; 358:e2500033. [PMID: 40123425 DOI: 10.1002/ardp.202500033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Because of its importance in medicinal chemistry, scientific researchers have been interested in incorporating sulfamethazine in developing biologically active candidates. To achieve this, several synthetic approaches have been adopted. The adopted approaches included condensation with electrophilic reactants, coupling with nucleophilic aromatics and active methylene compounds, Knoevenagel condensation, Doebner Miller reaction, microwave-assisted click cycloaddition, green reaction routes, and multicomponent reaction. Linking this molecular scaffold to a variety of heterocycles in the last 10 years furnished a set of potential anti-inflammatory, antiviral, anticancer, antiparkinsonian, neuroprotective, and antidiabetic candidates targeting H5N1 NA, epidermal growth factor receptor, acetylcholinesterase (AChE), butylcholinesterase (BChE), human carbonic anhydrase (hCA), α-amylase, and α-glucosidase. This review reports all the adopted synthetic approaches, the biological activities studied, structure-activity relationship analyses, and the mechanistic investigations of the reported organic sulfamethazine-incorporating molecules throughout 2015-2024, based on information retrieved from three search engines: Scopus, PubMed, and Google Scholar.
Collapse
Affiliation(s)
- Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
4
|
Nawareg NA, Yassen ASA, Husseiny EM, El-Sayed MAA, Elshihawy HA. Exploring 1,2,3-triazole-Schiff's base hybrids as innovative EGFR inhibitors for the treatment of breast cancer: In vitro and in silico study. Bioorg Chem 2025; 155:108106. [PMID: 39761615 DOI: 10.1016/j.bioorg.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
EGFR inhibitors are a class of targeted therapies utilized in the management of certain tumor kinds such as NSCLC and breast cancer. Series of 1,2,3-triazole-Schiff's base hybrids were designed, synthesized, and estimated for their antitumor effect toward breast cancer cells, MCF-7 and MDA-MB-231. The safety and selectivity of the new compounds were tested using normal cell (WI-38). Analogs 4a, 4b, and 5f demonstrated significant antitumor effects toward both MCF-7 and MDA-MB-231 with IC50 range of 5.61-18.01 µM in comparison to Doxorubicin (6.72 µM). Moreover, they proved considerable selectivity toward the tested cancer cells (SI values of 4.36-5.33). The superior compounds were investigated for EGFR inhibition where compounds 4b and 5f showed the highest EGFR inhibition effect with IC50 equal 0.16 and 0.15 µM, respectively utilizing Gefitinib as reference (IC50 = 0.081 µM). Further mechanistic studies for hybrid 5f in MDA-MB-231 cells, exhibited cell cycle arrest at G2/M phase by 29.85 % that was accompanied by the elevation of apoptosis percent by 48-fold more than the control. The apoptosis studies indicated that hybrid 5f was able to upregulate Bax (9.43 folds) while downregulate Bcl-2 (0.27) with substantial remarkable elevation of Bax/Bcl-2 ratio (35:1). Furthermore, it upregulated both caspases 8 and 9 by 2.93 and 6.54-fold, respectively. Molecular modeling studies showed the good binding affinity of compounds 4b and 5f with EGFR kinase active site explaining their potent biological effects. Drug likeness and ADMET features of compounds 4b and 5f demonstrated that they represent promising drug like candidates against breast cancer.
Collapse
Affiliation(s)
- Nareman A Nawareg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Asmaa S A Yassen
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt.
| | - Magda A A El-Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hosam A Elshihawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
5
|
Husseiny EM, Abulkhair HS, El-Sebaey SA, Sayed MM, Anwer KE. In vivo evaluation of novel synthetic pyrazolones as CDK9 inhibitors with enhanced pharmacokinetic properties. Future Med Chem 2024; 16:2487-2505. [PMID: 39530543 PMCID: PMC11622796 DOI: 10.1080/17568919.2024.2419363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: The structural optimization of our recently reported CDK9 inhibitor to furnish novel aminopyrazolones and methylpyrazolones with improved pharmacokinetics.Materials & methods: The synthesis of the targeted compounds was accomplished via conventional, grinding and microwave-assisted processes. The cytotoxicity of them was assayed against three carcinomas.Results: Analogs 2, 4 and 6 showed significant cytotoxicity and selectivity toward all tested cells. They also displayed potent CDK9 inhibition. Compound 6 arrested MCF-7 cycle at G2/M phase by stimulating the apoptotic pathway. The in vivo biodistribution of radiolabeled compound 6 displayed a potent targeting capability of 131I in solid tumors.Conclusion: Entity 6 is a potent CDK9 inhibitor where 131I-compound 6 can be used as a significant radiopharmaceutical imaging tool for tumors.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Samiha A El-Sebaey
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Manal M Sayed
- Labeled Compound Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), P. O. Box 13759, Cairo, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Laboratory, Department of Chemistry, Faculty of Science, Ain Shams University 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
6
|
Sheta YS, Sarg MT, Abdulrahman FG, Nossier ES, Husseiny EM. Novel imidazolone derivatives as potential dual inhibitors of checkpoint kinases 1 and 2: Design, synthesis, cytotoxicity evaluation, and mechanistic insights. Bioorg Chem 2024; 149:107471. [PMID: 38823311 DOI: 10.1016/j.bioorg.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Applying various drug design strategies including ring variation, substituents variation, and ring fusion, two series of 2-(alkylthio)-5-(arylidene/heteroarylidene)imidazolones and imidazo[1,2-a]thieno[2,3-d]pyrimidines were designed and prepared as dual potential Chk1 and Chk2 inhibitors. The newly synthesized hybrids were screened in NCI 60 cell line panel where the most active derivatives 4b, d-f, and 6a were further estimated for their five dose antiproliferative activity against the most sensitive tumor cells including breast MCF-7 and MDA-MB-468 and non-small cell lung cancer EKVX as well as normal WI-38 cell. Noticeably, increasing the carbon chain attached to thiol moiety at C-2 of imidazolone scaffold elevated the cytotoxic activity. Hence, compounds 4e and 4f, containing S-butyl fragment, exhibited the most antiproliferative activity against the tested cells where 4f showed extremely potent selectivity toward them. As well, compound 6a, containing imidazothienopyrimidine core, exerted significant cytotoxic activity and selectivity toward the examined cells. The mechanistic investigation of the most active cytotoxic analogs was achieved through the evaluation of their inhibitory activity against Chk1 and Chk2. Results revealed that 4f displayed potent dual inhibition of both Chk1 and Chk2 with IC50 equal 0.137 and 0.25 μM, respectively. It also promoted its antiproliferative and Chk suppression activity via EKVX cell cycle arrest at S phase through stimulating the apoptotic approach. The apoptosis induction was also emphasized by elevating the expression of Caspase-3 and Bax, that are accompanied by Bcl-2 diminution. The in silico molecular docking and ADMET profiles of the most active analogs have been carried out to evaluate their potential as significant anticancer drug candidates.
Collapse
Affiliation(s)
- Yasmin S Sheta
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Marwa T Sarg
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt; The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo 11516, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| |
Collapse
|
7
|
Aouadi A, Hamada Saud D, Rebiai A, Achouri A, Benabdesselam S, Mohamed Abd El-Mordy F, Pohl P, Ahmad SF, Attia SM, Abulkhair HS, Ararem A, Messaoudi M. Introducing the antibacterial and photocatalytic degradation potentials of biosynthesized chitosan, chitosan-ZnO, and chitosan-ZnO/PVP nanoparticles. Sci Rep 2024; 14:14753. [PMID: 38926522 PMCID: PMC11208610 DOI: 10.1038/s41598-024-65579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The development of nanomaterials has been speedily established in recent years, yet nanoparticles synthesized by traditional methods suffer unacceptable toxicity and the sustainability of the procedure for synthesizing such nanoparticles is inadequate. Consequently, green biosynthesis, which employs biopolymers, is gaining attraction as an environmentally sound alternative to less sustainable approaches. Chitosan-encapsulated nanoparticles exhibit exceptional antibacterial properties, offering a wide range of uses. Chitosan, obtained from shrimp shells, aided in the environmentally friendly synthesis of high-purity zinc oxide nanoparticles (ZnO NPs) with desirable features such as the extraction yield (41%), the deacetylation (88%), and the crystallinity index (74.54%). The particle size of ZnO NPs was 12 nm, while that of chitosan-ZnO NPs was 21 nm, and the bandgap energies of these nanomaterials were 3.98 and 3.48, respectively. The strong antibacterial action was demonstrated by ZnO NPs, chitosan-ZnO NPs, and chitosan-ZnO/PVP, particularly against Gram-positive bacteria, making them appropriate for therapeutic use. The photocatalytic degradation abilities were also assessed for all nanoparticles. At a concentration of 6 × 10-5 M, chitosan removed 90.5% of the methylene blue (MB) dye, ZnO NPs removed 97.4%, chitosan-coated ZnO NPs removed 99.6%, while chitosan-ZnO/PVP removed 100%. In the case of toluidine blue (TB), at a concentration of 4 × 10-3 M, the respective efficiencies were 96.8%, 96.8%, 99.5%, and 100%, respectively. Evaluation of radical scavenger activity revealed increased scavenging of ABTS and DPPH radicals by chitosan-ZnO/PVP compared to individual zinc oxide or chitosan-ZnO, where the IC50 results were 0.059, 0.092, 0.079 mg/mL, respectively, in the ABTS test, and 0.095, 0.083, 0.061, and 0.064 mg/mL in the DPPH test, respectively. Moreover, in silico toxicity studies were conducted to predict the organ-specific toxicity through ProTox II software. The obtained results suggest the probable safety and the absence of organ-specific toxicity with all the tested samples.
Collapse
Affiliation(s)
- Abdelatif Aouadi
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Djamila Hamada Saud
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Abdelkrim Rebiai
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Abdelhak Achouri
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
- Water, Environment and Sustainable Development Laboratory (2E2D), Faculty of Technology, University of Blida 1, Route Soumâa, BP 270, Blida, Algeria
| | - Soulef Benabdesselam
- Laboratory of Water and Environmental Engineering in the Saharan Environment, Process Engineering Department, Faculty of Applied Sciences, Kasdi Merbah-Ouargla University, Ouargla, Algeria
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, University of Science and Technology, Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| | - Abderrahmane Ararem
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria.
| |
Collapse
|
8
|
Hefny SM, El-Moselhy TF, El-Din N, Giovannuzzi S, Bin Traiki T, Vaali-Mohammed MA, El-Dessouki AM, Yamaguchi K, Sugiura M, Shaldam MA, Supuran CT, Abdulla MH, Eldehna WM, Tawfik HO. Discovery and Mechanistic Studies of Dual-Target Hits for Carbonic Anhydrase IX and VEGFR-2 as Potential Agents for Solid Tumors: X-ray, In Vitro, In Vivo, and In Silico Investigations of Coumarin-Based Thiazoles. J Med Chem 2024; 67:7406-7430. [PMID: 38642371 DOI: 10.1021/acs.jmedchem.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | | | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October City, Giza 12566, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|