1
|
Mai H, Ke J, Li M, He M, Qu Y, Jiang F, Cai S, Xu Y, Fu L, Pi L, Zhou H, Yu H, Che D, Gu X, Zhang J, Zuo L. Association of living environmental and occupational factors with semen quality in chinese men: a cross-sectional study. Sci Rep 2023; 13:15671. [PMID: 37735181 PMCID: PMC10514289 DOI: 10.1038/s41598-023-42927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023] Open
Abstract
Sperm quality can be easily influenced by living environmental and occupational factors. This study aimed to discover potential semen quality related living environmental and occupational factors, expand knowledge of risk factors for semen quality, strengthen men's awareness of protecting their own fertility and assist the clinicians to judge the patient's fertility. 465 men without obese or underweight (18.5 < BMI < 28.5 kg/m2), long-term medical history and history of drug use, were recruited between June 2020 to July 2021, they are in reproductive age (25 < age < 45 years). We have collected their semen analysis results and clinical information. Logistic regression was applied to evaluate the association of semen quality with different factors. We found that living environment close to high voltage line (283.4 × 106/ml vs 219.8 × 106/ml, Cohen d = 0.116, P = 0.030) and substation (309.1 × 106/ml vs 222.4 × 106/ml, Cohen d = 0.085, P = 0.015) will influence sperm count. Experienced decoration in the past 6 months was a significant factor to sperm count (194.2 × 106/ml vs 261.0 × 106/ml, Cohen d = 0.120, P = 0.025). Living close to chemical plant will affect semen PH (7.5 vs 7.2, Cohen d = 0.181, P = 0.001). Domicile close to a power distribution room will affect progressive sperm motility (37.0% vs 34.0%, F = 4.773, Cohen d = 0.033, P = 0.030). Using computers will affect both progressive motility sperm (36.0% vs 28.1%, t = 2.762, Cohen d = 0.033, P = 0.006) and sperm total motility (57.0% vs 41.0%, Cohen d = 0.178, P = 0.009). After adjust for potential confounding factors (age and BMI), our regression model reveals that living close to high voltage line is a risk factor for sperm concentration (Adjusted OR 4.03, 95% CI 1.15-14.18, R2 = 0.048, P = 0.030), living close to Chemical plants is a protective factor for sperm concentration (Adjusted OR 0.15, 95% CI 0.05-0.46, R2 = 0.048, P = 0.001) and total sperm count (Adjusted OR 0.36, 95% CI 0.13-0.99, R2 = 0.026, P = 0.049). Time spends on computer will affect sperm total motility (Adjusted OR 2.29, 95% CI 1.11-4.73, R2 = 0.041, P = 0.025). Sum up, our results suggested that computer using, living and working surroundings (voltage line, substation and chemical plants, transformer room), and housing decoration may association with low semen quality. Suggesting that some easily ignored factors may affect male reproductive ability. Couples trying to become pregnant should try to avoid exposure to associated risk factors. The specific mechanism of risk factors affecting male reproductive ability remains to be elucidated.
Collapse
Affiliation(s)
- Hanran Mai
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Junyi Ke
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Miaomiao Li
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Menghua He
- Department of Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanxia Qu
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Simian Cai
- Department of Science, Education and Data Management, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jinxin Zhang
- Department of Medical Statistics, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
2
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
3
|
Chen HG, Wu P, Sun B, Chen JX, Xiong CL, Meng TQ, Huang XY, Su QL, Zhou H, Wang YX, Ye W, Pan A. Association between electronic device usage and sperm quality parameters in healthy men screened as potential sperm donors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120089. [PMID: 36058315 DOI: 10.1016/j.envpol.2022.120089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/17/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Cell phone use and radio-frequency electromagnetic radiation (RF-EMF) are rapidly increasing and may be associated with lower semen quality, yet results from epidemiological studies are inconclusive. Information on electronic devices use was collected through standard questionnaires from 1454 men aged 22-45 years old. Semen volume, sperm concentration, total sperm count, total motility, progressive motility, and normal morphology in repeated specimens were determined by trained clinical technicians. Percent changes [95% confidence intervals (CIs)] were estimated as (10β-1) × 100 for electronic devices use associated with repeated sperm quality parameters in the linear mixed-effect models. After adjusting for multiple confounders, we found significant inverse associations of total duration of electronic devices use with sperm progressive motility and total motility, duration of cell phone and computer use with sperm concentration, progressive motility, and total motility (all P < 0.05). No significant association was found between cell phone/computer use alone and sperm quality parameters. Moreover, per hour increase of time spent on cell phone talking was associated with decreased sperm concentration and total count by an average of -8.0% (95% CI: -15.2%, -0.2%) and -12.7% (95% CI: -21.3%, -3.1%), respectively. Besides, daily calling time was associated with lower sperm progressive motility and total motility among those who used headsets during a call (P for interaction <0.05). In conclusion, our study suggested that more time spent on electronic devices use had a modest reduction effect on semen quality. Daily calling time was significantly associated with lower sperm concentration and total count, and using headsets during a call appeared to aggravate the negative association between daily calling time and sperm motility. Additional studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Heng-Gui Chen
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Sun
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jun-Xiang Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cheng-Liang Xiong
- Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei Province, China; Hubei Province Human Sperm Bank, Wuhan, Hubei Province, China
| | - Tian-Qing Meng
- Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei Province, China; Hubei Province Human Sperm Bank, Wuhan, Hubei Province, China
| | - Xiao-Yin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qing-Ling Su
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Huiliang Zhou
- Department of Andrology & Sexual Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Weimin Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Humaidan P, Haahr T, Povlsen BB, Kofod L, Laursen RJ, Alsbjerg B, Elbaek HO, Esteves SC. The combined effect of lifestyle intervention and antioxidant therapy on sperm DNA fragmentation and seminal oxidative stress in IVF patients: a pilot study. Int Braz J Urol 2022. [PMID: 34472769 DOI: 10.1590/s1677-5538.ibju.2021.0604)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
PURPOSE Sperm DNA fragmentation (SDF) and seminal oxidative stress are emerging measurable factors in male factor infertility, which interventions could potentially reduce. We evaluated (i) the impact of lifestyle changes combined with oral antioxidant intake on sperm DNA fragmentation index (DFI) and static oxidation-reduction potential (sORP), and (ii) the correlation between DFI and sORP. MATERIALS AND METHODS We conducted a prospective study involving 93 infertile males with a history of failed IVF/ICSI. Ten healthy male volunteers served as controls. Semen analysis was carried out according to 2010 WHO manual, whereas seminal sORP was measured using the MiOXSYS platform. SDF was assessed by sperm chromatin structure assay. Participants with DFI >15% underwent a three-month lifestyle intervention program, primarily based on diet and exercise, combined with oral antioxidant therapy using multivitamins, coenzyme Q10, omega-3, and oligo-elements. We assessed changes in semen parameters, DFI, and sORP, and compared DFI results to those of volunteers obtained two weeks apart. Spearman rank correlation tests were computed for sORP and DFI results. RESULTS Thirty-eight (40.8%) patients had DFI >15%, of whom 31 participated in the intervention program. A significant decrease in median DFI from 25.8% to 18.0% was seen after the intervention (P <0.0001). The mean DFI decrease was 7.2% (95% CI: 4.8-9.5%; P <0.0001), whereas it was 0.42% (95%CI; -4.8 to 5.6%) in volunteers (P <0.00001). No differences were observed in sperm parameters and sORP. Based on paired sORP and DFI data from 86 patients, no correlation was observed between sORP and DFI values (rho=0.03). CONCLUSION A 3-month lifestyle intervention program combined with antioxidant therapy reduced DFI in infertile men with elevated SDF and a history of failed IVF/ICSI. A personalized lifestyle and antioxidant intervention could improve fertility of subfertile couples through a reduction in DFI, albeit controlled trials evaluating reproductive outcomes are needed before firm conclusions can be made. Trial registration number and date: clinicaltrials.gov NCT03898752, April 2, 2019.
Collapse
Affiliation(s)
- Peter Humaidan
- Department of Clinical Medicine, Aarhus University, Denmark.,The Fertility Clinic Skive, Skive Regional Hospital, Denmark
| | - Thor Haahr
- Department of Clinical Medicine, Aarhus University, Denmark.,The Fertility Clinic Skive, Skive Regional Hospital, Denmark
| | | | - Louise Kofod
- The Fertility Clinic Skive, Skive Regional Hospital, Denmark.,Department of Obstetrics and Gynecology, Regional Hospital Herning, Denmark
| | | | - Birgit Alsbjerg
- Department of Clinical Medicine, Aarhus University, Denmark.,The Fertility Clinic Skive, Skive Regional Hospital, Denmark
| | | | - Sandro C Esteves
- Department of Clinical Medicine, Aarhus University, Denmark.,The Fertility Clinic Skive, Skive Regional Hospital, Denmark.,ANDROFERT, Clínica de Andrologia e Reprodução Humana, Campinas, SP, Brasil.,Departamento de Cirurgia, Divisão de Urologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil
| |
Collapse
|
5
|
Humaidan P, Haahr T, Povlsen BB, Kofod L, Laursen RJ, Alsbjerg B, Elbaek HO, Esteves SC. The combined effect of lifestyle intervention and antioxidant therapy on sperm DNA fragmentation and seminal oxidative stress in IVF patients: a pilot study. Int Braz J Urol 2022; 48:131-156. [PMID: 34472769 PMCID: PMC8691235 DOI: 10.1590/s1677-5538.ibju.2021.0604] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Sperm DNA fragmentation (SDF) and seminal oxidative stress are emerging measurable factors in male factor infertility, which interventions could potentially reduce. We evaluated (i) the impact of lifestyle changes combined with oral antioxidant intake on sperm DNA fragmentation index (DFI) and static oxidation-reduction potential (sORP), and (ii) the correlation between DFI and sORP. MATERIALS AND METHODS We conducted a prospective study involving 93 infertile males with a history of failed IVF/ICSI. Ten healthy male volunteers served as controls. Semen analysis was carried out according to 2010 WHO manual, whereas seminal sORP was measured using the MiOXSYS platform. SDF was assessed by sperm chromatin structure assay. Participants with DFI >15% underwent a three-month lifestyle intervention program, primarily based on diet and exercise, combined with oral antioxidant therapy using multivitamins, coenzyme Q10, omega-3, and oligo-elements. We assessed changes in semen parameters, DFI, and sORP, and compared DFI results to those of volunteers obtained two weeks apart. Spearman rank correlation tests were computed for sORP and DFI results. RESULTS Thirty-eight (40.8%) patients had DFI >15%, of whom 31 participated in the intervention program. A significant decrease in median DFI from 25.8% to 18.0% was seen after the intervention (P <0.0001). The mean DFI decrease was 7.2% (95% CI: 4.8-9.5%; P <0.0001), whereas it was 0.42% (95%CI; -4.8 to 5.6%) in volunteers (P <0.00001). No differences were observed in sperm parameters and sORP. Based on paired sORP and DFI data from 86 patients, no correlation was observed between sORP and DFI values (rho=0.03). CONCLUSION A 3-month lifestyle intervention program combined with antioxidant therapy reduced DFI in infertile men with elevated SDF and a history of failed IVF/ICSI. A personalized lifestyle and antioxidant intervention could improve fertility of subfertile couples through a reduction in DFI, albeit controlled trials evaluating reproductive outcomes are needed before firm conclusions can be made. Trial registration number and date: clinicaltrials.gov NCT03898752, April 2, 2019.
Collapse
Affiliation(s)
- Peter Humaidan
- Aarhus UniversityDepartment of Clinical MedicineDenmarkDepartment of Clinical Medicine, Aarhus University, Denmark
- Skive Regional HospitalThe Fertility Clinic SkiveDenmarkThe Fertility Clinic Skive, Skive Regional Hospital, Denmark
| | - Thor Haahr
- Aarhus UniversityDepartment of Clinical MedicineDenmarkDepartment of Clinical Medicine, Aarhus University, Denmark
- Skive Regional HospitalThe Fertility Clinic SkiveDenmarkThe Fertility Clinic Skive, Skive Regional Hospital, Denmark
| | - Betina Boel Povlsen
- Skive Regional HospitalThe Fertility Clinic SkiveDenmarkThe Fertility Clinic Skive, Skive Regional Hospital, Denmark
| | - Louise Kofod
- Skive Regional HospitalThe Fertility Clinic SkiveDenmarkThe Fertility Clinic Skive, Skive Regional Hospital, Denmark
- Regional Hospital HerningDepartment of Obstetrics and GynecologyDenmarkDepartment of Obstetrics and Gynecology, Regional Hospital Herning, Denmark
| | - Rita Jakubcionyte Laursen
- Skive Regional HospitalThe Fertility Clinic SkiveDenmarkThe Fertility Clinic Skive, Skive Regional Hospital, Denmark
| | - Birgit Alsbjerg
- Aarhus UniversityDepartment of Clinical MedicineDenmarkDepartment of Clinical Medicine, Aarhus University, Denmark
- Skive Regional HospitalThe Fertility Clinic SkiveDenmarkThe Fertility Clinic Skive, Skive Regional Hospital, Denmark
| | - Helle Olesen Elbaek
- Skive Regional HospitalThe Fertility Clinic SkiveDenmarkThe Fertility Clinic Skive, Skive Regional Hospital, Denmark
| | - Sandro C. Esteves
- Aarhus UniversityDepartment of Clinical MedicineDenmarkDepartment of Clinical Medicine, Aarhus University, Denmark
- Skive Regional HospitalThe Fertility Clinic SkiveDenmarkThe Fertility Clinic Skive, Skive Regional Hospital, Denmark
- ANDROFERTClínica de Andrologia e Reprodução HumanaCampinasSPBrasilANDROFERT, Clínica de Andrologia e Reprodução Humana, Campinas, SP, Brasil
- Universidade Estadual de CampinasFaculdade de Ciências MédicasDepartamento de CirurgiaCampinasSPBrasilDepartamento de Cirurgia, Divisão de Urologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil
| |
Collapse
|
6
|
Kim S, Han D, Ryu J, Kim K, Kim YH. Effects of mobile phone usage on sperm quality - No time-dependent relationship on usage: A systematic review and updated meta-analysis. ENVIRONMENTAL RESEARCH 2021; 202:111784. [PMID: 34333014 DOI: 10.1016/j.envres.2021.111784] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mobile phones emit radiofrequency (RF) electromagnetic waves (EMWs), a low-level RF that can be absorbed by the human body and exert potential adverse effects on the brain, heart, endocrine system, and reproductive function. Owing to the novel findings of numerous studies published since 2012 regarding the effect of mobile phone use on sperm quality, we conducted a systematic review and updated meta-analysis to determine whether the exposure to RF-EMWs affects human sperm quality. METHODS This study was conducted in accordance with the PRISMA guidelines. The outcome measures depicting sperm quality were motility, viability, and concentration, which are the most frequently used parameters in clinical settings to assess fertility. RESULTS We evaluated 18 studies that included 4280 samples. Exposure to mobile phones is associated with reduced sperm motility, viability, and concentration. The decrease in sperm quality after RF-EMW exposure was not significant, even when the mobile phone usage increased. This finding was consistent across experimental in vitro and observational in vivo studies. DISCUSSION Accumulated data from in vivo studies show that mobile phone usage is harmful to sperm quality. Additional studies are needed to determine the effect of the exposure to EMWs from new mobile phone models used in the present digital environment.
Collapse
Affiliation(s)
- Sungjoon Kim
- Department of Medicine, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Donghyun Han
- Department of Medicine, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Jiwoo Ryu
- Department of Medicine, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Kihun Kim
- Department of Occupational and Environmental Medicine, Kosin University Gospel Hospital, 49267, Busan, Republic of Korea.
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea; Department of Biomedical Informatics, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Republic of Korea.
| |
Collapse
|
7
|
Chen JS, Tsai LK, Yeh TY, Li TS, Li CH, Wei ZH, Lo NW, Ju JC. Effects of electromagnetic waves on oocyte maturation and embryonic development in pigs. J Reprod Dev 2021; 67:392-401. [PMID: 34690215 PMCID: PMC8668371 DOI: 10.1262/jrd.2021-074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our living environment has been full of electromagnetic radiation (EMR) due to the prevailing electronic devices and equipment. Intermediate frequency electromagnetic field (IF-EMF) or waves constitute a significant part of EMR; therefore, an increasing number of household electrical appliances have become a source of IF-EMF, and concerns about IF-EMF on health are gaining more attention. However, little information is available about its impact on female reproductive traits, such as germ cell viability and early embryonic development, particularly at the cellular and molecular levels. In this study, we used porcine oocytes as a model system to explore the effect of IF-EMF at various intensities on the in vitro maturation (IVM) of oocytes and their subsequent embryonic development. Our results showed that no difference in oocyte maturation rates was detected among groups, but the cleavage and blastocyst rates of parthenotes derived from EMF-treated oocytes decreased with the weaker IF-EMF intensity (25 and 50 Gauss, G) groups compared to the control group (P < 0.05). For cytoplasmic maturation, the weaker IF-EMF intensity groups also showed a peripheral pattern of mitochondrial distribution resembling that of immature oocytes and increased autophagy activity. No obvious differences in cytoskeletal distribution and total cell numbers of blastocysts were investigated in the four IF-EMF treatments compared to those in the control group. Although the underlying mechanism associated with EMF effects on oocytes and embryos is still elusive, we have demonstrated that low intensity IF-EMF exerts harmful effects on porcine oocytes during the maturation stage, carrying over such effects to their subsequent embryonic development.
Collapse
Affiliation(s)
- Jia-Si Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yu Yeh
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tzai-Shiuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Han Li
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zung-Hang Wei
- Department of Research and Development, Weistron Co., Ltd., Hsinchu 30013, Taiwan
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan
| | - Jyh-Cherng Ju
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.,Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
8
|
Quantitative proteomics reveals the mechanism of slightly acidic electrolyzed water-induced buckwheat sprouts growth and flavonoids enrichment. Food Res Int 2021; 148:110634. [PMID: 34507777 DOI: 10.1016/j.foodres.2021.110634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
Previous work has demonstrated that slightly acidic electrolyzed water (SAEW) can promote growth and nutrient enrichment of buckwheat sprouts. In this study, iTRAQ-based quantitative proteomic analysis of SAEW-induced buckwheat sprouts was conducted to explore its mechanism of action. The results showed that 11, 10 and 14 differentially expressed proteins (DEPs) related to energy metabolism, oxidative stress and flavonoid biosynthesis accumulated upwards and downwards, respectively, in SAEW-treated buckwheat. Bioinformatics analysis revealed 118 GO categories were in relation to molecular function. In the SAEW group, a total of 9 DEPs (5 up-regulated) were mapped to 10 significantly enriched KEGG pathways. SAEW induced flavonoid enrichment by modulating zymoproteins (e.g. phenylalanine ammonialyase and flavonol synthase) in phenylpropanoid biosynthesis pathway. qRT-PCR results had consistency with abundance levels of their corresponding proteins. These findings are likely to reveal the molecular mechanisms underlying the biochemical enrichment of buckwheat sprouts by SAEW.
Collapse
|
9
|
Negi P, Singh R. Association between reproductive health and nonionizing radiation exposure. Electromagn Biol Med 2021; 40:92-102. [PMID: 33471575 DOI: 10.1080/15368378.2021.1874973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Recently, a decreasing rate of fertility has to be credited to an array of factors such as environmental, health and lifestyle. Male infertility is likely to be affected by the strong exposure to heat and radiations. The most common sources of nonionizing radiations are cell phones, laptops, Wi-Fi and microwave ovens, which may participate to the cause of male infertility. One of the major sources of daily exposure to non-ionizing radiation is mobile phones. A mobile phone is now basically dominating our daily life through better services such as connectivity, smartphone devices. However, the health consequences are linked with their usage are frequently ignored. Constant exposure to non-ionizing radiations produced from a cell phone is one of the possible reasons for growing male infertility. Recently, several studies have shown that cell phone users have altered sperm parameters causing declining reproductive health. Cell phone radiation harms male fertility by affecting the different parameters like sperm motility, sperm count, sperm morphology, semen concentration, morphometric abnormalities, increased oxidative stress along with some hormonal changes. This review is focusing on the prevailing literature from in vitro and in vivo studies suggesting that non-ionizing exposure negatively affects human male infertility.
Collapse
Affiliation(s)
- Pooja Negi
- Department of Environmental Studies, Satyawati College, University of Delhi , Ashok Vihar, Delhi, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi , Ashok Vihar, Delhi, India
| |
Collapse
|
10
|
Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5076271. [PMID: 30533171 PMCID: PMC6250044 DOI: 10.1155/2018/5076271] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Modern technologies relying on wireless communication systems have brought increasing levels of electromagnetic field (EMF) exposure. This increased research interest in the effects of these radiations on human health. There is compelling evidence that EMFs affect cell physiology by altering redox-related processes. Considering the importance of redox milieu in the biological competence of oocyte and sperm, we reviewed the existing literature regarding the effects of EMFs on reproductive systems. Given the role of mitochondria as the main source of reactive oxygen species (ROS), we focused on the hypothesis of a mitochondrial basis of EMF-induced reproductive toxicity. MEDLINE, Web of Science, and Scopus database were examined for peer-reviewed original articles by searching for the following keywords: “extremely low frequency electromagnetic fields (ELF-EMFs),” “radiofrequency (RF),” “microwaves,” “Wi-Fi,” “mobile phone,” “oxidative stress,” “mitochondria,” “fertility,” “sperm,” “testis,” “oocyte,” “ovarian follicle,” and “embryo.” These keywords were combined with other search phrases relevant to the topic. Although we reported contradictory data due to lack of uniformity in the experimental designs, a growing body of evidence suggests that EMF exposure during spermatogenesis induces increased ROS production associated with decreased ROS scavenging activity. Numerous studies revealed the detrimental effects of EMFs from mobile phones, laptops, and other electric devices on sperm quality and provide evidence for extensive electron leakage from the mitochondrial electron transport chain as the main cause of EMF damage. In female reproductive systems, the contribution of oxidative stress to EMF-induced damages and the evidence of mitochondrial origin of ROS overproduction are reported, as well. In conclusion, mitochondria seem to play an important role as source of ROS in both male and female reproductive systems under EMF exposure. Future and more standardized studies are required for a better understanding of molecular mechanisms underlying EMF potential challenge to our reproductive system in order to improve preventive strategies.
Collapse
|
11
|
Feng M, Yin H, Peng H, Lu G, Liu Z, Dang Z. iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1758-1767. [PMID: 30061077 DOI: 10.1016/j.envpol.2018.07.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
In current study, we investigated the changes of proteome profiles of Pycnoporus sanguineus after a single exposure of Cr(VI), TBBPA and a combined exposure of TBBPA and Cr(VI), with the goal of illuminating the cellular mechanisms involved in the interactions of co-existed TBBPA and Cr(VI) with the cells of P. sanguineus at the protein level. The results revealed that some ATP-binding cassette (ABC) transporters were obviously induced by these pollutants to accelerate the transportation, transformation and detoxification of TBBPA and Cr(VI). Cr(VI) could inhibit the bioremoval of its organic co-pollutants TBBPA through suppressing the expression of several key proteins related to the metabolism of TBBPA by P. sanguineus, including two cytochrome P450s, pentachlorophenol 4-monooxygenase and glutathione S-transferases. Furthermore, Cr(VI) possibly reduced the cell vitality and growth of P. sanguineus by enhancing the expression of imidazole glycerol phosphate synthase as well as by decreasing the abundances of proteins associated with the intracellular metabolic processes, such as the tricarboxylic acid cycle, purine metabolism and glutathione biosynthesis, thereby adversely affecting the biotransformation of TBBPA. Cr(VI) also inhibited the expression of peptidyl prolyl cis/trans isomerases, thus causing the damage of cell membrane integrity. In addition, some important proteins participated in the resistance to Cr(VI) toxicity were observed to up-regulate, including heat shock proteins, 26S proteasome, peroxiredoxins and three critical proteins implicated in S-adenosyl methionine synthesis, which contributed to reducing the hazard of Cr(VI) to P. sanguineus. The results of this study provide novel insights into the physiological responses and molecular mechanism of white rot fungi P. sanguineus to the stress of concomitant TBBPA and Cr(VI).
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
12
|
Saliev T, Begimbetova D, Masoud AR, Matkarimov B. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 141:25-36. [PMID: 30030071 DOI: 10.1016/j.pbiomolbio.2018.07.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Controversial, sensational and often contradictory scientific reports have triggered active debates over the biological effects of electromagnetic fields (EMFs) in literature and mass media the last few decades. This could lead to confusion and distraction, subsequently hampering the development of a univocal conclusion on the real hazards caused by EMFs on humans. For example, there are lots of publications indicating that EMF can induce apoptosis and DNA strand-breaks in cells. On the other hand, these effects could rather be beneficial, in that they could be effectively harnessed for treatment of various disorders, including cancer. This review discusses and analyzes the results of various in vitro, in vivo and epidemiological studies on the effects of non-ionizing EMFs on cells and organs, including the consequences of exposure to the low and high frequencies EM spectrum. Emphasis is laid on the analysis of recent data on the role of EMF in the induction of oxidative stress and DNA damage. Additionally, the impact of EMF on the reproductive system has been discussed, as well as the relationship between EM radiation and blood cancer. Apart from adverse effects, the therapeutic potential of EMFs for clinical use in different pathologies is also highlighted.
Collapse
Affiliation(s)
- Timur Saliev
- Kazakh National Medical University Named After S.D. Asfendiyarov, Tole Bi Street 94, Almaty, 050000, Kazakhstan; National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan.
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Abdul-Razak Masoud
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| |
Collapse
|
13
|
Mortazavi SMJ, Mortazavi SAR, Paknahad M. Mobile phones electromagnetic radiation and NAD+-dependent isocitrate dehydrogenase as a mitochondrial marker in asthenozoospermia. BIOCHIMIE OPEN 2016; 3:47-48. [PMID: 29450130 PMCID: PMC5801824 DOI: 10.1016/j.biopen.2016.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 11/04/2022]
Affiliation(s)
- S M J Mortazavi
- Medical Physics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Oral and Maxillofacial Radiology Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S A R Mortazavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Oral and Maxillofacial Radiology Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Paknahad
- Oral and Maxillofacial Radiology Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|