1
|
Chu C, Deng J, Liu L, Cao Y, Wei X, Li J, Man Y. Nanoparticles combined with growth factors: recent progress and applications. RSC Adv 2016. [DOI: 10.1039/c6ra13636b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing attention has been focused on the applications of nanoparticles combined with growth factors (NPs/GFs) due to the substantial functions of GFs in regenerative medicine and disease treatments.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jia Deng
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Jidong Li
- Research Center for Nano Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
2
|
Wang H, Geier MS, Howarth GS. Prebiotics: A Potential Treatment Strategy for the Chemotherapy-damaged Gut? Crit Rev Food Sci Nutr 2016; 56:946-956. [PMID: 25162145 DOI: 10.1080/10408398.2012.741082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mucositis, characterized by ulcerative lesions along the alimentary tract, is a common consequence of many chemotherapy regimens. Chemotherapy negatively disrupts the intestinal microbiota, resulting in increased numbers of potentially pathogenic bacteria, such as Clostridia and Enterobacteriaceae, and decreased numbers of "beneficial" bacteria, such as Lactobacilli and Bifidobacteria. Agents capable of restoring homeostasis in the bowel microbiota could, therefore, be applicable to mucositis. Prebiotics are indigestible compounds, commonly oligosaccharides, that seek to reverse chemotherapy-induced intestinal dysbiosis through selective colonization of the intestinal microbiota by probiotic bacteria. In addition, evidence is emerging that certain prebiotics contribute to nutrient digestibility and absorption, modulate intestinal barrier function through effects on mucin expression, and also modify mucosal immune responses, possibly via inflammasome-mediated processes. This review examines the known mechanisms of prebiotic action, and explores their potential for reducing the severity of chemotherapy-induced mucositis in the intestine.
Collapse
Affiliation(s)
- Hanru Wang
- a School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy Campus , South Australia
| | - Mark S Geier
- a School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy Campus , South Australia
- b South Australian Research and Development Institute, Pig and Poultry Production Institute, Nutrition Research Laboratory , Roseworthy , South Australia
| | - Gordon S Howarth
- a School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy Campus , South Australia
- c Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women's Health Service , North Adelaide , South Australia
| |
Collapse
|
3
|
Dudognon B, Romero-Santacreu L, Gómez-Sebastián S, Hidalgo AB, López-Vidal J, Bellido ML, Muñoz E, Escribano JM. Production of functional active human growth factors in insects used as living biofactories. J Biotechnol 2014; 184:229-39. [PMID: 24915129 DOI: 10.1016/j.jbiotec.2014.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/23/2014] [Accepted: 05/30/2014] [Indexed: 12/11/2022]
Abstract
Growth factors (GFs) are naturally signalling proteins, which bind to specific receptors on the cell surface. Numerous families of GFs have already been identified and remarkable progresses have been made in understanding the pathways that these proteins use to activate/regulate the complex signalling network involved in cell proliferation or wound healing processes. The bottleneck for a wider clinical and commercial application of these factors relay on their scalable cost-efficient production as bioactive molecules. The present work describes the capacity of Trichoplusia ni insect larvae used as living bioreactors in combination with the baculovirus vector expression system to produce three fully functional human GFs, the human epidermal growth factor (huEGF), the human fibroblast growth factor 2 (huFGF2) and the human keratinocyte growth factor 1 (huKGF1). The expression levels obtained per g of insect biomass were of 9.1, 2.6 and 3mg for huEGF, huFGF2 and huKGF1, respectively. Attempts to increase the productivity of the insect/baculovirus system we have used different modifications to optimize their production. Additionally, recombinant proteins were expressed fused to different tags to facilitate their purification. Interestingly, the expression of huKGF1 was significantly improved when expressed fused to the fragment crystallizable region (Fc) of the human antibody IgG. The insect-derived recombinant GFs were finally characterized in terms of biological activity in keratinocytes and fibroblasts. The present work opens the possibility of a cost-efficient and scalable production of these highly valuable molecules in a system that favours its wide use in therapeutic or cosmetic applications.
Collapse
Affiliation(s)
- Benoit Dudognon
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Lorena Romero-Santacreu
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Silvia Gómez-Sebastián
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Ana B Hidalgo
- Vivacell Biotechnology España S.L. Parque Científico Tecnológico Rabanales, 21, c/Cecilia Payne, Parcela ID 8.1, 14014 Córdoba, Spain
| | - Javier López-Vidal
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - María L Bellido
- Vivacell Biotechnology España S.L. Parque Científico Tecnológico Rabanales, 21, c/Cecilia Payne, Parcela ID 8.1, 14014 Córdoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Spain
| | - José M Escribano
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Autovía A6, Km 7.5, 28040 Madrid, Spain.
| |
Collapse
|