1
|
Izzo L, Messineo D, DI Cello P, Nicolanti V, Sterpetti A, Izzo S, Izzo P. Correlation Between Onco-suppressors PTEN and NM23 and Clinical Outcome in Patients With T1 Breast Cancer. In Vivo 2021; 35:169-174. [PMID: 33402463 DOI: 10.21873/invivo.12245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND The aim of the present work was to evaluate the prognostic significance in patients with T1 breast cancer of tissue expression of the two oncosuppressors phosphatase and tensin homolog (PTEN) and non-metastatic clone 23 (NM23) as detected by immunohistochemistry. MATERIALS AND METHODS We prospectively analyzed 62 patients who underwent surgery for a T1 stage breast cancer. Expression of PTEN and NM23 was tested for correlation with clinical characteristics and clinical outcome. RESULTS Of the 62 patients considered for our study, 16 underwent mastectomy and 46 underwent conservative surgical treatment. The surgery was considered radical (R0) in all cases described. PTEN and NM23 expression was higher in patients with no lymph node metastases and no recurrent cancer at a mean follow-up of 36 months (range=6-48 months). This correlation was more evident when both PTNE and NM23 expression were highly expressed (p<0.0001). CONCLUSION Low or lack of PTEN and NM23 immunohistochemical expression in cancer tissue is a risk factor for lymph node involvement and recurrent disease. It may represent a valid prognostic factor in planning therapy in patients who had surgery for T1 breast cancer.
Collapse
Affiliation(s)
- Luciano Izzo
- Pietro Valdoni Department of Surgery, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy;
| | - Daniela Messineo
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University, Rome, Italy
| | | | - Virgilio Nicolanti
- Pietro Valdoni Department of Surgery, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Antonio Sterpetti
- Pietro Valdoni Department of Surgery, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Sara Izzo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Plastic Surgery Unit, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Paolo Izzo
- Pietro Valdoni Department of Surgery, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Luo Y, Deng J, Cui Y, Li T, Bai J, Huang L, Sun Y, Dong F, Zhang Q. Long-term instillation to four natural representative chrysotile of China induce the inactivation of P53 and P16 and the activation of C-JUN and C-FOS in the lung tissues of Wistar rats. Toxicol Lett 2020; 333:140-149. [PMID: 32755622 DOI: 10.1016/j.toxlet.2020.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
Chrysotile is the only type of asbestos still widely exploited, and all kinds of asbestos including chrysotile was classified as a group I carcinogen by the IARC. There is a wealth of evidence that chrysotile can cause a range of cancers, including cancer of the lung, larynx, ovary, and mesothelioma. As the second largest chrysotile producer, China is at great risk of occupational exposure. Moreover, our previous experiment and some other studies have shown that the toxicity of mineral fibre from various mining areas may be different. To explore the oncogenic potential of chrysotile from different mining areas of China, Wistar rats were administered 0.5 mL chrysotile asbestos suspension of 2.0 mg/mL (from Akesai, Gansu; Mangnai, Qinghai; XinKang, Sichuan; and Shannan, Shaanxi) dissolved in saline by intratracheal instillation once-monthly and were sacrificed at 1 mo, 6 mo, and 12 mo. Our results found that chrysotile caused lung inflammation and lung tissue damage. Moreover, prolonged exposure of chrysotile can induce inactivation of the tumor suppressor gene P53 and P16 and activation of the protooncogene C-JUN and C-FOS both in the messenger RNA and protein level. In addition, chrysotile from Shannan and XinKang has a stronger effect which may link to cancer than that from Akesai and Mangnai.
Collapse
Affiliation(s)
- Yingyu Luo
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianjun Deng
- Medical Laboratory, Sichuan Mianyang 404 Hospital, No.2 Affiliated Hospital of North Sichuan Medical College, Mianyang 621000, Sichuan Province, China
| | - Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Li
- Key Laboratory of Ministry of Education, Myocardial electrical laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liuwen Huang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yaochuan Sun
- School of Earth Science and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Detection and Correlation of Single and Concomitant TP53, PTEN, and CDKN2A Alterations in Gliomas. Int J Mol Sci 2019; 20:ijms20112658. [PMID: 31151164 PMCID: PMC6600458 DOI: 10.3390/ijms20112658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Gliomas are the most frequent primary tumors of central nervous system and represent a heterogeneous group of tumors that originates from the glial cells. TP53, PTEN, and CDKN2A are important tumor suppressor genes that encode proteins involved in sustaining cellular homeostasis by different signaling pathways. Though genetic alterations in these genes play a significant role in tumorigenesis, few studies are available regarding the incidence and relation of concomitant TP53, PTEN, and CDKN2A alterations in gliomas. The purpose of this study was to evaluate the occurrence of mutation and deletion in these genes, through single-strand conformational polymorphism, array-comparative genomic hybridization, and fluorescence in situ hybridization techniques, in 69 gliomas samples. Molecular results demonstrated a significant higher prevalence of TP53, PTEN, and CDKN2A alterations in astrocytoma than other tumor subtypes, and heterozygous deletion was the most frequent event. In addition, a significant association was observed between TP53 and CDKN2A alterations (p = 0.0424), which tend to coexist in low grade astrocytomas (5/46 cases (10.9%)), suggesting that they are early events in development of these tumors, and PTEN and CDKN2A deletions (p = 0.0022), which occurred concomitantly in 9/50 (18%) patients, with CDKN2A changes preceding PTEN deletions, present preferably in high-grade gliomas.
Collapse
|
4
|
Zeng Y, Cui Y, Ma J, Huo T, Dong F, Zhang Q, Deng J, Zhang X, Yang J, Wang Y. Lung injury and expression of p53 and p16 in Wistar rats induced by respirable chrysotile fiber dust from four primary areas of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22389-22399. [PMID: 28963651 DOI: 10.1007/s11356-017-0279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Chrysotile products were widely used in daily life, and a large amount of respirable dust was produced in the process of production and application. At present, there was seldom research on the safety of chrysotile fiber dust, and whether its long-term inhalation can lead to lung cancer was unknown. In order to determine whether respirable chrysotile fiber dust of China caused lung cancer, four major chrysotile-producing mine areas in China were selected for this study. Chrysotile fibers were prepared into respirable dust. Particle size was measured by laser particle analysis, morphology was observed by scanning electron microscope, chrysotile fiber phase was analyzed by X-ray diffraction, trace chemical elements were identified by X-ray fluorescence, and the structure and the active groups of the dust were determined after grinding by Fourier transform infrared spectroscopy. Male Wistar rats were exposed to non-exposed intratracheal instillation with different concentrations of chrysotile fiber dust. The rats were weighed after 1, 3, and 6 months, then the lung tissues were separated, the lung morphology was observed, and the pulmonary index was calculated. Pathological changes in lung tissues were observed by optical microscope after the HE staining of tissues, and the gene expression of p53 and p16 was determined by reverse transcription polymerase chain reaction. First, the results showed that the particle sizes of the four fibers were less than 10 μm. Four primary areas of chrysotile had similar fibrous structure, arranged in fascicles, or mixed with thin chunks of material. Second, the elementary composition of the four fibers was mainly chrysotile, and the structure and the active groups of the grinding dust were not damaged. Third, the weights of the treated rats were obviously lower, and the lung weights and the pulmonary index increased significantly (P < 0.05). Fourth, the treated Wistar rat lung tissues revealed different degrees of congestion, edema, inflammatory cell infiltration, and mild fibrosis. Fifth, the p53 and p16 genes decreased in the Mangnai group after 1 month of exposure, and the other groups increased. The expression of p53 and p16 in each group decreased significantly after 6 months (P < 0.05). In conclusion, the respirable chrysotile fiber dust from the four primary areas of China had the risk of causing lung injury, and these changes may be related to the physical and chemical characteristics of chrysotile from different production areas.
Collapse
Affiliation(s)
- Yali Zeng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ji Ma
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Tingting Huo
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jianjun Deng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China.
| | - Xu Zhang
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Jie Yang
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Yulin Wang
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Yang X, Sun Y, Li H, Shao Y, Zhao D, Yu W, Fu J. C-terminal binding protein-2 promotes cell proliferation and migration in breast cancer via suppression of p16INK4A. Oncotarget 2018; 8:26154-26168. [PMID: 28412731 PMCID: PMC5432247 DOI: 10.18632/oncotarget.15402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/01/2017] [Indexed: 01/27/2023] Open
Abstract
C-terminal binding protein-2 (CtBP2) enhances cancer proliferation and metastasis. The role and mechanism of CtBP2 in breast cancer remains to be elucidated. Western blot and immunochemistry were employed to evaluate the level of CtBP2 and p16INK4A in breast cancer. Genetic manipulation was used to study the expression of p16INK4A and its downstream genes regulated by CtBP2. Functional assays, including colony formation, wound healing, transwell invasion, anchorage-independent growth assay and a xenograft tumor model were used to determine the oncogenic role of CtBP2 in breast cancer progression. The expression of CtBP2 was increased in breast cancer tissues and cell lines. The expression of p16INK4A were inversely correlated CtBP2 (r2 = 0.43, P < 0.01). The expression of both CtBP2 and p16INK4A were significantly related to histological differentiation (P < 0.01 and P = 0.004, respectively) and metastasis (P = 0.046 and 0.047, respectively). The overall survival rate was lower in patients with increased CtBP2 expression and lower p16INK4A expression. Knockdown of CtBP2 resulted in the activation of p16INK4A and down–regulation of cell cycle regulators cyclin D, cyclin E and cyclin-dependent kinase 2 and 4. This down-regulation also led to a decreased transition of the G1-S phase in breast cancer cells. Moreover, gain-of-function experiments showed that CtBP2 suppressed p16INK4A and matrix metalloproteinase-2, subsequently enhancing the migration in breast cancer. However, the silence of CtBP2 abrogated this effect. Collectively, these findings provide insight into the role CtBP2 plays in promoting proliferation and migration in breast cancer by the inhibition of p16INK4A.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yi Sun
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hongling Li
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yuhui Shao
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Depeng Zhao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Weiwei Yu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
6
|
He Y, Zhang X, Wang L, Tian Z, Liu Q, Yao J, Liu Y, Li C, Min L, Shan B. Detection of cancer specific mutations in early-stage non-small cell lung cancer using cell-free DNA by targeted sequencing. Int J Oncol 2016; 49:2351-2358. [DOI: 10.3892/ijo.2016.3731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/05/2016] [Indexed: 11/06/2022] Open
|
7
|
Zhang M, Wang W, Li T, Yu X, Zhu Y, Ding F, Li D, Yang T. Long noncoding RNA SNHG1 predicts a poor prognosis and promotes hepatocellular carcinoma tumorigenesis. Biomed Pharmacother 2016; 80:73-79. [PMID: 27133041 DOI: 10.1016/j.biopha.2016.02.036] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the main cause of cancer mortality worldwide. Its poor prognosis is mainly ascribed to high recurrence rate. Identifying novel prognostic biomarkers and therapeutic targets would be vital for HCC management. Long noncoding RNA (lncRNA) is a class of RNA with various roles in tumorigenesis. The aim of this study was to investigate the clinical significance and functions of lncRNA-small nucleolar RNA host gene 1 (SNHG1) in HCC. In this study, we found SNHG1 was upregulated in HCC tissues in comparison with adjacent liver tissues in both publicly available microarray data and our own cohort. High SNHG1 expression was correlated with large tumor size, poor differentiation, and aggressive BCLC stage. Kaplan-Meier survival analysis demonstrated that high SNHG1 expression predicts poor prognosis of HCC patients. Gain-of-function and loss-of function experiments showed that SNHG1 promotes HCC cells proliferation, cell cycle progression, and inhibits HCC cells apoptosis. Further experiments revealed that SNHG1 promotes HCC cells proliferation through inhibiting p53 and p53-target genes expression. Collectively, our results demonstrated the clinical prognostic significance and roles of SNHG1 in HCC, and suggested that SNHG1 may be considered as a prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Min Zhang
- Department of General Surgery, Microinvasive Liver and Pancreas Surgery Unit, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Wei Wang
- Department of General Surgery, Microinvasive Liver and Pancreas Surgery Unit, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China.
| | - Tianyue Li
- Grade 12 Class 8, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Xiaodong Yu
- Department of General Surgery, Microinvasive Liver and Pancreas Surgery Unit, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Yufeng Zhu
- Department of General Surgery, Microinvasive Liver and Pancreas Surgery Unit, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Feng Ding
- Department of General Surgery, Microinvasive Liver and Pancreas Surgery Unit, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Dongsheng Li
- Department of General Surgery, Microinvasive Liver and Pancreas Surgery Unit, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Tao Yang
- Department of General Surgery, Microinvasive Liver and Pancreas Surgery Unit, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
8
|
Lim HJ, Crowe P, Yang JL. Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol 2015; 141:671-89. [PMID: 25146530 DOI: 10.1007/s00432-014-1803-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/08/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE PTEN is an essential tumour suppressor gene which encodes a phosphatase protein that antagonises the PI3K/Akt/mTOR antiapoptotic pathway. Impairment of this tumour suppressor pathway potentially becomes a causal factor for development of malignancies. This review aims to assess current understanding of mechanisms of dysfunction involving the PI3K/PTEN/Akt/mTOR pathway linked to tumorigenesis and evaluate the evidence for targeted therapy directed at this signalling axis. METHODS Relevant articles in scientific databases were identified using a combination of search terms, including "malignancies", "targeted therapy", "PTEN", and "combination therapy". These databases included Medline, Embase, Cochrane Review, Pubmed, and Scopus. RESULTS PI3K/PTEN expression is frequently deregulated in a majority of malignancies through genetic, epigenetic, and post-transcriptional modifications. This contributes to the upregulation of the PI3K/Akt/mTOR pathway which has been the focus of intense clinical studies. Targeted agents aimed at this pathway offer a novel treatment approach in a variety of haematologic malignancies and solid tumours. Compared to single-agent use, greater response rates were obtained in combination regimens, supporting further investigation of suitable drug combinations in a broad spectrum of malignancies. CONCLUSION Activation of the PI3K/PTEN/Akt/mTOR pathway is implicated both in the pathogenesis of malignancies and development of resistance to anticancer therapies. Therefore, PI3K/Akt/mTOR inhibitors are a promising therapeutic option, in association with systemic cytotoxic and biological therapies, to enable sustained clinical outcomes in cancer treatment. Therapeutic strategies could be tailored according to appropriate biomarkers and patient-specific mutation profiles to maximise benefit of combination therapies.
Collapse
Affiliation(s)
- Hui Jun Lim
- Adult Cancer Program, Sarcoma and Nano-oncology Group, Faculty of Medicine, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Room 209, Randwick, Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
9
|
Modulation of NF-κB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS One 2015; 10:e0121547. [PMID: 25799148 PMCID: PMC4370674 DOI: 10.1371/journal.pone.0121547] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/02/2015] [Indexed: 12/15/2022] Open
Abstract
Background Platinum-based chemotherapy is a standard strategy for non-small cell lung cancer (NSCLC), while chemoresistance remains a major therapeutic challenge in current clinical practice. Our present study was aimed to determine whether inhibition of the NF-κB/miR-21/PTEN pathway could increase the sensitivity of NSCLC to cisplatin. Methods The expression of miR-21 in NSCLC tissues was determined using in situ hybridization. Next, the effect of miR-21 on the sensitivity of A549 cells to cisplatin was determined in vitro. Whether miR-21 regulated PTEN expression was assessed by luciferase assay. Furthermore, whether NF-κB targeted its binding elements in the miR-21 gene promoter was determined by luciferase and ChIP assay. Finally, we measured the cell viability and apoptosis under cisplatin treatment when NF-κB was inhibited. Results An elevated level of miR-21 was observed in NSCLC lung tissues and was related to a short survival time. Exogenous miR-21 promoted cell survival when exposed to cisplatin, while miR-21 inhibition could reverse this process. The RNA and protein levels of PTEN were significantly decreased by exogenous miR-21, and the 3′-untranslated region of PTEN was shown to be a target of miR-21. The expression of miR-21 was regulated by NF-κB binding to its element in the promoter, a finding that was verified by luciferase and ChIP assay. Hence, inhibition of NF-κB by RNA silencing protects cells against cisplatin via decreasing miR-21 expression. Conclusion Modulation of the NF-κB/miR-21/PTEN pathway in NSCLC showed that inhibition of this pathway may increase cisplatin sensitivity.
Collapse
|