1
|
Guo B, Gu J, Zhuang T, Zhang J, Fan C, Li Y, Zhao M, Chen R, Wang R, Kong Y, Xu S, Gao W, Liang L, Yu H, Han T. MicroRNA-126: From biology to therapeutics. Biomed Pharmacother 2025; 185:117953. [PMID: 40036996 DOI: 10.1016/j.biopha.2025.117953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
MicroRNA-126 (miR-126) has emerged as one of the most extensively studied microRNAs in the context of human diseases, particularly in vascular disorders and cancer. Its high degree of conservation across vertebrates underscores its evolutionary significance and essential functional roles. Extensive research has been devoted to elucidating the molecular mechanisms through which miR-126 modulates key physiological and pathological processes, including angiogenesis, immune response, inflammation, tumor growth, and metastasis. Furthermore, miR-126 plays a causal role in the pathogenesis of various diseases, serving as potential biomarkers for disease prediction, diagnosis, prognosis and drug response, as well as a promising therapeutic target. In this review, we synthesize findings from 283 articles, focusing on the roles of miR-126 in critical biological processes such as cell development, survival, cycle regulation, proliferation, migration, invasion, communication, and metabolism. Additionally, miR-126 represents a promising candidate for miRNA-based therapeutic strategies. A comprehensive understanding and evaluation of miR-126 are crucial for advancing its clinical applications and therapeutic potential.
Collapse
Affiliation(s)
- Bei Guo
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongtian Zhuang
- Department of Dermatology, Air Force Hospital of Northern Theater Command, Shenyang, China
| | - Jingbin Zhang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyang Fan
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiyao Li
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Mengdi Zhao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ruoran Chen
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Rui Wang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuan Kong
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuang Xu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Gao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Linlang Liang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Yu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Zhang Y, Cao J, Yuan Z, Zhou J, Zuo H, Miao X, Gu X. Knockdown of SLC7A5 inhibits malignant progression and attenuates oxaliplatin resistance in gastric cancer by suppressing glycolysis. Mol Med 2025; 31:115. [PMID: 40133832 PMCID: PMC11938572 DOI: 10.1186/s10020-025-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Chemotherapy resistance is a major challenge in the treatment of intermediate and advanced gastric cancer (GC). This study aimed to recognize oxaliplatin resistance-related genes (OXARGs) in GC and to explore their role and mechanism in oxaliplatin resistance of GC. METHODS OXARGs with prognostic value in GC were analyzed using GC oxaliplatin resistance data from the GEO and TCGA databases. RT-qPCR and WB assay were applied to verify the expression of MT2A, NOTCH1 and SLC7A5 in oxaliplatin-resistant GC cells (HGC27R and MKN45R). The effect of SLC7A5 on the malignant phenotype of oxaliplatin-resistant GC cells was verified by CCK-8, EDU, TUNEL, colony formation, wound healing, transwell assay, tumor bearing experiments and WB assay. RESULTS Bioinformatics analysis and experimental validation indicate that SLC7A5 was a target for oxaliplatin-resistance in GC. Knockdown of SLC7A5 obviously decreased the viability, migration, and invasion of oxaliplatin-resistant GC cells in vitro and tumor growth in vivo. It also increased the apoptosis levels and BAX expression, and reduced the expression of BCL2, MMP 2 and MMP9. Additionally, the knockdown of SLC7A5 enhanced the sensitivity of oxaliplatin-resistant GC cells to oxaliplatin both in vitro and in vivo. Furthermore, knockdown of SLC7A5 downregulated the expression of HK2, LDHA, Glut1, and PDK1 both in vivo and in vitro, leading to increased extracellular glucose levels and decreased lactate levels. However, glutathione significantly attenuated the regulatory effect of SLC7A5 knockdown on the malignant phenotype of oxaliplatin-resistant GC cells. TRIAL REGISTRATION Not Applicable. CONCLUSION Knockdown of SLC7A5 inhibits malignant progression and attenuates oxaliplatin resistance in GC by suppressing glycolysis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China.
| | - Jian Cao
- Department of Gastroenterology, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Daoqianjie 26, Suzhou, 215000, China
| | - Zheng Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China
| | - Jiahui Zhou
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China
| | - Hao Zuo
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China
| | - Xinsheng Miao
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China.
| |
Collapse
|
3
|
Liu X, Nishikubo K, Ohgaki R, Okanishi H, Okuda S, Xu M, Kanai Y. Identification of tumor-suppressive miRNAs that target amino acid transporter LAT1 and exhibit anti-proliferative effects on cholangiocarcinoma cells. J Pharmacol Sci 2024; 154:301-311. [PMID: 38485348 DOI: 10.1016/j.jphs.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Amino acid transporter LAT1 is highly upregulated in various cancer types, including cholangiocarcinoma (CHOL), and contributes to the rapid proliferation of cancer cells and disease progression. However, the molecular mechanisms underlying the pathological upregulation of LAT1 remain largely unknown. This study pursued the possibility of miRNA-mediated regulation of the LAT1 expression in CHOL cells. Using online target prediction methods, we extracted five candidate miRNAs commonly predicted to regulate the LAT1 expression. Three of them, miR-194-5p, miR-122-5p, and miR-126-3p, were significantly downregulated in CHOL cancer compared to normal tissues. Correlation analysis revealed weak-to-moderate negative correlations between the expression of these miRNAs and LAT1 mRNA in CHOL cancer tissues. We selected miR-194-5p and miR-122-5p for further analyses and found that both miRNAs functionally target 3'UTR of LAT1 mRNA by a luciferase-based reporter assay. Transfection of the miRNA mimics significantly suppressed the LAT1 expression at mRNA and protein levels and inhibited the proliferation of CHOL cells, with a trend of affecting intracellular amino acids and amino acid-related signaling pathways. This study indicates that the decreased expression of these LAT1-targeting tumor-suppressive miRNAs contributes to the upregulation of LAT1 and the proliferation of CHOL cells, highlighting their potential for developing novel cancer therapeutics and diagnostics.
Collapse
Affiliation(s)
- Xingming Liu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kou Nishikubo
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Kalita A, Sikora-Skrabaka M, Nowakowska-Zajdel E. Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review. Curr Issues Mol Biol 2023; 45:2917-2936. [PMID: 37185715 PMCID: PMC10136553 DOI: 10.3390/cimb45040191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastrointestinal (GI) cancers are some of the most common cancers in the world and their number is increasing. Their etiology and pathogenesis are still unclear. ADAM proteins are a family of transmembrane and secreted metalloproteinases that play a role in cancerogenesis, metastasis and neoangiogenesis. MicroRNAs are small single-stranded non-coding RNAs that take part in the post-transcriptional regulation of gene expression. Some ADAM proteins can be targets for microRNAs. In this review, we analyze the impact of microRNA/ADAM protein axes in GI cancers.
Collapse
Affiliation(s)
- Agnieszka Kalita
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Magdalena Sikora-Skrabaka
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| |
Collapse
|
5
|
Yi C, Yu AM. MicroRNAs in the Regulation of Solute Carrier Proteins Behind Xenobiotic and Nutrient Transport in Cells. Front Mol Biosci 2022; 9:893846. [PMID: 35755805 PMCID: PMC9220936 DOI: 10.3389/fmolb.2022.893846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Altered metabolism, such as aerobic glycolysis or the Warburg effect, has been recognized as characteristics of tumor cells for almost a century. Since then, there is accumulating evidence to demonstrate the metabolic reprogramming of tumor cells, addiction to excessive uptake and metabolism of key nutrients, to support rapid proliferation and invasion under tumor microenvironment. The solute carrier (SLC) superfamily transporters are responsible for influx or efflux of a wide variety of xenobiotic and metabolites that are needed for the cells to function, as well as some medications. To meet the increased demand for nutrients and energy, SLC transporters are frequently dysregulated in cancer cells. The SLCs responsible for the transport of key nutrients for cancer metabolism and energetics, such as glucose and amino acids, are of particular interest for their roles in tumor progression and metastasis. Meanwhile, rewired metabolism is accompanied by the dysregulation of microRNAs (miRNAs or miRs) that are small, noncoding RNAs governing posttranscriptional gene regulation. Studies have shown that many miRNAs directly regulate the expression of specific SLC transporters in normal or diseased cells. Changes of SLC transporter expression and function can subsequently alter the uptake of nutrients or therapeutics. Given the important role for miRNAs in regulating disease progression, there is growing interest in developing miRNA-based therapies, beyond serving as potential diagnostic or prognostic biomarkers. In this article, we discuss how miRNAs regulate the expression of SLC transporters and highlight potential influence on the supply of essential nutrients for cell metabolism and drug exposure toward desired efficacy.
Collapse
Affiliation(s)
- Colleen Yi
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
6
|
Wang H, Ma Z, Cheng X, Tuo B, Liu X, Li T. Physiological and Pathophysiological Roles of Ion Transporter-Mediated Metabolism in the Thyroid Gland and in Thyroid Cancer. Onco Targets Ther 2020; 13:12427-12441. [PMID: 33299328 PMCID: PMC7721308 DOI: 10.2147/ott.s280797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the most common type of endocrine tumor and has shown an increasing annual incidence, especially among women. Patients with thyroid cancer have a good prognosis, with a high five-year survival rate; however, the recurrence rate and disease status of thyroid cancer remain a burden for patients, which compels us to further elucidate the pathogenesis of this disease. Recently, ion transporters have gradually become a hot topic in the field of thyroid gland biology and cancer research. Additionally, alterations in the metabolic state of tumor cells and protein molecules have gradually become the focus of scientific research. This review focuses on the progress in understanding the physiological and pathophysiological roles of ion transporter-mediated metabolism in both the thyroid gland and thyroid cancer. We also hope to shed light on new targets for the treatment and prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Digestive Disease Institute of Guizhou Province, Zunyi, People’s Republic of China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Digestive Disease Institute of Guizhou Province, Zunyi, People’s Republic of China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| |
Collapse
|
7
|
Workman DG, Hunter M, Wang S, Brandel J, Hubscher V, Dover LG, Tétard D. The influence of linkages between 1-hydroxy-2(1H)-pyridinone coordinating groups and a tris(2-aminoethyl)amine core in a novel series of synthetic hexadentate iron(III) chelators on antimicrobial activity. Bioorg Chem 2019; 95:103465. [PMID: 31855824 DOI: 10.1016/j.bioorg.2019.103465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/30/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Resistance of pathogens to antimicrobials is a major current healthcare concern. In a series of linked studies, we have investigated synthetic iron chelators based on hydroxy-pyridinone ligands as novel bacteriostatic agents. Herein we describe our synthesis of several useful building blocks based on the 1-hydroxy-2(1H)-pyridinone moiety, including a novel formyl derivative, which were combined with a tris(2-aminoethyl)amine core to obtain a series of new high-affinity hexadentate Fe(III) chelators. The design principle examined by this series is the size and flexibility of the linker between the core and the metal ligands. Measurement of the pKa and stability constants (Fe3+ and Cu2+) of representative coordinating groups was performed to help rationalise the biological activity of the chelators. The novel chelators were tested on a panel of representative microorganisms with some effectively inhibiting microbial growth. We demonstrate that the nature and position of the linker between the hydroxypyridinone and the tris(2-aminoethyl)amine core has considerable impact upon microbial growth inhibition and that both amide or amine linkages can give efficacious chelators.
Collapse
Affiliation(s)
- David G Workman
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Michael Hunter
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Shuning Wang
- Université de Strasbourg, IPHC, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Jérémy Brandel
- Université de Strasbourg, IPHC, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Véronique Hubscher
- Université de Strasbourg, IPHC, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Lynn G Dover
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - David Tétard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom.
| |
Collapse
|
8
|
Zhu F, Li Q, Yang Y, Wang L, Wang J. Propofol Suppresses Proliferation, Migration, Invasion And Promotes Apoptosis By Upregulating microRNA-140-5p In Gastric Cancer Cells. Onco Targets Ther 2019; 12:10129-10138. [PMID: 31819507 PMCID: PMC6885654 DOI: 10.2147/ott.s225360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the anti-tumor effect of propofol on gastric cancer (GC) and its underlying mechanisms. Patients and methods SGC-7901 and MKN45 cells were transfected and divided into the following groups: Control group, Propofol group, Propofol+miR-140-5p inhibitor group and miR-140-5p inhibitor group. Moreover, cell proliferation, apoptosis, migration and invasion of SGC-7901 and MKN45 cells were evaluated by BrdU incorporation assay, Annexin V-FITC/PI double staining assay, wound healing assay and transwell assay, respectively. The mRNA expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 were detected by qRT-PCR. Cleaved caspase-3, Bcl-2, MMP-2 and MMP-9 expressions were detected by Western blot. Results Propofol inhibited cell proliferation, migration and invasion, but promoted cell apoptosis in SGC-7901 and MKN45 cells. Propofol also elevated the expression of miR-140-5p. Suppression of miR-140-5p could reverse the effects of propofol on the biological behavior of SGC-7901 and MKN45 cells. Meanwhile, propofol treatment increased the expression of cleaved caspase-3 but decreased Bcl-2, MMP-2 and MMP-9 in SGC-7901 and MKN45 cells. The expression of cleaved caspase-3 was downregulated while Bcl-2, MMP-2 and MMP-9 were upregulated by miR-140-5p suppression. Conclusion Propofol could inhibit cell proliferation, migration and invasion, as well as promote cell apoptosis by upregulating miR-140-5p in gastric cancer cells.
Collapse
Affiliation(s)
- Fengbo Zhu
- Department of Gastroenterology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Qiuxia Li
- Department of Gastroenterology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Ying Yang
- Department of Hyperbaric Oxygen, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Liangui Wang
- Department of Gastroenterology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Jing Wang
- Department of Anesthesiology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| |
Collapse
|
9
|
Hu M, Xiong S, Chen Q, Zhu S, Zhou X. Novel role of microRNA-126 in digestive system cancers: From bench to bedside. Oncol Lett 2019; 17:31-41. [PMID: 30655735 PMCID: PMC6313097 DOI: 10.3892/ol.2018.9639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed, small, non-coding RNAs that regulate the expression of approximately 30% of the human genes at the post-transcriptional level. miRNAs have emerged as crucial modulators in the initiation and progression of various diseases, including numerous cancer types. The high incidence rate of cancer and the large number of cancer-associated cases of mortality are mostly due to a lack of effective treatments and biomarkers for early diagnosis. Therefore there is an urgent requirement to further understand the underlying mechanisms of tumorigenesis. MicroRNA-126 (miR-126) is significantly downregulated in a number of tumor types and is commonly identified as a tumor suppressor in digestive system cancers (DSCs). miR-126 downregulates various oncogenes, including disintegrin and metalloproteinase domain-containing protein 9, v-crk sarcoma virus CT10 oncogene homolog and phosphoinositide-3-kinase regulatory subunit 2. These genes are involved in a number of tumor-associated signaling pathways, including angiogenesis, epithelial-mensenchymal transition and metastasis pathways. The aim of the current review was to summarize the role of miR-126 in DSCs, in terms of its dysregulation, target genes and associated signaling pathways. In addition, the current review has discussed the potential clinical application of miR-126 as a biomarker and therapeutic target for DSCs.
Collapse
Affiliation(s)
- Mingli Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shengwei Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Qiaofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shixuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
10
|
Lou W, Chen J, Ding B, Chen D, Zheng H, Jiang D, Xu L, Bao C, Cao G, Fan W. Identification of invasion-metastasis-associated microRNAs in hepatocellular carcinoma based on bioinformatic analysis and experimental validation. J Transl Med 2018; 16:266. [PMID: 30268144 PMCID: PMC6162949 DOI: 10.1186/s12967-018-1639-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most lethal cancer, mainly attributing to its high tendency to metastasis. Vascular invasion provides a direct path for solid tumor metastasis. Mounting evidence has demonstrated that microRNAs (miRNAs) are related to human cancer onset and progression including invasion and metastasis. Methods In search of invasion-metastasis-associated miRNAs in HCC, microarray dataset GSE67140 was downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs (DE-miRNAs) were obtained by R software package and the potential target genes were predicted by miRTarBase. The database for annotation, visualization and integrated discovery (DAVID) was introduced to perform functional annotation and pathway enrichment analysis for these potential targets of DE-miRNAs. Protein–protein interaction (PPI) network was established by STRING database and visualized by Cytoscape software. The effects of the miR-494-3p and miR-126-3p on migration and invasion of HCC cell lines were evaluated by conducting wound healing assay and transwell assay. Results A total of 138 DE-miRNAs were screened out, including 57 upregulated miRNAs and 81 downregulated miRNAs in human HCC tumors with vascular invasion compared with human HCC tumors without vascular invasion. 762 target genes of the top three upregulated and downregulated miRNAs were predicted, and they were involved in HCC-related pathways, such as pathway in cancer, focal adhesion and MAPK signaling pathway. In the PPI network, the top 10 hub nodes with higher degrees were identified as hub genes, such as TP53 and MYC. Through constructing the miRNA-hub gene network, we found that most of hub genes could be potentially modulated by miR-494-3p and miR-126-3p. Of note, miR-494-3p and miR-126-3p was markedly upregulated and downregulated in HCC cell lines and tissues, respectively. In addition, overexpression of miR-494-3p could significantly promote HCC migration and invasion whereas overexpression of miR-126-3p exerted an opposite effect. Conclusions Targeting miR-494-3p and miR-126-3p may provide effective and promising approaches to suppress invasion and metastasis of HCC. Electronic supplementary material The online version of this article (10.1186/s12967-018-1639-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Jing Chen
- Department of Oncology, The First Hospital of Jiaxing, Jiaxing, 314000, Zhejiang, China.,First Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Huilin Zheng
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Donghai Jiang
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Chang Bao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Guoqiang Cao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China. .,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang, China. .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China. .,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
11
|
Cha Y, He Y, Ouyang K, Xiong H, Li J, Yuan X. MicroRNA-140-5p suppresses cell proliferation and invasion in gastric cancer by targeting WNT1 in the WNT/β-catenin signaling pathway. Oncol Lett 2018; 16:6369-6376. [PMID: 30405773 PMCID: PMC6202481 DOI: 10.3892/ol.2018.9480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs have been suggested as potential regulators in gastric cancer (GC) development through affecting the expression of their target genes. Previous studies have demonstrated that miR-140-5p is downregulated in GC. However, the underlying functional role of miR-140-5p in GC remains largely unknown. The present study revealed that miR-140-5p expression was significantly decreased in 60 GC tissues, compared with corresponding adjacent non-tumor tissues. A lower miR-140-5p expression was significantly associated with lymph node metastasis and an advanced Tumor-Node-Metastasis stage in patients with GC. Furthermore, patients with a lower miR-140-5p expression exhibited shorter disease-free survival and overall survival times. Gain- and loss-of-function assays revealed that increased miR-140-5p expression significantly inhibited GC cell proliferation and invasion ability, as well as the Wnt/β-catenin signaling pathway by decreasing WNT1 and β-catenin expression. However, decreasing miR-140-5p expression had the opposite effects. Bioinformatics methods and dual-luciferase reporter assays revealed that WNT1 was a direct target of miR-140-5p. miR-140-5p suppressed cell proliferation and invasion by regulating WNT1 expression. Therefore, the results of the present study demonstrated that miR-140-5p may serve as a potential prognostic marker and therapeutic target in patients with GC.
Collapse
Affiliation(s)
- Yinlian Cha
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Ying He
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Kaobin Ouyang
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Hailin Xiong
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Jun Li
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Xia Yuan
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| |
Collapse
|
12
|
Ding K, Tan S, Huang X, Wang X, Li X, Fan R, Zhu Y, Lobie PE, Wang W, Wu Z. GSE1 predicts poor survival outcome in gastric cancer patients by SLC7A5 enhancement of tumor growth and metastasis. J Biol Chem 2018; 293:3949-3964. [PMID: 29367342 DOI: 10.1074/jbc.ra117.001103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer remains a malignancy with poor survival outcome. We herein report that GSE1, a proline-rich protein, possesses a role in the progression of human gastric cancer. The expression of GSE1 was observed to be much higher in human gastric cancer tissues compared with normal gastric tissues, and GSE1 expression correlated positively with lymph node metastasis, histological grade, depth of invasion, and clinical stage in gastric cancer patients. Moreover, GSE1 expression was also associated with decreased post-operative relapse-free survival and overall survival in the cohort. The forced expression of GSE1 in gastric cancer cell lines resulted in increased cell proliferation, increased colony formation, enhanced cell migration, and invasion. Furthermore, forced expression of GSE1 also increased tumor size and enhanced lung metastasis in xenograft models. The depletion of endogenous GSE1 with shRNAs decreased the oncogenicity and invasiveness of gastric cancer cells both in vitro and in vivo In addition, GSE1 was determined to be a direct target of miR-200b and miR-200c. Furthermore, GSE1 positively regulated the downstream gene SLC7A5 (also known as LAT-1), which was scanned and verified from mRNA sequencing. GSE1 therefore possesses an oncogenic role in human gastric cancer, and targeted therapeutic approaches to inhibit GSE1 function in gastric cancer warrant further consideration.
Collapse
Affiliation(s)
- Keshuo Ding
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China.,the Department of Pathology and
| | - Sheng Tan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xing Huang
- the Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.,the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaonan Wang
- the Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | | | - Rong Fan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Zhu
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Peter E Lobie
- the Tsinghua-Berkeley Shenzhen Institute and Division of Life Sciences and Health, Tsinghua University Graduate School, Shenzhen 518055, China, and.,the Cancer Science Institute of Singapore and Department of Pharmacology, National University Health System, National University of Singapore, Singapore 117599
| | - Wenbin Wang
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China,
| | | |
Collapse
|
13
|
Li X, Wu H, Ouyang X, Zhang B, Su X. New bioactive peptide reduces the toxicity of chemotherapy drugs and increases drug sensitivity. Oncol Rep 2017; 38:129-140. [PMID: 28560442 DOI: 10.3892/or.2017.5674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/04/2016] [Indexed: 11/06/2022] Open
Abstract
Anticancer bioactive peptide (ACBP) is extracted from normal goat spleens and exhibits antitumor activity alone and in combination with low cisplatin doses to achieve antitumor efficacy similar to higher cisplatin doses via sustained medication modes. In the present study, we investigated whether elevated levels of induced or normal ACBP in MKN‑45 gastric cancer (GC) cells may reduce their toxicity to oxaliplatin (L‑OHP) in a dose‑dependent manner. The growth inhibition rate (IR), morphological changes and gene expression were examined in MKN‑45 GC cells. Compared with normal ACBP, induced ACBP alone significantly enhanced the anticancer activity of L‑OHP‑mediated apoptosis and reduced the amount and side‑effects of L‑OHP (P<0.05). The inhibition of cancer cell growth at high concentrations of induced ACBP and L‑OHP was significantly more effective than at low concentrations. In addition, for the first time, we examined the potential of a combination of induced ACBP and L‑OHP to increase L‑OHP sensitivity in human gastric carcinoma xenograft tumors. Nude mice were implanted with human gastric carcinoma MKN‑45 cells and treated with an intraperitoneal injection of 0.5 ml of normal saline, 30 µg/ml ACBP, 20 µg/ml L‑OHP or 30 µg/ml ACBP + 20 µg/ml L‑OHP [combination of anticancer bioactive peptide and oxaliplatin (A+L)] via the tail vein twice a week. In vivo short‑term intermittent use of induced ACBP alone significantly inhibited MKN‑45 tumor growth. The combination of induced ACBP and L‑OHP also significantly improved the quality of life of the nude mice and reduced the toxicity of L‑OHP. Based on flow cytometry and gene expression analyses, A+L significantly increased the proportion of cells in the G2/M phase (P<0.05) relative to ACBP or L‑OHP alone, and short‑term intraperitoneal injection of ACBP increased the sensitizing effect of L‑OHP. Collectively, these results suggest that high levels of induced ACBP in combination with L‑OHP via a short‑term intermittent medication mode could be a useful clinical therapeutic strategy for GC.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Huijun Wu
- Department of Hepatobiliary Pancreatic Surgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Xiaohui Ouyang
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Bo Zhang
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
14
|
Wang J, Zhou Y, Fei X, Chen X, Yan J, Liu B, Zhu Z. ADAM9 functions as a promoter of gastric cancer growth which is negatively and post-transcriptionally regulated by miR-126. Oncol Rep 2017; 37:2033-2040. [DOI: 10.3892/or.2017.5460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/09/2016] [Indexed: 11/06/2022] Open
|
15
|
Wang P, Li Z, Liu H, Zhou D, Fu A, Zhang E. MicroRNA-126 increases chemosensitivity in drug-resistant gastric cancer cells by targeting EZH2. Biochem Biophys Res Commun 2016; 479:91-6. [PMID: 27622325 DOI: 10.1016/j.bbrc.2016.09.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Chemotherapeutic insensitivity is a significant barrier for effective treatment of gastric cancer (GC). Recently, emerging evidence has demonstrated that microRNAs (miRNAs) are critically involved in drug resistance. Here, by a large-scale screen, we noticed low expression of miR-126 in the drug-resistant GC cell lines SGC7901/VCR and SGC7901/ADR compared with their parental cell line SGC7901. Ectopic expression of miR-126 increased sensitivity of SGC7901/VCR and SGC7901/ADR cells to vincristine (VCR) and adriamycin (ADR). Mechanistically, Enhancer of Zeste Homolog 2 (EZH2) was identified as a direct target of miR-126. Genetic silencing of EZH2 mirrored the effects of miR-126 in drug resistance, and restoration of EZH2 blocked the inhibitory effect of miR-126 on GC. Taken together, our results suggest that miR-126 is a tumor suppressor by sensitizing GC cells to chemotherapy and provide a potential therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- Ping Wang
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Ziqiu Li
- Department of General Surgery, The People's Hospital of Rushan City, Rushan, Shandong 264500, PR China
| | - Haide Liu
- Department of Radiation Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Dongmei Zhou
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Aiqin Fu
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Enning Zhang
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a rare disease with poor prognosis and no therapeutics. PAH is characterized by severe remodeling of precapillary pulmonary arteries, leading to increased vascular resistance, pulmonary hypertension compensatory right ventricular hypertrophy, then heart failure and death. PAH pathogenesis shares similarities with carcinogenesis such as excessive cell proliferation, apoptosis resistance, metabolic shifts, or phenotypic transition. Although PAH is not a cancer, comparison of analogous mechanisms between PAH and cancer led to the concept of a cancer-like disease to emerge. MicroRNAs (miRNAs) are small noncoding RNAs involved in the regulation of posttranscriptional gene expression. miRNA dysregulations have been reported as promoter of the development of various diseases including cancers. RECENT FINDINGS Recent studies revealed that miRNA dysregulations also occur in PAH pathogenesis. In PAH, different miRNAs have been implicated to be the main features of PAH pathophysiology (in pulmonary inflammation, vascular remodeling, angiogenesis, and right heart hypertrophy). SUMMARY The review summarizes the implication of miRNA dysregulation in PAH development and discusses the similarities and differences with those observed in cancers.
Collapse
|