1
|
Banimohammad M, Khalafi P, Gholamin D, Bangaleh Z, Akhtar N, Solomon AD, Prabhakar PK, Sanami S, Prakash A, Pazoki-Toroudi H. Exploring recent advances in signaling pathways and hallmarks of uveal melanoma: a comprehensive review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002306. [PMID: 40177537 PMCID: PMC11964777 DOI: 10.37349/etat.2025.1002306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
The purpose of this review was to provide a comprehensive review of the latest insights on the pathogenesis of uveal melanoma (UM) and its intracellular pathways. This article covers the epidemiology of UM, racial predispositions, cytogenetic and chromosomal alterations, gene mutations, key defective pathways, and their underlying mechanisms, as well as the application of hallmarks of cancer to UM. A key knowledge gap remains in identifying the most effective targeted therapy and determining the central pathway linking multiple signaling networks. UM is a malignant tumor arising from uveal melanocytes, predominantly affecting the choroid, with both genetic and epigenetic contributors. Key cytogenetic alterations include monosomy 3, chromosome 6p gain, chromosome 1p loss, and chromosome 8q gain. The most important UM-related signaling pathways are RAS/MAPK, PI3K/Akt/mTOR, Hippo-YAP, retinoblastoma (Rb), and p53 pathways. In the RAS/MAPK pathway, GNAQ/GNA11 mutations occur which account for more than 80% of UM cases. The PI3K/Akt/mTOR pathway promotes cyclin D1 overexpression and MDM2 upregulation, leading to p53 pathway inhibition. GNAQ/GNA11 mutations activate YAP via the Trio-RhoGTPase/RhoA/Rac1 signaling circuit in the Hippo-YAP pathway. Rb pathway dysregulation results from cyclin D1 overexpression or cyclin-dependent kinase inhibitor (CDKI) inactivation. In the p53 pathway, UM is characterized by p53 mutations, MDM2 overexpression, and Bcl-2 deregulation. Eventually, the ARF-MDM2 axis serves as a critical link between the RAS and p53 pathways. Hallmarks of cancer, such as evasion of growth suppression and self-sufficiency in growth signals, are also evident in UM. Genetic and epigenetic alterations, including NSB1, MDM2 and CCND1 amplification, and BAP1 mutations, play pivotal roles in UM pathobiology. Thus, UM exhibits a multifactorial pathology. By consolidating key mechanisms underlying UM pathogenesis, this review provides a comprehensive perspective on the involved pathways, offering insights that may facilitate the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Majid Banimohammad
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Parsa Khalafi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Danial Gholamin
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Zahra Bangaleh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Abhishikt David Solomon
- Adams School of Dentistry, Oral and Craniofacial Biomedicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pranav Kumar Prabhakar
- School of Allied Medical Sciences, Lovely Professional University, Phagwara 144411, India
- Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, India
| | - Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
2
|
Hao XD, Liu JX, Zhang JS. Longevity factor FOXO3a: A potential therapeutic target for age-related ocular diseases. Life Sci 2024; 350:122769. [PMID: 38848943 DOI: 10.1016/j.lfs.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The forkhead box protein O3 (FOXO3a) belongs to the subgroup O of the forkhead transcription factor family and plays an important role in regulating the aging process by participating in the regulation of various life processes, including cell cycle arrest, apoptosis, autophagy, oxidative stress, and DNA repair. The eye is an organ that is affected by aging earlier. However, the functional role and potential clinical applications of FOXO3a in age-related eye diseases have not received widespread attention and lacked comprehensive and clear clarification. In this review, we demonstrated the relationship between FOXO3a and visual system health, summarized the functional roles of FOXO3a in various eye diseases, and potential ocular-related therapies and drugs targeting FOXO3a in visual system diseases through a review and summary of relevant literature. This review indicates that FOXO3a is an important factor in maintaining the normal function of various tissues in the eye, and is closely related to the occurrence and development of ophthalmic-related diseases. Based on its vital role in the normal function of the visual system, FOXO3a has potential clinical application value in related ophthalmic diseases. At present, multiple molecules and drugs targeting FOXO3a have been reported to have the potential for the treatment of related ophthalmic diseases, but further clinical trials are needed. In conclusion, this review can facilitate us to grasp the role of FOXO3a in the visual system and provide new views and bases for the treatment strategy research of age-related eye diseases.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jin-Xiu Liu
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing-Sai Zhang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
3
|
Youssef AMM, Abu-Ghazaleh HHN, Al-Suhaimat R, Hussein RM. The Antioxidant and anti-inflammatory Activity of Selenium and Lecithin Combination Against ethanol-induced Gastric Ulcer in mice via Modulating IGF-1/PTEN/Akt/FoxO3a Signaling. Biol Trace Elem Res 2024; 202:2158-2169. [PMID: 37676407 DOI: 10.1007/s12011-023-03831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Gastric ulcers are one of the most prevalent gastrointestinal disorders. The current study investigated the antioxidant and anti-inflammatory effects of selenium (Se) and lecithin (Lec) alone and in combination against ethanol-induced gastric ulcers in mice, and their ability to modulate insulin-like growth factor-1 (IGF-1)/ Phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/ Protein kinase B (Akt)/ Forkhead box O3a (FoxO3a) signaling. The mice were divided into normal, ethanol, Se + ethanol, Lec + ethanol, Se + Lec + ethanol, and omeprazole + ethanol groups. Treatment with the selected doses was continued for 14 days before a single dose of absolute ethanol (5 ml/kg body weight) was administered to induce gastric ulcers in mice. The results showed that pretreatment with Se and Lec combination effectively decreased both the macro- and microscopic gastric lesions and increased the protection index compared to the ethanol group. Remarkably, the Se and Lec combination decreased the levels of reactive oxygen species, malondialdehyde, and cytochrome c and increased glutathione, glutathione peroxidase, and thioredoxin reductase activities in gastric tissues. The Se and Lec combination increased prostaglandin E2 and interleukin-10 levels but decreased tumor necrosis factor-α, interleukin-6 and interleukin-1β levels compared to either treatment alone. Interestingly, this combination decreased the expression of IGF-1, p-Akt, and FoxO3a proteins and increased PTEN expression in gastric tissues. The gastric tissues examination by hematoxylin and eosin staining confirmed these results. Therefore, the Se and Lec combination showed superior protective effects against ethanol-induced gastric ulcers in mice, compared to either treatment alone, through antioxidant, and anti-inflammatory activities, in addition to modulating IGF-1/PTEN/Akt/FoxO3a pathway signaling.
Collapse
Affiliation(s)
- Ahmed M M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
| | - Hussein H N Abu-Ghazaleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Rawan Al-Suhaimat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62514, Egypt.
| |
Collapse
|
4
|
Olejnik A, Radajewska A, Krzywonos-Zawadzka A, Bil-Lula I. Klotho inhibits IGF1R/PI3K/AKT signalling pathway and protects the heart from oxidative stress during ischemia/reperfusion injury. Sci Rep 2023; 13:20312. [PMID: 37985893 PMCID: PMC10662387 DOI: 10.1038/s41598-023-47686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) of the heart involves the activation of oxidative and proapoptotic pathways. Simultaneously Klotho protein presents anti-aging, antiapoptotic and antioxidative properties. Therefore, this study aimed to evaluate the effect of Klotho protein on oxidative stress in hearts subjected to IRI. Isolated rat hearts perfused with the Langendorff method were subjected to ischemia, followed by reperfusion, in the presence or absence of recombinant rat Klotho protein. The factors involved in the activation of insulin-like growth factor receptor (IGF1R)/phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signalling pathway were evaluated. IRI caused activation of the IGF1R (p = 0.0122)/PI3K (p = 0.0022) signalling, as compared to the aerobic control group. Infusion supply of Klotho protein during IRI significantly reduced the level of phospho-IGF1R (p = 0.0436), PI3K (p = 0.0218) and phospho-AKT (p = 0.0020). Transcriptional activity of forkhead box protein O3 (FOXO3) was reduced (p = 0.0207) in hearts subjected to IRI, compared to aerobic control. Administration of Klotho decreased phosphorylation of FOXO3 (p = 0.0355), and enhanced activity of glutathione peroxidase (p = 0.0452) and superoxide dismutase (p = 0.0060) in IRI + Klotho group. The levels of reactive oxygen/nitrogen species (ROS/RNS) (p = 0.0480) and hydrogen peroxide (H2O2) (p = 0.0460), and heart injury (p = 0.0005) were significantly increased in hearts from the IRI group in comparison to the aerobic group. Klotho reduced NADPH oxidase 2 (NOX2) (p = 0.0390), ROS/RNS (p = 0.0435) and H2O2 (p = 0.0392) levels, and heart damage (p = 0.0286) in the hearts subjected to IRI. In conclusion, Klotho contributed to the protection of the heart against IRI and oxidative stress via inhibition of the IGF1R/PI3K/AKT pathway, thus can be recognized as a novel cardiopreventive/cardioprotective agent.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland
| | - Anna Radajewska
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland
| | - Anna Krzywonos-Zawadzka
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland.
| |
Collapse
|
5
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Cao G, Lin M, Gu W, Su Z, Duan Y, Song W, Liu H, Zhang F. The rules and regulatory mechanisms of FOXO3 on inflammation, metabolism, cell death and aging in hosts. Life Sci 2023:121877. [PMID: 37352918 DOI: 10.1016/j.lfs.2023.121877] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The FOX family of transcription factors was originally identified in 1989, comprising the FOXA to FOXS subfamilies. FOXO3, a well-known member of the FOXO subfamily, is widely expressed in various human organs and tissues, with higher expression levels in the ovary, skeletal muscle, heart, and spleen. The biological effects of FOXO3 are mostly determined by its phosphorylation, which occurs in the nucleus or cytoplasm. Phosphorylation of FOXO3 in the nucleus can promote its translocation into the cytoplasm and inhibit its transcriptional activity. In contrast, phosphorylation of FOXO3 in the cytoplasm leads to its translocation into the nucleus and exerts regulatory effects on biological processes, such as inflammation, aerobic glycolysis, autophagy, apoptosis, oxidative stress, cell cycle arrest and DNA damage repair. Additionally, FOXO3 isoform 2 acts as an important suppressor of osteoclast differentiation. FOXO3 can also interfere with the development of various diseases, including inhibiting the proliferation and invasion of tumor cells, blocking the production of inflammatory factors in autoimmune diseases, and inhibiting β-amyloid deposition in Alzheimer's disease. Furthermore, FOXO3 slows down the aging process and exerts anti-aging effects by delaying telomere attrition, promoting cell self-renewal, and maintaining genomic stability. This review suggests that changes in the levels and post-translational modifications of FOXO3 protein can maintain organismal homeostasis and improve age-related diseases, thus counteracting aging. Moreover, this may indicate that alterations in FOXO3 protein levels are also crucial for longevity, offering new perspectives for therapeutic strategies targeting FOXO3.
Collapse
Affiliation(s)
- Guoding Cao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wei Gu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Zaiyu Su
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Yagan Duan
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Hailiang Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| |
Collapse
|
7
|
Liu F, Qu R, Yang L, Shi G, Hao S, Hu C. Circular RNA Controls Tumor Occurrence and Development via Cell Cycle Regulation. Onco Targets Ther 2022; 15:993-1009. [PMID: 36134387 PMCID: PMC9484569 DOI: 10.2147/ott.s371629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
Circular RNAs (circRNAs) participate in the occurrence and development of various diseases through different mechanisms, such as by acting as a microRNA (miRNA) sponge, interacting with RNA-binding proteins, and regulating gene transcription and protein translation. For example, the abnormal expression of specific circRNAs in tumor cells can alter key regulatory factors and the cell cycle network, resulting in cell cycle disorders and the development and metastasis of tumors. Here, we summarize the mechanisms involved in the circRNA-mediated processes that lead to uncontrolled cell cycle and tumor cell proliferation. Extensive studies investigating the abnormal expression of circRNAs in different cancer types have been conducted. The unique characteristics of circRNAs and their ability to regulate the cell cycle through diverse mechanisms is extremely valuable in tumor diagnosis, treatment, and prognosis. Our review may assist in further understanding the circRNA-mediated regulation of the cell cycle in tumors and provide insights for research on circRNA-based therapeutic strategies and biological diagnosis for cancer.
Collapse
Affiliation(s)
- Fang Liu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Limin Yang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guang Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chunmei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
8
|
Gu L, Ma G, Li C, Lin J, Zhao G. New insights into the prognosis of intraocular malignancy: Interventions for association mechanisms between cancer and diabetes. Front Oncol 2022; 12:958170. [PMID: 36003786 PMCID: PMC9393514 DOI: 10.3389/fonc.2022.958170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
The intraocular malignancies, which mostly originate from the retina and uvea, exhibit a high incidence of blindness and even death. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular malignancies in adults and children, respectively. The high risks of distant metastases lead to an extremely poor prognosis. Nowadays, various epidemiological studies have demonstrated that diabetes is associated with the high incidence and mortality of cancers, such as liver cancer, pancreatic cancer, and bladder cancer. However, the mechanisms and interventions associated with diabetes and intraocular malignancies have not been reviewed. In this review, we have summarized the associated mechanisms between diabetes and intraocular malignancy. Diabetes mellitus is a chronic metabolic disease characterized by prolonged periods of hyperglycemia. Recent studies have reported that the abnormal glucose metabolism, insulin resistance, and the activation of the IGF/insulin-like growth factor-1 receptor (IGF-1R) signaling axis in diabetes contribute to the genesis, growth, proliferation, and metastases of intraocular malignancy. In addition, diabetic patients are more prone to suffer severe complications and poor prognosis after radiotherapy for intraocular malignancy. Based on the common pathogenesis shared by diabetes and intraocular malignancy, they may be related to interventions and treatments. Therefore, interventions targeting the abnormal glucose metabolism, insulin resistance, and IGF-1/IGF-1R signaling axis show therapeutic potentials to treat intraocular malignancy.
Collapse
Affiliation(s)
- Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guofeng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Guiqiu Zhao,
| |
Collapse
|
9
|
Zhang X, Zhang X. MicroRNA-135b-5p regulates trophoblast cell function by targeting phosphoinositide-3-kinase regulatory subunit 2 in preeclampsia. Bioengineered 2022; 13:12338-12349. [PMID: 35588255 PMCID: PMC9275860 DOI: 10.1080/21655979.2022.2073655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The level of miR‑135b-5p is lower in patients with preeclampsia (PE) superimposed on chronic hypertension than in healthy controls. However, the function of miR‑135b-5p in PE progression remains unknown. In the present study, we investigated the role of miR‑135b-5p in PE development and its possible mechanism for the first time. HTR8/SVneo cells (trophoblast cell line) were exposed to hypoxia/reoxygenation (H/R) to mimic PE in vitro. Hypoxia-inducible factor-1α (HIF-1α), forkhead box O3A (FOXO3a), and miR-135b-5p levels were measured using Real-time PCR. Cell proliferation, apoptosis and migration/invasion were evaluated using the Cell Counting Kit-8 (CCK-8), flow cytometry and transwell assays, respectively. Real-time PCR and Western blotting were performed to determine the levels of several pro- and anti-angiogenic factors. The binding of miR-135b-5p to the PIK3R2-3’ untranslated region (3ʹUTR) was confirmed by bioinformatics analysis and a dual-luciferase reporter assay. H/R exposure greatly upregulated HIF-1α, FOXO3a, and PIK3R2 levels, while downregulating miR-135b-5p levels in HTR8/SVneo cells. H/R exposure resulted in the inhibition of proliferation, migration, invasion, angiogenesis, and the induction of apoptosis. MiR-135b-5p overexpression reversed the effects of H/R on trophoblast cell function, while miR-135b-5p knockdown enhanced the effects. PIK3R2 knockdown had similar effects as miR-135b-5p overexpression on proliferation, apoptosis and angiogenesis. The effect of miR-135b-5p overexpression on H/R-exposed cells was enhanced by PIK3R2 knockdown. MiR-135b-5p downregulated PIK3R2 expression by pairing with its 3ʹUTR. Therefore, miR-135b-5p may regulate trophoblast function by targeting PIK3R2 in PE and could serve as a novel therapeutic target for PE.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Obstetrics and Gynecology, The Eighth Hospital of Wuhan, Wuhan, China
| | - Xiufeng Zhang
- Department of Cardiology, WuHan FangTai Hospital, Wuhan, China
| |
Collapse
|
10
|
Prognostic and Functional Analysis of NPY6R in Uveal Melanoma Using Bioinformatics. DISEASE MARKERS 2022; 2022:4143447. [PMID: 35432628 PMCID: PMC9012612 DOI: 10.1155/2022/4143447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
Abstract
Neuropeptides can mediate tumor cell proliferation and differentiation through autocrine, paracrine, neurosecretory, and endocrine mechanisms. This study investigated the expression and prognostic significance of neuropeptide Y receptor Y6 (NPY6R) in uveal melanoma (UVM) and preliminarily investigated the biological function of NPY6R in UVM. NPY6R was poorly expressed in most tumors and was associated with better prognosis in UVM. Among the clinicopathological features of UVM, NPY6R expression was lower in male patients. The area under the curve (AUC) value of NPY6R for the diagnosis of UVM was 0.676 (95% CI: 0.556–0.795). A nomogram including four clinical predictors was constructed. NPY6R expression was significantly associated with features of the UVM immune microenvironment. ESTIMATE and CIBERSORT algorithms were used to calculate the fraction of immune cells and the percentage of infiltration in each patient, respectively. NPY6R expression-related gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analyses were performed. GO and KEGG enrichment analyses revealed that NPY6R-related genes are mainly enriched in pathways and functions related to visual light perception. Gene set enrichment analysis suggested that NPY6R is associated with tumor progression in UVM. NPY6R is involved in the tumor progression of UVM and has a good predictive value as a prognostic marker of UVM.
Collapse
|
11
|
Farhan M, Silva M, Xingan X, Zhou Z, Zheng W. Artemisinin Inhibits the Migration and Invasion in Uveal Melanoma via Inhibition of the PI3K/AKT/mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9911537. [PMID: 34931134 PMCID: PMC8684509 DOI: 10.1155/2021/9911537] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/18/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022]
Abstract
Uveal melanoma is the most common primary ocular neoplasm in adults, with many patients ending up developing liver metastasis and facing a significant reduction of their life expectancy due to the lack of efficient treatments. Artemisinin is an antimalarial drug that has been widely used in the clinic and whose anticancer properties have also been described. Its reported safety, affordability, and ability to reach the ocular tissues point that it has a potential therapeutic agent against uveal melanoma. In the present study, we found that a subantimalaria dosage of artemisinin significantly attenuated the migration and invasion potential of uveal melanoma cells, in a concentration-dependent manner. Assessment of the mechanisms underlying artemisinin anticancer action revealed that its use dramatically reduced the phosphorylation of PI3K, AKT, and mTOR in UM cells. Further inhibition of PI3K signaling, using LY294002, or of mTOR, by rapamycin, blocked the migration and invasion of UM cells similarly to artemisinin. In contrast, AKT or mTOR activator (Sc79 and MHY1485, respectively) attenuated the inhibitory effect of artemisinin on the migration and invasion abilities of UM cells, further validating that artemisinin's anticancer effect is likely to be mediated via inhibition of the PI3K/AKT/mTOR pathway. Artemisinin also induced mitochondrial membrane potential loss and apoptosis of UM cells, having no significant toxic effect on normal retinal neuronal cells RGC-5 and epithelial cells D407. These findings and the reported safety of artemisinin's clinical dosage strongly suggest the therapeutic potential of artemisinin in the prevention and treatment of uveal melanomas.
Collapse
Affiliation(s)
- Mohd Farhan
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Marta Silva
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Xing Xingan
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Zhiwei Zhou
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Wenhua Zheng
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
12
|
Yin SJ, Qian GY, Yang JM, Lee J, Park YD. Detection of melanogenesis- and anti-apoptosis-associated melanoma factors: Array CGH and PPI mapping integrating study. Protein Pept Lett 2021; 28:1408-1424. [PMID: 34749602 DOI: 10.2174/0929866528666211105112927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/02/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND We investigated melanogenesis- and anti-apoptosis-related melanoma factors in melanoma cells (TXM1, TXM18, A375P, and A375SM). OBJECTIVE To find melanoma associated hub factor, high-throughput screening-based techniques integrating with bioinformatics were investigated. METHODS Array CGH analysis was conducted with a commercial system. Total genomic DNAs prepared individually from each cell line with control DNA were properly labeled with Cy3-dCTP and Cy5-dCTP and hybridizations and subsequently performed data treatment by the log2 green (G; test) to red (R; reference) fluorescence ratios (G/R). Gain or loss of copy number was judged by spots with log2-transformed ratios. PPI mapping analysis of detected candidate genes based on the array CGH results was conducted using the human interactome in the STRING database. Energy minimization and a short molecular dynamics (MD) simulation using the implicit solvation model in CHARMM were performed to analyze the interacting residues between YWHAZ and YWHAB. RESULTS Three genes (BMP-4, BFGF, LEF-1) known to be involved in melanogenesis were found to lose chromosomal copy numbers, and Chr. 6q23.3 was lost in all tested cell lines. Ten hub genes (CTNNB1, PEX13, PEX14, PEX5, IFNG, EXOSC3, EXOSC1, EXOSC8, UBC, and PEX10) were predicted to be functional interaction factors in the network of the 6q23.3 locus. The apoptosis-associated genes E2F1, p50, BCL2L1, and BIRC7 gained, and FGF2 lost chromosomal copy numbers in the tested melanoma cell lines. YWHAB, which gained chromosomal copy numbers, was predicted to be the most important hub protein in melanoma cells. Molecular dynamics simulations for binding YWHAB and YWHAZ were conducted, and the complex was predicted to be energetically and structurally stable through its 3 hydrogen-bond patterns. The number of interacting residues is 27. CONCLUSION Our study compares genome-wide screening interactomics predictions for melanoma factors and offers new information for understanding melanogenesis- and anti-apoptosis-associated mechanisms in melanoma. Especially, YWHAB was newly detected as a core factor in melanoma cells.
Collapse
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100. China
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100. China
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710. Korea
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Yuseong-gu, Daejeon, 34141. Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100. China
| |
Collapse
|
13
|
Kim J, Choi H. The mucin protein MUCL1 regulates melanogenesis and melanoma genes in a manner dependent on threonine content. Br J Dermatol 2021; 186:532-543. [PMID: 34545566 PMCID: PMC9299140 DOI: 10.1111/bjd.20761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Background The regulation of melanogenesis has been investigated as a long‐held aim for pharmaceutical manipulations with denotations for malignancy of melanoma. Mucins have a protective function in epithelial organs; however, in the most outer organ, the skin, the role of mucins has not been studied enough. Objectives Our initial hypothesis developed from the identification of correlations between pigmentation and expressions of skin mucins, particularly those existing in skin tissue. We aimed to investigate the action of mucins in human melanocytic cells. Materials and methods The expression of mucin proteins in human skin was investigated using microarray data from the Human Protein Atlas consortium (HPA) and the Genotype‐Tissue Expression consortium (GTEx) database. Mucin expression was measured at RNA and protein levels in melanoma cells. The findings were further validated and confirmed by analysis of independent experiments. Results We found that the several mucin proteins showed expression in human skin cells and among these, mucin‐like protein 1 (MUCL1) showed the highest expression and also clear negative correlation with melanogenesis in epidermal melanocytes. We confirmed the correlations between melanogenesis and MUCL1 by revealing negative correlations in melanocytes with different melanin production, resulting from increased composition of threonine, mucin‐conforming amino acid, and increased autophagy‐related forkhead‐box O signalling. Furthermore, threonine itself affects melanogenesis and metastatic activity in melanoma cells. Conclusions We identified a significant association between MUCL1 and threonine with melanogenesis and metastasis‐related genes in melanoma cells. Our results define a novel mechanism of mucin regulation, suggesting diagnostic and preventive roles of MUCL1 in cutaneous melanoma. Whatis already known about this topic? Despite considerable advances in radioactive therapeutics or chemotherapeutic approaches for the treatment of abnormal melanogenesis, there are still many caveats to delivery, effectiveness and safety, thus leaving a necessity for more immediate pharmaceutical targets. Mucins have protective and chemical barrier functions in epithelial organs; however, in the skin, mucin has scarce expression and is known only as a diagnostic aid in skin disorders such as mucinosis.
Whatdoes this study add? We provide detailed analysis demonstrating the potential of mucin‐like protein 1 (MUCL1), which showed negative correlations in melanocytes with different melanin production, resulting from increased composition of threonine and increased autophagy‐related forkhead‐box O signalling in epidermal melanocytes and melanoma cells. We established that through an alternative pathway for MUCL1 biosynthesis, threonine supplementation recovers MUCL1 levels in melanoma. Changes, brought on by the essential amino acid threonine, resulted in substantial modulations in melanogenesis and reduced metastasis‐related genes.
Whatis the translational message? This study demonstrates for the first time that the mucin protein of skin cells is compounded by distorted mucin homeostasis, with major effects on melanogenesis and metastasis‐related genes in melanoma. We anticipate that these novel findings will be of keen interest to the community of scientists and medical practitioners examining skin dysfunction.
Linked Comment: C. Casalou and D.J. Tobin. Br J Dermatol 2022; 186:388–389. Plain language summary available online
Collapse
Affiliation(s)
- J Kim
- Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Gyeonggi-do, 17074, Korea
| | - H Choi
- Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Gyeonggi-do, 17074, Korea
| |
Collapse
|
14
|
Moon KM, Lee MK, Hwang T, Choi CW, Kim MS, Kim HR, Lee B. The multi-functional roles of forkhead box protein O in skin aging and diseases. Redox Biol 2021; 46:102101. [PMID: 34418600 PMCID: PMC8385202 DOI: 10.1016/j.redox.2021.102101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Forkhead box, class O (FoxO) family members are multifunctional transcription factors that are involved in several metabolic processes, including energy metabolism, apoptosis, DNA repair, and oxidative stress. However, their roles in skin health have not been well-documented. Recent studies have indicated that FoxOs are important factors to control skin homeostasis and health. The activation or deactivation of some FoxO family members is closely related to melanogenesis, wound healing, acne, and melanoma. In this review, we have discussed the recent findings that demonstrate the relationship between FoxOs and skin health as well as the underlying mechanisms associated with their functions.
Collapse
Affiliation(s)
- Kyoung Mi Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-Gu, Busan, Republic of Korea
| | - Taehyeok Hwang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Nam-Gu, Busan, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-Gu, Busan, Republic of Korea.
| |
Collapse
|
15
|
Chen RZ, Yang F, Zhang M, Sun ZG, Zhang N. Cellular and Molecular Mechanisms of Pristimerin in Cancer Therapy: Recent Advances. Front Oncol 2021; 11:671548. [PMID: 34026649 PMCID: PMC8138054 DOI: 10.3389/fonc.2021.671548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Seeking an efficient and safe approach to eliminate tumors is a common goal of medical fields. Over these years, traditional Chinese medicine has attracted growing attention in cancer treatment due to its long history. Pristimerin is a naturally occurring quinone methide triterpenoid used in traditional Chinese medicine to treat various cancers. Recent studies have identified alterations in cellular events and molecular signaling targets of cancer cells under pristimerin treatment. Pristimerin induces cell cycle arrest, apoptosis, and autophagy to exhibit anti-proliferation effects against tumors. Pristimerin also inhibits the invasion, migration, and metastasis of tumor cells via affecting cell adhesion, cytoskeleton, epithelial-mesenchymal transition, cancer stem cells, and angiogenesis. Molecular factors and pathways are associated with the anti-cancer activities of pristimerin. Furthermore, pristimerin reverses multidrug resistance of cancer cells and exerts synergizing effects with other chemotherapeutic drugs. This review aims to discuss the anti-cancer potentials of pristimerin, emphasizing multi-targeted biological and molecular regulations in cancers. Further investigations and clinical trials are warranted to understand the advantages and disadvantages of pristimerin treatment much better.
Collapse
Affiliation(s)
- Run-Ze Chen
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Zhang
- Department of Dermatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Wang JZ, Lin V, Toumi E, Wang K, Zhu H, Conway RM, Madigan MC, Murray M, Cherepanoff S, Zhou F, Shu W. Development of new therapeutic options for the treatment of uveal melanoma. FEBS J 2021; 288:6226-6249. [PMID: 33838075 DOI: 10.1111/febs.15869] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Important cytogenetic and genetic risk factors for the development of UM include chromosome 3 monosomy, mutations in the guanine nucleotide-binding proteins GNAQ/GNA11, and loss of the BRACA1-associated protein 1 (BAP 1). Most primary UMs are treated conservatively with radiotherapy, but enucleation is necessary for large tumours. Despite the effectiveness of local control, up to 50% of UM patients develop metastasis for which there are no effective therapies. Attempts to utilise the targeted therapies that have been developed for the treatment of other cancers, including a range of signal transduction pathway inhibitors, have rarely produced significant outcomes in UM. Similarly, the application of immunotherapies that are effective in cutaneous melanoma to treat UM have also been disappointing. Other approaches that have been initiated involve proteasomal inhibitors and histone deacetylase inhibitors which are approved for the treatment of other cancers. Nevertheless, there have been occasional positive outcomes from these treatments in UM. Moreover, combination approaches in UM have also yielded some positive developments. It would be valuable to identify how to apply such therapies efficiently in UM, potentially via individualised tumour profiling. It would also be important to characterise UM tumours to differentiate the potential drivers of progression from those in other types of cancers. The recent identification of novel kinases and metastatic genes in UM tumours makes the development of new UM-specific treatments feasible.
Collapse
Affiliation(s)
- Janney Z Wang
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, NSW, Australia
| | - Vivian Lin
- Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Elsa Toumi
- Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - R Max Conway
- Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, NSW, Australia.,Save Sight Institute, The University of Sydney, NSW, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Murray
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Svetlana Cherepanoff
- SydPath, Department of Anatomical Pathology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Fanfan Zhou
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, NSW, Australia
| | - Wenying Shu
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, NSW, Australia.,Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| |
Collapse
|
17
|
Cui Y, Zheng M, Chen J, Xu N. Autophagy-Related Long Non-coding RNA Signature as Indicators for the Prognosis of Uveal Melanoma. Front Genet 2021; 12:625583. [PMID: 33868366 PMCID: PMC8047156 DOI: 10.3389/fgene.2021.625583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop an autophagy-associated long non-coding RNA (lncRNA) signature to predict the prognostic outcomes of uveal melanoma (UM). The data of UM from The Cancer Genome Atlas (TCGA) were enrolled to obtain differentially expressed genes (DEGs) between metastasizing and non-metastasizing UM patients. A total of 13 differentially expressed autophagy genes were identified and validated in Gene Expression Omnibus, and 11 autophagy-related lncRNAs were found to be associated with overall survival. Through performing least absolute shrinkage and selection operator regression analyses, a six-autophagy-related lncRNA signature was built, and its efficacy was confirmed by receiver-operating characteristic, Kaplan–Meier analysis, and univariate and multivariate Cox regression analyses. A comprehensive nomogram was established and its clinical net benefit was validated by decision curve analysis. GSEA revealed that several biological processes and signaling pathways including Toll-like receptor signaling pathway, natural killer cell-mediated cytotoxicity, and B- and T-cell receptor signaling pathway were enriched in the high-risk group. CIBERSORT results showed that the signature was related to the immune response especially HLA expression. This signature could be deployed to assist clinicians to identify high-risk UM patients and help scientists to explore the molecular mechanism of autophagy-related lncRNAs in UM pathogenesis.
Collapse
Affiliation(s)
- Yi Cui
- Department of Ophthalmology, Fujian Medical University Union Hospital, Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Mi Zheng
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jing Chen
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Nuo Xu
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Mu M, Gao P, Yang Q, He J, Wu F, Han X, Guo S, Qian Z, Song C. Alveolar Epithelial Cells Promote IGF-1 Production by Alveolar Macrophages Through TGF-β to Suppress Endogenous Inflammatory Signals. Front Immunol 2020; 11:1585. [PMID: 32793225 PMCID: PMC7385185 DOI: 10.3389/fimmu.2020.01585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
To maintain alveolar gas exchange, the alveolar surface has to limit unnecessary inflammatory responses. This involves crosstalk between alveolar epithelial cells (AECs) and alveolar macrophages (AMs) in response to damaging factors. We recently showed that insulin-like growth factor (IGF)-1 regulates the phagocytosis of AECs. AMs secrete IGF-1 into the bronchoalveolar lavage fluid (BALF) in response to inflammatory stimuli. However, whether AECs regulate the production of IGF-1 by AMs in response to inflammatory signals remains unclear, as well as the role of IGF-1 in controlling the alveolar balance in the crosstalk between AMs and AECs under inflammatory conditions. In this study, we demonstrated that IGF-1 was upregulated in BALF and lung tissues of acute lung injury (ALI) mice, and that the increased IGF-1 was mainly derived from AMs. In vitro experiments showed that the production and secretion of IGF-1 by AMs as well as the expression of TGF-β were increased in LPS-stimulated AEC-conditioned medium (AEC-CM). Pharmacological blocking of TGF-β in AECs and addition of TGF-β neutralizing antibody to AEC-CM suggested that this AEC-derived cytokine mediates the increased production and secretion of IGF-1 from AMs. Blocking TGF-β synthesis or treatment with TGF-β neutralizing antibody attenuated the increase of IGF-1 in BALF in ALI mice. TGF-β induced the production of IGF-1 by AMs through the PI3K/Akt signaling pathway. IGF-1 prevented LPS-induced p38 MAPK activation and the expression of the inflammatory factors MCP-1, TNF-α, and IL-1β in AECs. However, IGF-1 upregulated PPARγ to increase the phagocytosis of apoptotic cells by AECs. Intratracheal instillation of IGF-1 decreased the number of polymorphonuclear neutrophils in BALF of ALI model mice, reduced alveolar congestion and edema, and suppressed inflammatory cell infiltration in lung tissues. These results elucidated a mechanism by which AECs used TGF-β to regulate IGF-1 production from AMs to attenuate endogenous inflammatory signals during alveolar inflammation.
Collapse
Affiliation(s)
- Mimi Mu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Peiyu Gao
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Qian Yang
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Jing He
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Xue Han
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Shujun Guo
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| |
Collapse
|
19
|
Wu MY, Lai TT, Liao WT, Li CJ. Clinicopathological and prognostic significance and molecular mechanisms governing uveal melanoma. Ther Adv Med Oncol 2020; 12:1758835920917566. [PMID: 32550863 PMCID: PMC7281640 DOI: 10.1177/1758835920917566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Although UM and cutaneous melanoma are derived from melanocytes, UM differs clinically and biologically from its more common skin counterparts. More than half of primary UMs metastasize. However, there is currently no effective treatment for metastatic UM. Therefore, studying mutations related to the metastasis, growth, proliferation, and survival of UM can help researchers understand its pathogenesis and metastatic mechanism, thereby leading to a more effective treatment. In addition, we provide an overview of the recent basic and clinical studies to provide a strong foundation for developing novel anti-carcinogenesis targets for future interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine,
Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
New Taipei Department of Emergency Medicine, School of Medicine,
Tzu Chi University, Hualien
| | - Tzu-Ting Lai
- Department of Ophthalmology, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New
Taipei, Taiwan
| | - Wan-Ting Liao
- Institute of Medicine, Chung Shan
Medical University, Taichung Chinese Medicine Department, Show
Chwan Memorial Hospital, Changhua
| | - Chia-Jung Li
- Department of Obstetrics and
Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong
1st Road, Zuoying District, Kaohsiung City 81362 Institute of
BioPharmaceutical sciences, National Sun Yat-sen University,
Kaohsiung
| |
Collapse
|
20
|
Yan F, Liao R, Silva M, Li S, Jiang Y, Peng T, Lazarovici P, Zheng W. Pristimerin-induced uveal melanoma cell death via inhibiting PI3K/Akt/FoxO3a signalling pathway. J Cell Mol Med 2020; 24:6208-6219. [PMID: 32347651 PMCID: PMC7294164 DOI: 10.1111/jcmm.15249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
Uveal melanoma (UM) is a highly invasive intraocular malignancy with high mortality. Presently, there is no FDA‐approved standard for the treatment of metastatic UM. Pristimerin is a natural quinine methide triterpenoid compound with anti‐angiogenic, anti‐cancer and anti‐inflammatory activities. However, Pristimerin potential cytotoxic effect on UM was poorly investigated. In the present study, we found the migration and invasion of UM‐1 cells were inhibited by Pristimerin which also caused a rapid increase of ROS, decreased mitochondrial membrane potential, induced the accumulation of cells in G0/G1 phase, ending with apoptotic cell death. Pristimerin inhibited Akt and FoxO3a phosphorylation and induced nuclear accumulation of FoxO3a in UM‐1 cells, increased the expression of pro‐apoptotic proteins Bim、p27Kip1, cleaved caspase‐3, PARP and Bax, and decreased the expression of Cyclin D1 and Bcl‐2. LY294002 or Akt‐siRNA inhibited the PI3K/Akt/FoxO3a pathway and promoted the Pristimerin‐induced apoptosis, while Pristimerin effects were partially abolished in FoxO3a knockdown UM‐1 cell cultures. Taken together, present results showed that Pristimerin induced apoptotic cell death through inhibition of PI3K/Akt/FoxO3a pathway in UM‐1 cells. These findings indicate that Pristimerin may be considered as a potential chemotherapeutic agent for patients with UM.
Collapse
Affiliation(s)
- Fengxia Yan
- Faculty of Health Sciences, University of Macau, Macau, China.,School of Medical Science, Jinan University, Guangzhou, China
| | - Rifang Liao
- Faculty of Health Sciences, University of Macau, Macau, China.,Department of pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Marta Silva
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Shuai Li
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yizhou Jiang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Tangming Peng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
21
|
Dong Z, Yang J, Li L, Tan L, Shi P, Zhang J, Zhong X, Ge L, Wu Z, Cui H. FOXO3a‑SIRT6 axis suppresses aerobic glycolysis in melanoma. Int J Oncol 2020; 56:728-742. [PMID: 32124950 PMCID: PMC7010217 DOI: 10.3892/ijo.2020.4964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Melanoma, the most aggressive human skin tumor, has a very short survival time, and there are currently no effective treatments. Alterations in cell metabolism, such as enhanced aerobic glycolysis, have been identified as hallmarks of cancer cells. In the present study, bioinformatics studies using online databases revealed that FOXO3a expression was lower in melanoma tissues compared with normal tissues and nevus. Additionally, Kaplan‑Meier analysis showed that high expression of FOXO3a predicted an improved prognosis for patients with melanoma. Furthermore, Pearson correlation analysis indicated that the expression of FOXO3a was positively correlated with SIRT6 expression and negatively correlated with the expression levels of a number of glycolysis‑associated genes. Chromatin immunoprecipitation and luciferase assays showed that FOXO3a was enriched in the SIRT6 promoter region and promoted its transcription. Then, SIRT6 was overexpressed in FOXO3a‑knockdown MV3 cells and downregulated in FOXO3a‑overexpressing MV3 cells by using lentivirus‑mediated stable infection. The results showed that SIRT6 knockdown or overexpression rescued the effects of FOXO3a overexpression or knockdown, respectively, on glycolysis, as determined by glucose uptake, glucose consumption and lactate production assays, the expression of glycolytic genes and glucose stress flux tests. SIRT6 overexpression also suppressed FOXO3a knockdown‑induced tumor growth in a mouse model. The present findings indicated that the FOXO3a‑SIRT6 regulatory axis inhibited glucose metabolism and tumor cell proliferation in melanoma, and provided novel insight into potential therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Xi Zhong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Lingjun Ge
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| | - Zonghui Wu
- Hospital of Southwest University, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
22
|
Xie X, Xie S, Xie C, Fang Y, Li Z, Wang R, Jiang W. Pristimerin attenuates cell proliferation of uveal melanoma cells by inhibiting insulin-like growth factor-1 receptor and its downstream pathways. J Cell Mol Med 2019; 23:7545-7553. [PMID: 31508890 PMCID: PMC6815816 DOI: 10.1111/jcmm.14623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Uveal melanoma (UM) has a high mortality rate due to liver metastasis. The insulin‐like growth factor‐1 receptor (IGF‐1R) is highly expressed in UM and has been shown to be associated with hepatic metastases. Targeting IGF signalling may be considered as a promising approach to inhibit the process of metastatic UM cells. Pristimerin (PRI) has been demonstrated to inhibit the growth of several cancer cells, but its role and underlying mechanisms in the IGF‐1‐induced UM cell proliferation are largely unknown. The present study examined the anti‐proliferative effect of PRI on UM cells and its possible role in IGF‐1R signalling transduction. MTT and clonogenic assays were used to determine the role of PRI in the proliferation of UM cells. Flow cytometry was performed to detect the effect of PRI on the cell cycle distribution of UM cells. Western blotting was carried out to assess the effects of PRI and IGF‐1 on the IGF‐1R phosphorylation and its downstream targets. The results indicated that IGF‐1 promoted the UM cell proliferation and improved the level of IGF‐1R phosphorylation, whereas PRI attenuated the effect of IGF‐1. Interestingly, PRI could not only induce the G1 phase accumulation and reduce the G2 phase induced by IGF‐1, but also could stimulate the expression of p21 and inhibit the expression of cyclin D1. Besides, PRI could attenuate the phosphorylations of Akt, mTOR and ERK1/2 induced by IGF‐1. Furthermore, the molecular docking study also demonstrated that PRI had potential inhibitory effects on IGF‐1R. Taken together, these results indicated that PRI could inhibit the proliferation of UM cells through down‐regulation of phosphorylated IGF‐1R and its downstream signalling.
Collapse
Affiliation(s)
- Xinshu Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Saisai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Changying Xie
- Affiliated Hosptial of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhifeng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Wei Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| |
Collapse
|
23
|
Fu Y, Sun S, Sun H, Peng J, Ma X, Bao L, Ji R, Luo C, Gao C, Zhang X, Jin Y. Scutellarin exerts protective effects against atherosclerosis in rats by regulating the Hippo-FOXO3A and PI3K/AKT signaling pathways. J Cell Physiol 2019; 234:18131-18145. [PMID: 30891776 DOI: 10.1002/jcp.28446] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS), a progressive disorder, is one of the tough challenges in the clinic. Scutellarin, an extract from Herba Erigerontis, is found to have oxygen-free radicals scavenging effects and antioxidant effects. In this study, we aimed to investigate the anti-AS effects of scutellarin is related to controlling the Hippo-FOXO3A and PI3K/AKT signal pathway. To establish an AS model, the rats in the scutellarin and model groups were intraperitoneally injected with vitamin D 3 and then fed a high-fat diet for 12 weeks. In addition, in vitro angiotensin II-induced apoptosis of human aortic endothelial cells (HAECs) were used to establish models. Scutellarin significantly reduced blood lipid levels and increased antioxidase levels in both models. Additionally, scutellarin inhibited reactive oxygen species generation and apoptosis in HAECs. The impaired vascular barrier function was restored by using scutellarin in AS rats and in HAECs cells characterized by inhibiting mammalian sterile-20-like kinases 1 (Mst1) phosphorylation, Yes-associated protein (YAP) phosphorylation, forkhead box O3A (FOXO3A) phosphorylation at serine 207, nuclear translocation of FOXO3A, and upregulating protein expression of AKT and FOXO3A phosphorylation at serine 253. Scutellarin significantly reduced Bcl-2 interacting mediator of cell death (Bim), caspase-3, APO-1, CD95 (Fas), and Bax: Bcl-2-associated X (Bax) levels and activated Bcl-2: B-cell lymphoma-2 (Bcl-2). Scutellarin also significantly inhibited the expression of Mst1, YAP, FOXO3A at the messenger RNA level. When Mst1 was overexpressed or phosphoinositide 3-kinases suppressed, the effects of scutellarin were significantly blocked. In conclusion, the results of the present study suggest that scutellarin exerts protective effects against AS by inhibiting endothelial cell injury and apoptosis by regulating the Hippo-FOXO3A and PI3K/AKT signal pathways.
Collapse
Affiliation(s)
- Yufeng Fu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shuangyong Sun
- Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co Ltd, Tianjin, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaoxue Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
24
|
Phoomak C, Silsirivanit A, Park D, Sawanyawisuth K, Vaeteewoottacharn K, Wongkham C, Lam EWF, Pairojkul C, Lebrilla CB, Wongkham S. O-GlcNAcylation mediates metastasis of cholangiocarcinoma through FOXO3 and MAN1A1. Oncogene 2018; 37:5648-5665. [PMID: 29915392 PMCID: PMC6151127 DOI: 10.1038/s41388-018-0366-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
The leading cause of death in cancer patients is metastasis, for which an effective treatment is still necessary. During metastasis, cancer cells aberrantly express several glycans that are correlated with poor patient outcome. This study was aimed toward exploring the effects of O-GlcNAcylation on membranous N-glycans that are associated with the progression of cholangiocarcinoma (CCA). Global O-GlcNAcylation in CCA cells was depleted using specific siRNA against O-GlcNAc transferase (OGT), which transfers GlcNAc to the acceptor proteins. Using an HPLC-Chip/Time-of-Flight (Chip/TOF) MS system, the N-glycans associated with O-GlcNAcylation were identified by comparing the membranous N-glycans of siOGT-treated cells with those of scramble siRNA-treated cells. In parallel, the membranous N-glycans of the parental cells (KKU-213 and KKU-214) were compared with those of the highly metastatic cells (KKU-213L5 and KKU-214L5). Together, these data revealed that high mannose (Hex9HexNAc2) and biantennary complex (Hex5HexNAc4Fuc1NeuAc1) N-linked glycans correlated positively with metastasis. We subsequently demonstrate that suppression of O-GlcNAcylation decreased the expression of these two N-glycans, suggesting that O-GlcNAcylation mediates their levels in CCA. In addition, the ability of highly metastatic cells to migrate and invade was reduced by the presence of Pisum Sativum Agglutinin (PSA), a mannose-specific lectin, further indicating the association of high mannose type N-glycans with CCA metastasis. The molecular mechanism of O-GlcNAc-mediated progression of CCA was shown to proceed via a series of signaling events, involving the activation of Akt/Erk (i), an increase in FOXO3 phosphorylation (ii), which results in the reduction of MAN1A1 expression (iii) and thus the accumulation of Hex9HexNAc2 N-glycans (iv). This study demonstrates for the first time the association between O-GlcNAcylation, high mannose type N-glycans, and the progression of CCA metastasis, suggesting a novel therapeutic target for treatment of metastatic CCA.
Collapse
Affiliation(s)
- Chatchai Phoomak
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, CA, 95616, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, W12 0NN, UK
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
25
|
Yu X, Zheng H, Chan MTV, Wu WKK. NOVA1 acts as an oncogene in melanoma via regulating FOXO3a expression. J Cell Mol Med 2018; 22:2622-2630. [PMID: 29498217 PMCID: PMC5908123 DOI: 10.1111/jcmm.13527] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing studies have suggested that dysregulation of RNA‐binding proteins (RBPs) contributes to cancer progression. Neuro‐oncological ventral antigen 1 (NOVA1) is a novel RBP and plays an important role in tumour development. However, the expression and role of NOVA1 in melanoma remain unknown. In this study, we indicated that NOVA1 expression was up‐regulated in melanoma samples and cell lines. Moreover, we demonstrated that knockdown of NOVA1 suppressed melanoma cell proliferation, migration and invasion in both A375 and A875 cell lines. In addition, we showed that suppressed expression of NOVA1 enhanced forkhead box O3a (FOXO3a) expression while inhibited AKT expression in melanoma cell. Furthermore, we demonstrated that inhibited expression of FoxO3A rescued NOVA1‐mediated cell proliferation, migration and invasion in melanoma cell line A375. These results suggested that NOVA1 acted as an oncogene in the development of melanoma partly through regulating FoxO3A expression.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| |
Collapse
|
26
|
Ma Z, Xin Z, Hu W, Jiang S, Yang Z, Yan X, Li X, Yang Y, Chen F. Forkhead box O proteins: Crucial regulators of cancer EMT. Semin Cancer Biol 2018; 50:21-31. [PMID: 29427645 DOI: 10.1016/j.semcancer.2018.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an acknowledged cellular transition process in which epithelial cells acquire mesenchymal-like properties that endow cancer cells with increased migratory and invasive behavior. Forkhead box O (FOXO) proteins have been shown to orchestrate multiple EMT-associated pathways and EMT-related transcription factors (EMT-TFs), thereby modulating the EMT process. The focus of the current review is to evaluate the latest research progress regarding the roles of FOXO proteins in cancer EMT. First, a brief overview of the EMT process in cancer and a general background on the FOXO family are provided. Next, we present the interactions between FOXO proteins and multiple EMT-associated pathways during malignancy development. Finally, we propose several novel potential directions for future research. Collectively, the information compiled herein should serve as a comprehensive repository of information on this topic and should aid in the design of additional studies and the future development of FOXO proteins as therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China.
| |
Collapse
|
27
|
González-Quiroz M, Urra H, Limia CM, Hetz C. Homeostatic interplay between FoxO proteins and ER proteostasis in cancer and other diseases. Semin Cancer Biol 2018; 50:42-52. [PMID: 29369790 DOI: 10.1016/j.semcancer.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
Abstract
Cancer cells are exposed to adverse conditions within the tumor microenvironment that challenge cells to adapt and survive. Several of these homeostatic perturbations insults alter the normal function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins. ER stress triggers a conserved signaling pathway known as the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. The UPR has been described as a major driver in the acquisition of malignant characteristics that ultimately lead to cancer progression. Although, several reports describe the relevance of the UPR in tumor growth, the possible crosstalk with other cancer-related pathways is starting to be elucidated. The Forkhead Box O (FoxO) subfamily of proteins has a major role in cancer progression, where chromosomal translocations and deregulated signaling lead to loss-of-function of FoxO proteins, contributing to tumor progression. Here we discuss the homeostatic connection between the UPR and FoxO proteins and its possible implications to tumor progression and the acquisition of several hallmarks of cancer. In addition, studies linking a crosstalk between the UPR and FoxO proteins in other diseases, including neurodegeneration and metabolic disorders is provided.
Collapse
Affiliation(s)
- Matías González-Quiroz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Celia María Limia
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA.
| |
Collapse
|
28
|
Liao R, Yan F, Zeng Z, Wang H, Qiu K, Xu J, Zheng W. Insulin-like growth factor-1 activates PI3K/Akt signalling to protect human retinal pigment epithelial cells from amiodarone-induced oxidative injury. Br J Pharmacol 2017; 175:125-139. [PMID: 29057462 DOI: 10.1111/bph.14078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Amiodarone is one of the most effective anti-arrhythmic drugs available, but its clinical applications are limited by toxic side effects including optic toxicity. The purpose of this study was to investigate the toxic effect of amiodarone on D407 cells (a human retinal pigmented epithelial (RPE) cell line) and the mechanisms of the protective effect of insulin-like growth factor-1 (IGF-1). EXPERIMENTAL APPROACH The involvement of the kinases, Akt and ERK, was analysed by Western blot. Intracellular accumulation of ROS was measured using fluorophotometric quantification. A pharmacological approach with inhibitors was used to investigate the pathways involved in the protective action of IGF-1. KEY RESULTS Amiodarone concentration-dependently augmented the production of ROS, lipid peroxidation and apoptosis in D407 cells. IGF-1 time- and concentration-dependently reversed these effects of amiodarone and protected D407 cells from amiodarone-mediated toxicity. Amiodarone inhibited the pAkt but not pErk, and IGF-1 reversed this inhibitory effect of amiodarone. However, IGF-1 failed to suppress amiodarone-induced cytotoxicity in the presence of PI3K/Akt inhibitor LY294002 suggesting the direct involvement of the PI3K/Akt pathway. Furthermore, in vivo rat flash electroretinogram (FERG) recordings showed that IGF-1 reverses the amiodarone-induced decrease in a- and b-waves. The immunocytochemistry findings confirmed that vitreous IGF-1 injections promote the survival of RPE cells in rat retina treated with amiodarone. CONCLUSION AND IMPLICATIONS IGF-1 can protect RPE cells from amiodarone-mediated injury via the PI3K/Akt pathway in vivo and in vitro. IGF-1 has potential as a protective drug for the prevention and treatment of amiodarone-induced optic toxicity.
Collapse
Affiliation(s)
- Rifang Liao
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital and the School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fengxia Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital and the School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuanping Zeng
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haitao Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital and the School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinying Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital and the School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Yan F, Liao R, Lin S, Deng X, Little PJ, Zheng W. Forkhead box protein O3 suppresses uveal melanoma development by increasing the expression of Bcl‑2‑like protein 11 and cyclin‑dependent kinase inhibitor 1B. Mol Med Rep 2017; 17:3109-3114. [PMID: 29257235 DOI: 10.3892/mmr.2017.8215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 04/28/2017] [Indexed: 11/06/2022] Open
Abstract
Forkhead box protein O3 (FoxO3a) is a forkhead box family transcription factor which serves an important role in a number of biological functions, including tumor growth. A previous study indicated that FoxO3a serves a role in insulin like growth factor‑induced growth, migration and invasion of uveal melanoma (UM) cells; however, whether FoxO3a is associated with the development and formation of UM remains unknown. In the present study, the role of FoxO3a in UM development and formation was investigated by modulating the expression of FoxO3a in a human UM cell line. The results of the present study demonstrated that FoxO3a overexpression in UM cells inhibited cell proliferation and promoted cellular apoptosis, leading to an accumulation of cells at the G1 cell cycle phase. Western blot analysis demonstrated that FoxO3a overexpression increased the transcription and protein expression of Bcl‑2‑like protein 11 and cyclin‑dependent kinase inhibitor 1B, and inhibited cyclin D1 transcription and expression. The opposite effects were observed when FoxO3a was knocked down in UM cells. The results of the present study indicated that FoxO3a may exhibit a negative role in UM development and formation, which is consistent with its role as a tumor suppressor.
Collapse
Affiliation(s)
- Fengxia Yan
- School of Pharmaceutical Sciences and State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Rifang Liao
- School of Pharmaceutical Sciences and State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Shaofen Lin
- School of Pharmaceutical Sciences and State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xianguo Deng
- School of Pharmaceutical Sciences and State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland QLD 4102, Australia
| | - Wenhua Zheng
- School of Pharmaceutical Sciences and State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
30
|
Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int J Biol Sci 2017; 13:815-827. [PMID: 28808415 PMCID: PMC5555100 DOI: 10.7150/ijbs.20052] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Many transcription factors play a key role in cellular differentiation and the delineation of cell phenotype. Transcription factors are regulated by phosphorylation, ubiquitination, acetylation/deacetylation and interactions between two or more proteins controlling multiple signaling pathways. These pathways regulate different physiological processes and pathological events, such as cancer and other diseases. The Forkhead box O (FOXO) is one subfamily of the fork head transcription factor family with important roles in cell fate decisions and this subfamily is also suggested to play a pivotal functional role as a tumor suppressor in a wide range of cancers. During apoptosis, FOXOs are involved in mitochondria-dependent and -independent processes triggering the expression of death receptor ligands like Fas ligand, TNF apoptosis ligand and Bcl‑XL, bNIP3, Bim from Bcl-2 family members. Different types of growth factors like insulin play a vital role in the regulation of FOXOs. The most important pathway interacting with FOXO in different types of cancers is the PI3K/AKT pathway. Some other important pathways such as the Ras-MEK-ERK, IKK and AMPK pathways are also associated with FOXOs in tumorigenesis. Therapeutically targeting the FOXO signaling pathway(s) could lead to the discovery and development of efficacious agents against some cancers, but this requires an enhanced understanding and knowledge of FOXO transcription factors and their regulation and functioning. This review focused on the current understanding of cell biology of FOXO transcription factors which relates to their potential role as targets for the treatment and prevention of human cancers. We also discuss drugs which are currently being used for cancer treatment along with their target pathways and also point out some potential drawbacks of those drugs, which further signifies the need for development of new drug strategies in the field of cancer treatment.
Collapse
Affiliation(s)
- Mohd Farhan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Uma Gaur
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102 Australia and Xin Hua College, Sun Yat- Sen University, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|