1
|
Elgedawy GA, Elabd NS, Elbrolosy AM, El-Morshedy SM, El-Gamal A, Abozeid M, Abdelkreem M, Eleowa SS, Helal ML. Circulating miR-485-5p as a potential diagnostic and prognostic biomarker for HCV-related hepatocellular carcinoma. Clin Exp Med 2025; 25:110. [PMID: 40208438 PMCID: PMC11985578 DOI: 10.1007/s10238-025-01625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Hepatitis C virus (HCV) is the predominant viral cause of hepatocellular carcinoma (HCC). Early detection and use of reliable biological markers can improve survival for HCC patients. MiR-485-5p was identified as a tumor-suppressing microribonucleic acid (miRNA) in some human cancers and was recently found to be downregulated in HCC tissues, signifying its utility as a promising biomarker. We aimed to investigate the potential role of circulating miR-485-5p as a novel diagnostic and prognostic biomarker for HCV-related HCC. This case-control study included 50 patients with HCC associated with HCV, 50 patients with HCV-related liver cirrhosis, and 50 healthy controls. History gathering, physical examination, laboratory, and imaging assessments were performed. A quantitative real-time polymerase chain reaction was used to measure miR-485-5p levels. Serum miR-485-5p values demonstrated a stepwise decline pattern from the control group to cirrhotic patients, with the HCC group exhibiting the lowest levels (p < 0.001). HCC patients with early BCLC stages had significantly lower miR-485-5p levels than those with late stages (p = 0.004). The miR-485-5p displayed a better performance in predicting HCV-related HCC with a greater area under the ROC curve (AUC) than alpha-fetoprotein (AFP) (AUC and sensitivity 0.921 and 92.0 versus 0.704 and 64.0, respectively) (p < 0.001). Also, its performance in predicting HCC prognosis surpassed that of AFP (AUC and sensitivity 0.872 and 85.19 versus 0.695 and 62.96, respectively) (p < 0.001). Circulating miR-485-5p is a promising, accurate, and noninvasive biomarker for the early detection and prediction of prognosis in patients with HCV-linked HCC.
Collapse
Affiliation(s)
- Gamalat A Elgedawy
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Naglaa S Elabd
- Tropical Medicine Depatment, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| | - Asmaa M Elbrolosy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Suzan M El-Morshedy
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Ayman El-Gamal
- Tropical Medicine Depatment, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt
| | - Mai Abozeid
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| | - Mervat Abdelkreem
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt
| | - Sama S Eleowa
- BMS-University of Science and Technology at Zewail City, Giza, Egypt
| | - Marwa L Helal
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| |
Collapse
|
2
|
Schaft N, Dörrie J. The Role of Non-coding RNAs in Tumorigenesis, Diagnosis/Prognosis, and Therapeutic Strategies for Cutaneous Melanoma. Methods Mol Biol 2025; 2883:79-107. [PMID: 39702705 DOI: 10.1007/978-1-0716-4290-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
RNA is a substance with various biological functions. It serves as blueprint for proteins and shuttles information from the genes to the protein factories of the cells. However, these factories-the ribosomes-are also composed mainly of RNA, whose purpose is not storing information but enzymatic action. In addition, there is a cornucopia of RNA molecules within our cells that form a complex regulatory network, connected with all aspects of cellular development and maintenance. These non-coding RNAs can be used for diagnostics and therapeutic strategies in cancer. In this chapter we give an overview of recent developments in non-coding RNA-based diagnostics and therapies for cutaneous melanoma. It is not meant to be comprehensive; however, it describes examples based on some of the most recent publications in this field.
Collapse
Affiliation(s)
- Niels Schaft
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Jan Dörrie
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| |
Collapse
|
3
|
El-Sheikh NM, Abulsoud AI, Fawzy A, Wasfey EF, Hamdy NM. LncRNA NNT-AS1/hsa-miR-485-5p/HSP90 axis in-silico and clinical prospect correlated-to histologic grades-based CRC stratification: A step toward ncRNA Precision. Pathol Res Pract 2023; 247:154570. [PMID: 37244051 DOI: 10.1016/j.prp.2023.154570] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
The oncogenic effects of long non-coding RNA (lncRNA) Nicotinamide Nucleotide Transhydrogenase-antisense RNA1 (NNT-AS1) role in colorectal cancer (CRC) hasn't been sufficiently inspected in relation to the Homo sapiens (hsa)-microRNA (miR)- 485-5p/ heat shock protein 90 (HSP90) axis, clinically. qRT-PCR was performed to detect lncRNA NNT-AS1 and hsa-miR-485-5p expression levels in 60 Egyptian patients' sera. HSP90 serum level was quantified using Enzyme-linked immunosorbent assay (ELISA). The relative expression level of the studied non-coding RNAs as well as the HSP90 ELISA concentration were correlated with patients clinicopathological characteristics and correlated to each other. The axis diagnostic utility in comparison with carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) tumor markers (TMs) was studied by receiver operating characteristic (ROC) curve analysis. The relative lncRNA NNT-AS1 expression level fold change 56.7 (13.5-112) and HSP90 protein ELISA level 6.68 (5.14-8.77) (ng/mL) were elevated, while, for hsa-miR-485-5p 0.0474 (0.0236-0.135) expression fold change was repressed in CRC Egyptian patients' cohort sera, being compared to 28 apparently healthy control subjects. LncRNA NNT-AS1 specificity is 96.4% and a sensitivity of 91.7%, hsa-miR-485-5p showed 96.4% specificity, 90% sensitivity, and for HSP90 89.3%, 70% specificity and sensitivity, respectively. Those specificities and sensitivities were superior to the classical CRC TMs. A significant negative correlation was found between hsa-miR-485-5p with lncRNA NNT-AS1 (r = -0.933) expression fold change or with HSP90 protein blood level (r = -0.997), but, significant positive correlation was there between lncRNA NNT-AS1 and HSP90 (r = 0.927). LncRNA NNT-AS1/hsa-miR-485-5p/HSP90 axis could be a prospect for CRC development as well as diagnosis. Being correlated and related to CRC histologic grades 1-3, therefore, lncRNA NNT-AS1/hsa-miR-485-5p/HSP90 axis (not individually) expression approved clinically and in silico, could aid treatment precision.
Collapse
Affiliation(s)
- Nada M El-Sheikh
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, 11785 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, 11785 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy (Boy's Branch), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Amal Fawzy
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
4
|
Abd-Allah GM, Ismail A, El-Mahdy HA, Elsakka EG, El-Husseiny AA, Abdelmaksoud NM, Salman A, Elkhawaga SY, Doghish AS. miRNAs as potential game-changers in melanoma: A comprehensive review. Pathol Res Pract 2023; 244:154424. [PMID: 36989843 DOI: 10.1016/j.prp.2023.154424] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Melanoma is the sixth most frequent malignancy. It represents 1.7% of all cancer cases worldwide. Many risk factors are associated with melanoma including ultraviolet radiation skin phenotype, Pigmented Nevi, Pesticides, and genetic and epigenetic factors. Of the main epigenetic factors affecting melanoma are microribonucleic acids (miRNAs). They are short nucleic acid chains that have the potential to prevent the expression of a number of target genes. They could target a number of genes related to melanoma initiation, stemness, angiogenesis, apoptosis, proliferation, and potential resistance to treatment. Additionally, they can control several melanoma signaling pathways, including P53, WNT/-catenin, JAK/STAT, PI3K/AKT/mTOR axis, TGF- β, and EGFR. MiRNAs also play a role in the resistance of melanoma to essential treatment regimens. The stability and abundance of miRNAs might be important factors enhancing the use of miRNAs as markers of prognosis, diagnosis, stemness, survival, and metastasis in melanoma patients.
Collapse
|
5
|
Umar SA, Dong B, Nihal M, Chang H. Frizzled receptors in melanomagenesis: From molecular interactions to target identification. Front Oncol 2022; 12:1096134. [PMID: 36620565 PMCID: PMC9816865 DOI: 10.3389/fonc.2022.1096134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Frizzled (FZD) proteins are receptors for the WNT family ligands. Inherited human diseases and genetic experiments using knockout mice have revealed a central role of FZDs in multiple aspects of embryonic development and tissue homeostasis. Misregulated FZD signaling has also been found in many cancers. Recent studies on three out of the ten mammalian FZDs in melanoma have shown that they promote tumor cell proliferation and invasion, via the activation of the canonical WNT/β-catenin or non-canonical PCP signaling pathway. In this concise review, we summarize our current knowledge of individual FZDs in melanoma, discuss the involvement of both the canonical and non-canonical pathways, and describe ongoing efforts to target the FZD receptors for melanoma treatment.
Collapse
Affiliation(s)
- Sheikh A. Umar
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, United States
| | - Bo Dong
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, United States
| | - Minakshi Nihal
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, United States,William S. Middleton Memorial Veterans Hospital, Madison, WI, United States,*Correspondence: Hao Chang,
| |
Collapse
|
6
|
Pharmacoepigenomics circuits induced by a novel retinoid-polyamine conjugate in human immortalized keratinocytes. THE PHARMACOGENOMICS JOURNAL 2021; 21:638-648. [PMID: 34145402 DOI: 10.1038/s41397-021-00241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Retinoids are widely used in diseases spanning from dermatological lesions to cancer, but exhibit severe adverse effects. A novel all-trans-Retinoic Acid (atRA)-spermine conjugate (termed RASP) has shown previously optimal in vitro and in vivo anti-inflammatory and anticancer efficacy, with undetectable teratogenic and toxic side-effects. To get insights, we treated HaCaT cells which resemble human epidermis with IC50 concentration of RASP and analyzed their miRNA expression profile. Gene ontology analysis of their predicted targets indicated dynamic networks involved in cell proliferation, signal transduction and apoptosis. Furthermore, DNA microarrays analysis verified that RASP affects the expression of the same categories of genes. A protein-protein interaction map produced using the most significant common genes, revealed hub genes of nodal functions. We conclude that RASP is a synthetic retinoid derivative with improved properties, which possess the beneficial effects of retinoids without exhibiting side-effects and with potential beneficial effects against skin diseases including skin cancer.
Collapse
|
7
|
Non-coding RNA dysregulation in skin cancers. Essays Biochem 2021; 65:641-655. [PMID: 34414406 DOI: 10.1042/ebc20200048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Skin cancers are the most common cancers worldwide. They can be classified in melanoma and non-melanoma skin cancer (NMSC), the latter includes squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and merkel cell carcinoma (MCC). In recent years, the crucial role of non-coding RNAs (ncRNAs) in skin cancer pathogenesis has become increasingly evident. NcRNAs are functional RNA molecules that lack any protein-coding activity. These ncRNAs are classified based on their length: small, medium-size, and long ncRNAs. Among the most studied ncRNAs there are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs). ncRNAs have the ability to regulate gene expression at transcriptional and post-transcriptional levels and are involved in skin cancer cell proliferation, angiogenesis, invasion, and metastasis. Many ncRNAs exhibit tissue- or cell-specific expression while others have been correlated to tumor staging, drug resistance, and prognosis. For these reasons, ncRNAs have both a diagnostic and prognostic significance in skin cancers. Our review summarizes the functional role of ncRNAs in skin cancers and their potential clinical application as biomarkers.
Collapse
|
8
|
Smith AJ, Sompel KM, Elango A, Tennis MA. Non-Coding RNA and Frizzled Receptors in Cancer. Front Mol Biosci 2021; 8:712546. [PMID: 34671643 PMCID: PMC8521042 DOI: 10.3389/fmolb.2021.712546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Frizzled receptors have been long recognized for their role in Wnt/β-catenin signaling, a pathway known for its tumorigenic effects. More recent studies of frizzled receptors include efforts to understand non-coding RNA (ncRNA) regulation of these receptors in cancer. It has become increasingly clear that ncRNA molecules are important for regulating the expression of both oncogenic and tumor-suppressive proteins. The three most commonly described ncRNA molecules are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Here, we review ncRNA molecules that directly or indirectly affect frizzled protein expression and downstream signaling. Exploring these interactions highlights the potential of incorporating ncRNA molecules into cancer prevention and therapy strategies that target frizzled receptors. Previous investigations of frizzled receptors and ncRNA have established strong promise for a role in cancer progression, but additional studies are needed to provide the substantial pre-clinical evidence required to translate findings to clinical applications.
Collapse
|
9
|
Yin J, Chen H, Li S, Zhang S, Guo X. Blockage of miR-485-5p on Cortical Neuronal Apoptosis Induced by Oxygen and Glucose Deprivation/Reoxygenation Through Inactivating MAPK Pathway. Neuromolecular Med 2021; 23:256-266. [PMID: 32719988 DOI: 10.1007/s12017-020-08605-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
This study is designed to explore the role of miR-485-5p in hypoxia/reoxygenation-induced neuronal injury in primary rat cortical neurons. Hypoxia/reoxygenation model was established through oxygen and glucose deprivation/reoxygenation (OGD/R). RN-c cells were transfected with miR-485-5p mimics, miR-485-5p inhibitors, si-SOX6, pCNDA3.1-SOX6 or miR-485-5p + pCDNA3.1-SOX6, in which cell viability, apoptosis, lactate dehydrogenase (LDH) release rate were assessed. Western blot detected the protein expressions of apoptotic-related proteins (caspase3, Bcl-2, Bax) and the phosphorylated level of ERK1/2. The potential binding sites between miR-485-5p and SOX6 were predicted by STARBASE and identified using dual luciferase reporter gene assay. OGD/R-treated RN-c cell presented increases in apoptosis and LDH release rate as well as a decrease in cell viability. miR-485-5p was downregulated while SOX6 was upregulated in OGD/R-treated RN-c cells. Overexpression of miR-485-5p or SOX6 knockdown rescued cell viability and Bcl-2 expression, while attenuated apoptosis, LDH release rate, expression of SOX6 and the phosphorylated level of ERK1/2. Consistently, miR-485-5p inhibition led to the reverse pattern. Co-transfection of miR-485-5p and SOX6 reversed the protective effect of miR-485-5p on OGD/R-induced neuronal apoptosis. miR-485-5p can directly target SOX6. Together, miR-485-5p inhibited SOX6 to alleviate OGD/R-induced apoptosis. Collectively, miR-485-5p protects primary cortical neurons against hypoxia injury through downregulating SOX6 and inhibiting MAPK pathway.
Collapse
Affiliation(s)
- Jiangliu Yin
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Huan Chen
- Hunan Provincial Center for Disease Prevent and Control, Changsha, 410006, Hunan, People's Republic of China
| | - Suonan Li
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Shuai Zhang
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Xieli Guo
- Department of Neurosurgery, Jinjiang Municipal Hospital of Quanzhou Medical College, No. 392, Xinhua Road, Meiling Street, Quanzhou, 362200, Fujian, People's Republic of China.
| |
Collapse
|
10
|
Wu X, Bao H. Tumor suppressive microRNA-485-5p targets PRRX1 in human skin melanoma cells, regulating epithelial-mesenchymal transition and apoptosis. Cell Biol Int 2021; 45:1404-1414. [PMID: 33620119 DOI: 10.1002/cbin.11575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Melanoma is one of the most aggressive skin cancers. Existing evidence has reported the aberrant expression of microRNAs (miRNAs) in melanoma, but their putative targets and underlying downstream effects remain to be further understood. Herein, we explored the suppressive role of miR-485-5p in melanoma progression. Initial bioinformatics analyses showed that the PRRX1 gene was differentially expressed in melanoma, while miR-485-5p was predicted to be a potential regulatory miRNA binding to PRRX1 mRNA. We confirmed that PRRX1 was upregulated, while miR-485-5p was downregulated in human melanoma samples compared with adjacent normal skin tissues. We then showed that PRRX1 was a target gene of miR-485-5p by dual-luciferase reporter gene assay. Moreover, a reduction in the expression of PRRX1 and downregulation of important proteins of the transforming growth factor-beta (TGFβ) signaling pathway was observed after miR-485-5p overexpression. Furthermore, miR-485-5p overexpression or PRRX1 knockdown suppressed epithelial-mesenchymal transition, cell viability, migration, and invasion, and promoted cell apoptosis in melanoma cells. Our study demonstrates the tumor-suppressive functions of miR-485-5p in the development of human melanoma, providing a potential target for therapy.
Collapse
Affiliation(s)
- Xiaolin Wu
- School of Traditional Chinese Medicine, Jilin Agriculture University, Changchun, Jilin, PR China.,College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Changchun, Jilin, PR China
| | - Haiying Bao
- School of Traditional Chinese Medicine, Jilin Agriculture University, Changchun, Jilin, PR China
| |
Collapse
|
11
|
Cui S, Li C. RHPN1‑AS1 promotes ovarian carcinogenesis by sponging miR‑485‑5p and releasing TPX2 mRNA. Oncol Rep 2021; 45:111. [PMID: 33907841 PMCID: PMC8082340 DOI: 10.3892/or.2021.8062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in cancer development. However, researchers have yet to identify the underlying association between lncRNAs and ovarian cancer (OC). The aim of the present study was to examine the effect of lncRNA RHPN1-AS1 (RHPN1-AS1) on OC cells and tissues. Reverse transcriptase-quantitative PCR (RT-qPCR) was utilized to quantify RHPN1-AS1, miR-485-5p, and TPX2 mRNA expression in samples with OC. Luciferase-reporter assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay were then employed to validate the target relationship among RHPN1-AS1, miR-485-5p and TPX2. Cell Counting Kit-8, BrdU, wound-healing, cell-adhesion, and flow cytometry assays were also employed to assess cell viability, proliferation, migration, adhesion and apoptosis, respectively, in SKOV3 and OVCAR3 cell lines. Findings revealed that RHPN1-AS1 demonstrated a higher expression level in OC cell lines and tissues. In addition, RHPN1-AS1 enhanced the adhesion, proliferation and migration of OC cell lines but decreased apoptosis of OC cells. It was also observed that the relationship between RHPN1-AS1 and miR-485-5p was negative and that RHPN1-AS1 could sponge miR-485-5p to regulate the proliferation, apoptosis, adhesion, and migration abilities of OC cells. Moreover, TPX2 was targeted by miR-485-5p and was significantly overexpressed in OC cell lines and tissues. Experimental investigations also revealed that TPX2 promoted the proliferation, adhesion, and migration of OC cells but suppressed the apoptosis of SKOV3 and OVCAR3 cells. In summary, RHPN1-AS1 played a tumor promotive role by sponging miR-485-5p to increase TPX2 expression in OC tumorigenesis.
Collapse
Affiliation(s)
- Shoubin Cui
- Department of Gynaecology and Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Cui Li
- Department of Gynaecology and Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
12
|
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front Oncol 2021; 11:608987. [PMID: 33968718 PMCID: PMC8100681 DOI: 10.3389/fonc.2021.608987] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the utmost fatal kind of skin neoplasms. Molecular changes occurring during the pathogenic processes of initiation and progression of melanoma are diverse and include activating mutations in BRAF and NRAS genes, hyper-activation of PI3K/AKT pathway, inactivation of p53 and alterations in CDK4/CDKN2A axis. Moreover, several miRNAs have been identified to be implicated in the biology of melanoma through modulation of expression of genes being involved in these pathways. In the current review, we provide a summary of the bulk of information about the role of miRNAs in the pathobiology of melanoma, their possible application as biomarkers and their emerging role as therapeutic targets for this kind of skin cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sun MX, An Q, Chen LM, Guo L. MIR-520f Regulated Itch Expression and Promoted Cell Proliferation in Human Melanoma Cells. Dose Response 2020; 18:1559325820918450. [PMID: 32425721 PMCID: PMC7218305 DOI: 10.1177/1559325820918450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that abnormal expression and dysfunction of microRNA is involved in development of cancers. However, the function of miR-520f especially in human melanoma remains elusive. In the current study, the underlying function of miR-520f in human melanoma was investigated. Our study demonstrated that the miR-520f level in human melanoma cell lines and clinical tissues was increased. Overexpression of miR-520f promoted cell proliferation by using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation, anchorage-independent growth assay, and 5-bromo-2-deoxyuridine assays. Furthermore, we revealed that miR-520f could interact with circular RNA Itchy E3 ubiquitin protein ligase (ITCH) 3'-untranslated region and suppress ITCH expression in human melanoma cells. The inhibitory effect of miR-520f-in could be partially restored by knockdown of ITCH in human melanoma cells. In summary, this study provides novel insights into miR-520f act as a crucial role in the regulation of human melanoma cell growth via regulating ITCH, which might be a potential biomarker and therapeutic target of human melanoma.
Collapse
Affiliation(s)
- Ming-xia Sun
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Qun An
- Department of Burns and Plastic Surgery, The Second People Hospital of Dezhou, People’s Republic of China
| | - La-mei Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ling Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
14
|
Lu Y, Luan XR. miR-147a suppresses the metastasis of non-small-cell lung cancer by targeting CCL5. J Int Med Res 2019; 48:300060519883098. [PMID: 31884861 PMCID: PMC7607764 DOI: 10.1177/0300060519883098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective MicroRNA (miR)-147a acts as an inhibitory miRNA in many cancers. However, its potential roles in non-small-cell lung cancer (NSCLC) remain unclear. Methods Levels of miR-147a and C-C motif chemokine ligand 5 (CCL5) were measured using a quantitative real-time PCR assay. Cell growth, migration, and invasion of NSCLC cells were assessed by colony formation, wound healing, and Transwell invasion assays, respectively. The role of miR-147a in the growth and metastatic ability of NSCLC in vivo was detected using a xenograft model and experimental lung metastasis model. Results miR-147a was downregulated in NSCLC cell lines as well as in tissues. Gain-of-function and loss-of-function analyses demonstrated that upregulation of miR-147a decreased the aggressiveness of NSCLC cells in vitro. In addition, CCL5 was identified as a target of miR-147a. We also demonstrated the effect of miR-147a in the progression of NSCLC cells via targeting CCL5. Finally, the in vivo mouse xenograft model showed that miR-147a inhibited progression of NSCLC cells. Conclusions Overall, expression of miR-147a was downregulated in NSCLC. Importantly, upregulation of miR-147a suppressed the growth and metastasis of NSCLC cells in vivo by targeting CCL5.
Collapse
Affiliation(s)
- Yan Lu
- Nursing Department, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Rong Luan
- Nursing Department, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Wang H, Luan H, Zhan T, Liu X, Song J, Dai H. Long non-coding RNA LINC00707 acts as a competing endogenous RNA to enhance cell proliferation in colorectal cancer. Exp Ther Med 2019; 19:1439-1447. [PMID: 32010320 DOI: 10.3892/etm.2019.8350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been indicated to serve critical roles in cancer development and progression. Long intergenic non-protein coding RNA 70 (LINC00707) was recently reported to be an oncogene involved in the tumorigenesis of several types of human cancer. However, the clinical role, biological functions and molecular mechanism of LINC00707 in colorectal cancer (CRC) remain unclear. The aim of the present study was to investigate the biological effects and mechanism of LINC00707 in CRC. Reverse transcription-quantitative PCR was used to detect the expression levels of LINC00707 in 65 CRC tissue samples and CRC cell lines (HCT116, HT29 and SW480). Cell Counting Kit-8 and colony formation assays were performed to investigate the effects of LINC00707 on CRC cell proliferation. A dual-luciferase reporter assay was conducted to investigate the mechanisms of LINC00707 in CRC. The upregulation of LINC00707 expression was significantly associated with tumor size, stage and poor survival in patients with CRC. LINC00707 also acted as an independent prognostic factor for CRC. Functional analyses revealed that the knockdown of LINC00707 could inhibit CRC cell proliferation. Furthermore, bioinformatics analysis demonstrated that microRNA (miR)-485-5p could directly bind to LINC00707, which was confirmed by a dual-luciferase reporter assay. In conclusion, the upregulation of LINC00707 is associated with a shorter survival time in patients with CRC. Knockdown of LINC00707 may inhibit the proliferation of CRC cells by binding with miR-485-5p.
Collapse
Affiliation(s)
- Han Wang
- First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hairong Luan
- Basic Medical College, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Tao Zhan
- First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xia Liu
- Basic Medical College, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jie Song
- Basic Medical College, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Haibing Dai
- First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
16
|
Gao J, Dai C, Yu X, Yin XB, Zhou F. microRNA-485-5p inhibits the progression of hepatocellular carcinoma through blocking the WBP2/Wnt signaling pathway. Cell Signal 2019; 66:109466. [PMID: 31706018 DOI: 10.1016/j.cellsig.2019.109466] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
microRNA-485-5p (miR-485-5p) has been shown to act as a tumor-suppressor gene in some cancers, such as ovarian epithelial tumors and oral tongue squamous cell carcinoma. However, with regard to the anti-tumor role of miR-485-5p in hepatocellular carcinoma (HCC), evidence is unexpectedly limited. In the present study, we investigated the expression and the role of miR-485-5p in the progression of HCC. Microarray analysis revealed that miR-485-5p was downregulated and WBP2 was upregulated in HCC, which was consistent with RT-qPCR and immunohistochemistry assays in the HCC tissues we collected. A negative correlation between the expression of miR-485-5p and WBP2 was also found in HCC tissues. It was predicted and confirmed that miR-485-5p could bind to WW domain binding protein 2 (WBP2) through in silico analysis of genetic sequences and an in vitro dual-luciferase reporter gene assay. Next, gain- or loss-of-function studies were applied in the HCC cell line (Huh7) to examine the effects of miR-485-5p and WBP2 on HCC cell behavior. The effects of miR-485-5p and WBP2 on the Wnt/β-catenin signaling pathway were determined by TOP/FOP flash luciferase assays. miR-485-5p was shown to downregulate WBP2 and block the Wnt/β-catenin signaling pathway. As expected, elevated miR-485-5p levels and inhibition of WBP2 protein expression exerted inhibitory effects on HCC cell proliferation, migration and invasion and, induced apoptosis. In vivo experiments were finally conducted, which confirmed that upregulation of miR-485-5p or depletion of WBP2 attenuated tumor growth. Collectively, our results suggest miR-485-5p can downregulate WBP2 to inhibit the development of HCC by the blockade of the Wnt/β-catenin signaling, providing a novel molecular target for HCC treatment.
Collapse
Affiliation(s)
- Jun Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Chao Dai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xin Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiang-Bao Yin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Fan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
17
|
UPF1 regulates the malignant biological behaviors of glioblastoma cells via enhancing the stability of Linc-00313. Cell Death Dis 2019; 10:629. [PMID: 31427569 PMCID: PMC6700115 DOI: 10.1038/s41419-019-1845-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022]
Abstract
There is growing evidence that the long non-coding RNAs(lncRNAs) play an important role in the biological behaviors of glioblastoma cells. In this study, we elucidated the function and possible effect and molecular mechanisms of lncRNA-Linc-00313 on the biological behaviors of glioblastoma cells as well as UPF1 function as a RNA-binding protein to enhance its stability. Here, we used qRT-PCR and western blot to measure the expression, cell Transfection to disrupt the expression of genes, cell viability analysis, quantization of apoptosis, cell migration, and invasion assays, Reporter vectors construction and luciferase assays to investigate the malignant biological behaviors of cells, human lncRNA microarrays, RNA-Immunoprecipitation, dual-luciferase gene reporter assay, half-life assay and chromatin immunoprecipitation to verify the binding sites, tumor xenograft implantation for in vivo experiment, SPSS 18.0 statistical software for data statistics. UPF1 and Linc-00313 were both upregulated in glioma tissues and cells. Knockdown of UPF1 or Linc-00313 significantly inhibited malignant biological behaviors of glioma cells by regulating miR-342-3p and miR-485-5p, which are downregulated and functioned as tumor suppressors in glioma. Furthermore, Linc-00313 could acted as a competing endogenous RNA(ceRNA) to regulate the expression of Zic4 by binding to miR-342-3p and miR-485-5p. Interestingly, Zic4 could bind to the promoters of UPF1 and Linc-00313 respectively and upregulate the expression of them. These results indicated that a positive-feedback loop was formed in the regulation of the biological behaviors of glioma cells. The study is the first to prove that the UPF1-Linc-00313-miR-342-3p/miR-485-5p-Zic4-SHCBP1 pathway forms a positive-feedback loop and regulates the biological behaviors of U87 and U251 cells, which might provide a new therapeutic target for glioma.
Collapse
|
18
|
Liu Q, Guan Y, Li Z, Wang Y, Liu Y, Cui R, Wang Y. miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated Wnt-β-catenin pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:358. [PMID: 31419987 PMCID: PMC6697940 DOI: 10.1186/s13046-019-1370-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background MicroRNAs (miRNAs) play crucial roles in tumor initiation and development. Previously, we indicated that miR-504 is downregulated and suppresses tumor proliferation in glioblastoma (GBM). However, the regulation and relevant mechanism of miR-504 in GBM mesenchymal (ME) transition remain unclear. Methods Transcriptome and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The potential functions of miR-504 were predicted using gene ontology analysis. GBM cell migration and invasion were examined using wound healing and Transwell assays. Epithelial–mesenchymal transition (EMT) progression in GBM cell lines was detected with immunofluorescence and western blotting. The stemness activity of glioma stem-like cells (GSCs) was assessed by sphere formation assay and tumor xenograft model. miR-504 binding to the FZD7 (frizzled class receptor 7) 3′ untranslated region (3′UTR) was validated using dual luciferase reporter assay. TOP/FOP Flash assays were conducted to determine the effects of miR-504 on Wnt/β-catenin signaling. Results Analysis of TCGA transcriptomic data showed that low miR-504 expression correlated with ME subtype transition and poor survival in patients with GBM. Functional experiments showed that miR-504 overexpression suppressed malignant behaviors of GBM cells, such as migration, invasion, EMT, and stemness activity. Furthermore, miR-504 was a negative regulator of the Wnt–β-catenin pathway by directly repressing FZD7 expression, and FZD7 overexpression reversed the EMT inhibition caused by miR-504. Moreover, the low miR-504/FZD7 expression ratio was a ME subtype marker and could serve as a significant prognostic indicator and predict the clinical outcome of chemotherapy and radiotherapy for patients with GBM in TCGA dataset. Conclusions Our results suggest that miR-504 suppresses the aggressive biological processes associated with the ME phenotype of GBM and could be a potential candidate for therapeutic applications in these malignant brain tumors. Electronic supplementary material The online version of this article (10.1186/s13046-019-1370-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yanlei Guan
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhenhang Li
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yao Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yu Liu
- Department of Cardiac Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Run Cui
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yunjie Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
19
|
Long noncoding RNA BLACAT1 is overexpressed in hepatocellular carcinoma and its downregulation suppressed cancer cell development through endogenously competing against hsa-miR-485-5p. Biomed Pharmacother 2019; 116:109027. [PMID: 31174090 DOI: 10.1016/j.biopha.2019.109027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE In this work, we explored the expression and mechanistic role of long noncoding RNA (lncRNA), bladder cancer associated transcript 1 (BLACAT1) in human hepatocellular carcinoma (HCC). METHODS BLACAT1 expression in bothin vitro HCC cell lines and in vivo human HCC clinical samples were assessed by qRT-PCR. In HeG2 and MHCC97 L cells, BLACAT1 downregulation was induced by lentiviral infection to evaluate its functions in regulating HCC cancer cell proliferation and invasion in vitro, and xenograft in vivo. A BLACAT1 endogenously competing candidate, human microRNA-485-5p (has-miR-485-5p) was assessed in dual-luciferase assay and qRT-PCR in HCC cells. Furthermore, has-miR-485-5p was inhibited in BLACAT1-downregulated HeG2 and MHCC97 L cells to evaluate the correlation of has-miR-485-5p in BLACAT1-associated functional regulation in HCC cells. RESULTS BLACAT1was found to be overexpressed in both HCC cells and human HCC tumors. In HeG2 and MHCC97 L cells, lentivirus-induced BLACAT1 downregulation inhibited cancer cellin vitro proliferation and invasion, and in vivo xenograft growth. Has-miR-485-5p was confirmed to be bound by BLACAT1 and its expression in HCC cells inversely regulated by BLACAT1. Then, has-miR-485-5p downregulation reversed the inhibitory effects of BLACAT1 downregulation on HCC cancer cell in vitro functions. CONCLUSION BLACAT1 is aberrantly upregulated in HCC and its inhibition had tumor suppressing effects in human HCC, possibly through endogenously competing against has-miR-485-5p. The BLACAT1/ has-miR-485-5p regulatory axis may be a molecular target for future HCC therapy.
Collapse
|
20
|
Wang S, Wu Y, Xu Y, Tang X. miR-10b promoted melanoma progression through Wnt/β-catenin pathway by repressing ITCH expression. Gene 2019; 710:39-47. [PMID: 31129246 DOI: 10.1016/j.gene.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 01/23/2023]
Abstract
Dysregulation of microRNAs (miRNAs) have been reported to contribute to malignant progression in melanoma. However, the roles and mechanisms of several miRNAs in melanoma remain poorly understood. In our study, we showed that miR-10b was significantly up-regulated in melanoma tissues and cell lines, and was associated with overall survival of melanoma patients. Inhibition of miR-10b dramatically suppressed melanoma cell proliferation, migration and invasion in vitro and inhibited tumor growth in vivo. Moreover, we defined ITCH as a direct and functional downstream target of miR-10b, and showed that there was an inverse correlation between the expression of ITCH and miR-10b on melanoma tissues. Down-regulation of ITCH partially attenuated the inhibitory effects of miR-10b inhibition on melanoma cell proliferation, migration and invasion. Furthermore,we found that miR-10b exerted its effects on melanoma by regulating the Wnt/β-catenin pathway. Taken together, our results demonstrated that miR-10b was an important epigenetic modifier, promoting melanoma progression through regulating ITCH/Wnt/β-catenin pathway. These results offer a new strategy for epigenetic cancer therapy.
Collapse
Affiliation(s)
- Shengqiang Wang
- General Department, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing 400030, China.
| | - Yi Wu
- General Department, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing 400030, China
| | - Yan Xu
- General Department, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing 400030, China
| | - Xianjun Tang
- General Department, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing 400030, China
| |
Collapse
|
21
|
Li L, Li Y, Fan Z, Wang X, Li Z, Wen J, Deng J, Tan D, Pan M, Hu X, Zhang H, Lai M, Guo J. Ascorbic Acid Facilitates Neural Regeneration After Sciatic Nerve Crush Injury. Front Cell Neurosci 2019; 13:108. [PMID: 30949031 PMCID: PMC6437112 DOI: 10.3389/fncel.2019.00108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Ascorbic acid (AA) is an essential micronutrient that has been safely used in the clinic for many years. The present study indicates that AA has an unexpected function in facilitating nerve regeneration. Using a mouse model of sciatic nerve crush injury, we found that AA can significantly accelerate axonal regrowth in the early stage [3 days post-injury (dpi)], a finding that was revealed by immunostaining and Western blotting for antibodies against GAP-43 and SCG10. On day 28 post-injury, histomorphometric assessments demonstrated that AA treatment increased the density, size, and remyelination of regenerated axons in the injured nerve and alleviated myoatrophy in the gastrocnemius. Moreover, the results from various behavioral tests and electrophysiological assays revealed that nerve injury-derived functional defects in motor and sensory behavior as well as in nerve conduction were significantly attenuated by treatment with AA. The potential mechanisms of AA in nerve regeneration were further explored by investigating the effects of AA on three types of cells involved in this process [neurons, Schwann cells (SCs) and macrophages] through a series of experiments. Overall, the data illustrated that AA treatment in cultured dorsal root ganglionic neurons resulted in increased neurite growth and lower expression of RhoA, which is an important inhibitory factor in neural regeneration. In SCs, proliferation, phagocytosis, and neurotrophin expression were all enhanced by AA. Meanwhile, AA treatment also improved proliferation, migration, phagocytosis, and anti-inflammatory polarization in macrophages. In conclusion, this study demonstrated that treatment with AA can promote the morphological and functional recovery of injured peripheral nerves and that this effect is potentially due to AA’s bioeffects on neurons, SCs and macrophages, three of most important types of cells involved in nerve injury and regeneration.
Collapse
Affiliation(s)
- Lixia Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Zhihao Fan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xianghai Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Zhenlin Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Jinkun Wen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Junyao Deng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Dandan Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Mengjie Pan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xiaofang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Haowen Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Muhua Lai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Jiasong Guo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Aliberti P, Sethi R, Belgorosky A, Chandran UR, Plant TM, Walker WH. Gonadotrophin-mediated miRNA expression in testis at onset of puberty in rhesus monkey: predictions on regulation of thyroid hormone activity and DLK1-DIO3 locus. Mol Hum Reprod 2019; 25:124-136. [PMID: 30590698 PMCID: PMC6396851 DOI: 10.1093/molehr/gay054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Molecular mechanisms responsible for the initiation of primate spermatogenesis remain poorly characterized. Previously, 48 h stimulation of the testes of three juvenile rhesus monkeys with pulsatile LH and FSH resulted in down-regulation of a cohort of genes recognized to favor spermatogonia stem cell renewal. This change in genetic landscape occurred in concert with amplification of Sertoli cell proliferation and the commitment of undifferentiated spermatogonia to differentiate. In this report, the non-protein coding small RNA transcriptomes of the same testes were characterized using RNA sequencing: 537 mature micro-RNAs (miRNAs), 322 small nucleolar RNAs (snoRNAs) and 49 small nuclear RNAs (snRNAs) were identified. Pathway analysis of the 20 most highly expressed miRNAs suggested that these transcripts contribute to limiting the proliferation of the primate Sertoli cell during juvenile development. Gonadotrophin treatment resulted in differential expression of 35 miRNAs, 12 snoRNAs and four snRNA transcripts. Ten differentially expressed miRNAs were derived from the imprinted delta-like homolog 1-iodothyronine deiodinase 3 (DLK1-DIO3) locus that is linked to stem cell fate decisions. Four gonadotrophin-regulated expressed miRNAs were predicted to trigger a local increase in thyroid hormone activity within the juvenile testis. The latter finding leads us to predict that, in primates, a gonadotrophin-induced selective increase in testicular thyroid hormone activity, together with the established increase in androgen levels, at the onset of puberty is necessary for the normal timing of Sertoli cell maturation, and therefore initiation of spermatogenesis. Further examination of this hypothesis requires that peripubertal changes in thyroid hormone activity of the testis of a representative higher primate be determined empirically.
Collapse
Affiliation(s)
- Paula Aliberti
- Endocrine Service, Hospital de Pediatría Garrahan, Combate de los Pozos 1881(C 1245 AAM) C.A.B.A., Buenos Aires, Argentina
| | - Rahil Sethi
- Department of Biomedical Informatics, University of Pittsburgh Cancer Institute, 5607 Baum Boulevard, Suite 500, Pittsburgh, PA, USA
| | - Alicia Belgorosky
- Endocrine Service, Hospital de Pediatría Garrahan, Combate de los Pozos 1881(C 1245 AAM) C.A.B.A., Buenos Aires, Argentina
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh Cancer Institute, 5607 Baum Boulevard, Suite 500, Pittsburgh, PA, USA
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, USA
| | - William H Walker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
24
|
Guo X, Yang J, Huang J, Chen Z, Wu X, Zhu L, Huang G, Long J, Su L. Influence of CTNNB1 rs2953 polymorphism on schizophrenia susceptibility in Chinese Han population through modifying miR-485 binding to CTNNB1. GENES BRAIN AND BEHAVIOR 2018; 18:e12524. [PMID: 30280518 DOI: 10.1111/gbb.12524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) are two major neuropsychiatric diseases that are the most substantial causes of disability and mortality worldwide. CTNNB1 encodes beta-catenin, an important protein in canonical Wnt signaling. We aimed to investigate the association between the rs2953 of CTNNB1 and the risk of SCZ and BD and to further explore the function of rs2953. A total of 1658 samples (548 SCZ cases, 512 BD cases, and 598 controls) were examined in terms of the genotype of CTNNB1 rs2953. The mRNA expression level of CTNNB1 significantly increased in the SCZ and BD groups compared with that in the control group. Significant association remained between CTNNB1 3'-untranslated region (UTR) variant rs2953 and SCZ susceptibility (additive and dominant model) after gender and age were adjusted. rs2953 disrupted the binding of CTNNB1 and miR-485. miR-485 significantly suppressed the luciferase activity of CTNNB1-T vector by binding to the CTNNB1 3'-UTR containing the T allele of rs2953. The mRNA expression of CTNNB1 can be used as a biomarker for the diagnosis of SCZ and BD. The 3'-UTR variant rs2953 in CTNNB1 influences the risk of SCZ in the Han Chinese population and modifies the binding of miR-485 to CTNNB1.
Collapse
Affiliation(s)
- Xiaojing Guo
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiao Huang
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhaoxia Chen
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Xulong Wu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Zhu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Guifeng Huang
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianxiong Long
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Su
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Long non-coding RNA DSCR8 acts as a molecular sponge for miR-485-5p to activate Wnt/β-catenin signal pathway in hepatocellular carcinoma. Cell Death Dis 2018; 9:851. [PMID: 30154476 PMCID: PMC6113322 DOI: 10.1038/s41419-018-0937-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Previous evidences reveal that long non-coding RNA (lncRNA) down syndrome critical region 8 (DSCR8) involves in the progression of multiple cancers. However, the exact expression, function, and mechanism of DSCR8 in hepatocellular carcinoma (HCC) remain uncovered. In this study, real-time PCR in HCC tissues and cell lines indicated that DSCR8 expression was upregulated, while miR-485-5p was downregulated. MTT assay, plate clone formation, Edu assay, flow cytometry, and in vivo experiments indicated that DSCR8 promoted HCC cell proliferation and cycle, whereas accelerated cell apoptosis. Luciferase reporter gene assay, RIP assay, and rescue experiments demonstrated that DSCR8 functioned as a competing endogenous RNA (ceRNA) by sponging miR-485-5p in HCC cells. Furthermore, gain- and loss-of-function studies showed that miR-485-5p activated Wnt/β-catenin signal pathway by targeting Frizzled-7 (FZD7). Moreover, DSCR8 activated Wnt/β-catenin signal pathway to promote HCC progression by DSCR8/miR-485-5p/FZD7 axis. Statistical analysis revealed that DSCR8 and miR-485-5p were closely related to some malignant clinicopathological features and 5-year survival rates of HCC patients. Taken together, the present study reports for the first time that DSCR8 activates Wnt/β-catenin signal pathway to promote HCC progression by DSCR8/miR-485-5p/FZD7 axis. The findings provide promising and valuable strategies for targeted therapy of HCC.
Collapse
|
26
|
Quan H, Li B, Yang J. MicroRNA-504 functions as a tumor suppressor in hepatocellular carcinoma through inhibiting Frizzled-7-mediated-Wnt/β-catenin signaling. Biomed Pharmacother 2018; 107:754-762. [PMID: 30142536 DOI: 10.1016/j.biopha.2018.07.150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that microRNAs (miRNAs) are critical regulators in the development and progression of various malignant tumors, including hepatocellular carcinoma (HCC). Multiple findings have indicated that miRNA-504 (miR-504) is dysregulated in several types of cancers, functioning as an oncogenic miRNA or a tumor suppressive miRNA. However, the role of miR-504 in HCC remains unknown. In this study, we aimed to detect the expression pattern of miR-504 in HCC tissues and cell lines and investigate the precise biological function in HCC cells. Our results showed that miR-504 expression levels were frequently downregulated in both HCC tissues and cell lines. Gain-of-function experiments demonstrated that miR-504 overexpression inhibited the proliferation and invasion in HCC cell lines. By contrast, miR-504 inhibition had the opposite effect. Interestingly, bioinformatics analysis predicted that Frizzled-7 (FZD7) was a potential target gene of miR-504. Dual-luciferase reporter assays confirmed that miR-504 directly targeted the 3'-untranslated region of FZD7 mRNA. In addition, our results showed that miR-504 negatively regulated the mRNA and protein expression of FZD7 in HCC cell lines. Moreover, miR-540 overexpression inhibited the cellular expression of β-catenin and blocked the activation of Wnt signaling in HCC cells. Notably, restoration of FZD7 expression significantly reversed the inhibitory effect of miR-504 on proliferation, invasion, and Wnt/β-catenin signaling in HCC cells. In conclusion, our results demonstrate that miR-504 functions as a tumor suppressive miRNA that inhibits the proliferation and invasion of HCC cells by targeting FZD7 and inhibiting Wnt/β-catenin signaling. Our study provides evidence that miR-504-meidated FZD7/Wnt/β-catenin signaling pathway plays an important role in HCC development and progression and suggests miR-504 as a novel future therapeutic target for treatment of HCC.
Collapse
Affiliation(s)
- Hui Quan
- Department of Interventional Vascular Surgery, Baoji Central Hospital, Baoji, Shaanxi Province 721008, China
| | - Bo Li
- Department of Interventional Radiology, Traditional Chinese Medical Hospital of Baoji City, Baoji, Shaanxi Province 721001, China
| | - Jianjun Yang
- Department of Infectious Diseases, Baoji Central Hospital, No. 8 Jiangtan Road, Weibin District, Baoji, Shaanxi Province 721008, China.
| |
Collapse
|
27
|
Du K, Zhang X, Lou Z, Guo P, Zhang F, Wang B, Chen L, Zhang C. MicroRNA485-3p negatively regulates the transcriptional co-repressor CtBP1 to control the oncogenic process in osteosarcoma cells. Int J Biol Sci 2018; 14:1445-1456. [PMID: 30262996 PMCID: PMC6158736 DOI: 10.7150/ijbs.26335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022] Open
Abstract
Carboxyl-terminal binding protein 1 (CtBP1), a well-known transcriptional co-repressor, is highly expressed in a number of cancer types. However, it is still absent in osteosarcoma cells. Here, we found that CtBP1, but not CtBP2, is overexpressed in invasive osteosarcoma tissues and cells. The overexpressed CtBP1 in turn represses its downstream targets, such as the pro-apoptotic regulators Bax, Bim and p53 upregulated modulator of apoptosis (PUMA), cell adhesion molecule E-cadherin, and the cell cycle regulators p16, p21 and phosphatase and tensin homolog (PTEN). To explore the molecular mechanism of CtBP1 overexpression, we subjected three independent clinical samples to miRNA microarray analysis and found that miR-485-3p could specifically bind to the 3'-untranslated region (3'-UTR) of CtBP1, thereby negatively controlling CtBP1 expression. The overexpression of miR-485-3p in osteosarcoma cells significantly repressed CtBP1 levels and inhibited cell proliferation, colony formation, cell migration and sphere formation. Further analysis indicated that DNA hypermethylation in the promoter region of miR-485-3p caused the downregulation of miR-485-3p. Treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (AZA) resulted in the upregulation of miR-485-3p and the downregulation of CtBP1 as well as inhibited osteosarcoma cell growth. This study provides evidence that CtBP1 is also overexpressed in osteosarcoma cells and demonstrates the underlying mechanism regarding its overexpression. Thus, therapeutically targeting CtBP1 may represent an effective strategy for osteosarcoma therapy.
Collapse
Affiliation(s)
- Kaili Du
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, China
| | - Zhenkai Lou
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Peiyu Guo
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Fan Zhang
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Bing Wang
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Lingqiang Chen
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Chunqiang Zhang
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
28
|
Hu XX, Xu XN, He BS, Sun HL, Xu T, Liu XX, Chen XX, Zeng KX, Wang SK, Pan YQ. microRNA-485-5p Functions as a Tumor Suppressor in Colorectal Cancer Cells by Targeting CD147. J Cancer 2018; 9:2603-2611. [PMID: 30087700 PMCID: PMC6072824 DOI: 10.7150/jca.24918] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer(CRC) is a prevalent malignancy in the world. There is growing evidence that microRNAs (miRNAs) as crucial modulator are in connection with many tumor-related diseases including CRC. Though miR-485-5p has been reported as an anti-oncogene in certain cancers, it remains unclear in CRC. In this research, we found that miR-485-5p was at lower level expression in CRC tissues and cell lines compared to the paired paracancerous tissues and the normal colon epithelial cell line FHC, correspondingly. Furthermore, Experimental up-regulation miR-485-5p in DLD-1 and SW480 cells with mimic could inhibit the ability of proliferation, migration, invasion of CRC cell lines and facilitate cells apoptosis. Also, we confirmed that CD147 existed typically negative regulation by miR-485-5p through binding a conserved sequence specifically within the CD147 3'-untranslated region (3'UTR) and reintroduction of CD147 could rescue the phenotypic changes caused by miR-485-5p. The findings provide evidence to demonstrate the role of miR-485-5p/CD147 interaction in CRC and indicate that miR-485-5p might be exploited therapeutically in CRC.
Collapse
Affiliation(s)
- Xiu-Xiu Hu
- Medical School of Southeast University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xue-Ni Xu
- Medical School of Southeast University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Bang-Shun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Hui-Ling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiang-Xiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiao-Xiang Chen
- Medical School of Southeast University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Kai-Xuan Zeng
- Medical School of Southeast University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Shu-Kui Wang
- Medical School of Southeast University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Yu-Qin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
29
|
Wang S, Zhang Y, Yuan S, Ji X. MicroRNA‑485 targets MACC1 and inhibits cervical cancer cell proliferation and invasion. Mol Med Rep 2018; 18:2407-2416. [PMID: 29916552 DOI: 10.3892/mmr.2018.9186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/04/2018] [Indexed: 11/05/2022] Open
Abstract
A large body of evidence has indicated that microRNAs (miRNAs/miRs) have essential roles in the development and progression of cervical cancer. Thus, miRNAs with dysregulated expression are potential biomarkers for cervical cancer diagnosis and prognosis. In the present study, expression levels of miR‑485 were detected in cervical cancer tissues and cell lines. The effects of miR‑485 overexpression on the proliferation and invasion of cervical cancer cells were determined with Cell Counting kit‑8 and Transwell invasion assays. The mechanisms underlying the action of miR‑485 in cervical cancer were investigated using bioinformatics analysis, a luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis. In addition, the association between miR‑485 and metastasis associated in colon cancer‑1 (MACC1) in cervical cancer tissues was examined. The present study demonstrated that miR‑485 expression was significantly downregulated in cervical cancer tissues and cell lines. Reduced miR‑485 expression in patients with cervical cancer was correlated with International Federation of Gynecology and Obstetrics stage and lymph node metastasis. Furthermore, restored expression of miR‑485 significantly reduced cervical cancer cell proliferation and invasion. MACC1 was identified as a direct target gene of miR‑485 in cervical cancer. MACC1 expression was significantly upregulated in cervical cancer specimens and was inversely correlated with miR‑485 expression. Additionally, the restored expression of MACC1 eliminated the suppressive effects of miR‑485 overexpression on the proliferation and invasion of cervical cancer cells. Notably, the upregulation of miR‑485 suppressed the MET proto‑oncogene, receptor tyrosine kinase (Met)/RAC‑α serine/threonine‑protein kinase (AKT) signaling pathway. These results demonstrated that miR‑485 may perform its tumor suppressive function in cervical cancer by directly targeting MACC1 and inhibiting the Met/AKT signaling pathway. Therefore, the miR‑485/MACC1 axis may be a novel and effective therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Shumei Wang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 252500, P.R. China
| | - Yaqi Zhang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 252500, P.R. China
| | - Shunping Yuan
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 252500, P.R. China
| | - Xiaoling Ji
- Department of Obstetrics and Gynecology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
30
|
Wang M, Cai WR, Meng R, Chi JR, Li YR, Chen AX, Yu Y, Cao XC. miR-485-5p suppresses breast cancer progression and chemosensitivity by targeting survivin. Biochem Biophys Res Commun 2018; 501:48-54. [PMID: 29678577 DOI: 10.1016/j.bbrc.2018.04.129] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most common cancer among women worldwide. Chemoresistance remains to be a considerable obstacle in breast cancer therapy and it is often involves dysregulation of a variety of microRNAs (miRNAs). miR-485-5p functions as a tumor suppressor in several types of human cancers. However, its role in breast cancer chemosensitivity have not been determined. In the present study, we demonstrated that overexpression of miR-485-5p suppresses breast cancer progression and enhances chemosensitivity both in vitro and in vivo. Further study demonstrated that miR-485-5p directly targeted the 3'-untranslated region of survivin and overexpression of survivin overcomes the miR-485-5p induced effects on breast cancer. In conclusion, our study identified that miR-485-5p suppresses cancer progression and enhances the chemosensitivity by targeting survivin. Targeting survivin by miR-485-5p may provide a potential approach to reverse chemosensitivity in breast cancer cells.
Collapse
Affiliation(s)
- Meng Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Wen-Run Cai
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ran Meng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jiang-Rui Chi
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yun-Rui Li
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ao-Xiang Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
31
|
MicroRNA-485-5p suppresses growth and metastasis in non-small cell lung cancer cells by targeting IGF2BP2. Life Sci 2018; 199:104-111. [DOI: 10.1016/j.lfs.2018.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
|
32
|
Zhang K, Guo L. MiR-767 promoted cell proliferation in human melanoma by suppressing CYLD expression. Gene 2018; 641:272-278. [DOI: 10.1016/j.gene.2017.10.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
|
33
|
Zhang G, Ai D, Yang X, Ji S, Wang Z, Feng S. MicroRNA-610 inhibits tumor growth of melanoma by targeting LRP6. Oncotarget 2017; 8:97361-97370. [PMID: 29228616 PMCID: PMC5722568 DOI: 10.18632/oncotarget.22125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence showed that aberrant miRNAs expression was involved in initiation and progression of melanoma. However, the investigation of different miRNAs in melanoma remain attractive. In this research, we demonstrated that miR-610 expression was decreased in melanoma tissues and cell lines. The clinical data showed that the reduced miR-610 expression was obviously associated with adverse prognostic characteristics. Furthermore, our results suggested that miR-610 had a function of prognostic indicator for 5-year predicted-survival of melanoma patients. The ectopic overexpression of miR-610 suppressed cell proliferation, cell cycle progression and promoted apoptosis while miR-610 knockdown reversed the effect in vitro and in vivo. Additionally, miR-610 could modulate LRP6 by directly interacting to its 3’-UTR. In clinical samples of melanoma, miR-610 inversely correlated with LRP6. The biological function of miR-610 on melanoma cells was abrogated by alternation of LRP6 expression. In summary, our research indexed that miR-610 had a function of tumor suppressor in regulating the proliferation, cell cycle and apoptosis of melanoma via targeting LRP6. Hence, it may represent a novel potential therapeutic target and prognostic marker for melanoma.
Collapse
Affiliation(s)
- Guangjing Zhang
- Department of Dermatology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Dongfang Ai
- Department of Dermatology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xiufang Yang
- Department of Dermatology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Shanshan Ji
- Department of Dermatology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Zhengxiang Wang
- Department of Dermatology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Shijun Feng
- Department of Dermatology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
34
|
Chen L, Xiong YQ, Xu J, Wang JP, Meng ZL, Hong YQ. Juglanin inhibits lung cancer by regulation of apoptosis, ROS and autophagy induction. Oncotarget 2017; 8:93878-93898. [PMID: 29212196 PMCID: PMC5706842 DOI: 10.18632/oncotarget.21317] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Abstract
Juglanin (Jug) is obtained from the crude extract of Polygonum aviculare, exerting suppressive activity against cancer cell progression in vitro and in vivo. Juglanin administration causes apoptosis and reactive oxygen species (ROS) in different types of cells through regulating various signaling pathways. In our study, the effects of juglanin on non-small cell lung cancer were investigated. A significant role of juglanin in suppressing lung cancer growth was observed. Juglanin promoted apoptosis in lung cancer cells through increasing Caspase-3 and poly ADP-ribose polymerase (PARP) cleavage, which is regulated by TNF-related apoptosis-inducing ligand/Death receptors (TRAIL/DRs) relied on p53 activation. Anti-apoptotic members Bcl-2 and Bcl-xl were reduced, and pro-apoptotic members Bax and Bad were enhanced in cells and animals receiving juglanin. Additionally, nuclear factor-κB (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinases (MAPKs) activation were inhibited by juglanin. Further, juglanin improved ROS and induced autophagy. ROS inhibitor N-acetyl-l-cysteine (NAC) reversed apoptosis induced by juglanin in cancer cells. The formation of autophagic vacoules and LC3/autophagy gene7 (ATG7)/Beclin1 (ATG6) over-expression were observed in juglanin-treated cells. Also, juglanin administration to mouse xenograft models inhibited lung cancer progression. Our study demonstrated that juglanin could be a promising candidate against human lung cancer progression.
Collapse
Affiliation(s)
- Liang Chen
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Ya-Qiong Xiong
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Jing Xu
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Ji-Peng Wang
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Zi-Li Meng
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Yong-Qing Hong
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| |
Collapse
|
35
|
Mao K, Lei D, Zhang H, You C. MicroRNA-485 inhibits malignant biological behaviour of glioblastoma cells by directly targeting PAK4. Int J Oncol 2017; 51:1521-1532. [DOI: 10.3892/ijo.2017.4122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/04/2017] [Indexed: 11/06/2022] Open
|