1
|
Ocampo Y, Caro D, Rivera D, Castro J, Pájaro I, Salas R, Franco L. Active fraction of ground cherry ( Physalis angulata L.) calyces attenuates azoxymethane dextran sulfate sodium‑induced colon carcinogenesis in mice. Biomed Rep 2024; 21:188. [PMID: 39420920 PMCID: PMC11484217 DOI: 10.3892/br.2024.1876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Physalis angulata L., commonly known as wild tomato or ground cherry, is widely used in tropical and subtropical areas to treat health disorders including inflammation, hepatitis, dermatitis, cancer and diabetes. In Colombia, anti-cancer and anti-inflammatory activity are the most common ethnopharmacological applications of P. angulata calyces. P. angulata dichloromethane fraction (PADF) has significant anti-inflammatory activity. The present study assessed the pharmacological effect of PADF on colorectal cancer (CRC) using cancer and normal human cells and an azoxymethane (AOM)/dextran sulfate sodium (DSS) murine model. MTT and clonogenic assay, cell cycle and apoptosis analysis and mitochondrial membrane potential measurement were employed to evaluate in vitro activity of PADF. PADF selectively induced a cytotoxic effect against CRC cells via apoptosis and G2/M arrest. In the AOM/DSS model, treatment with PADF diminished tumor number and size, affected area and expression of proliferating cell nuclear antigen and promoted colon tissue repair. These effects might be related to the increased expression of p38 pro-apoptotic protein in addition to anti-inflammatory activity of PADF demonstrated by decreased levels of TNF-α, IL-6, and IL-1β. PADF may serve as a potential treatment for CRC. Further investigation is warranted to identify the bioactive components in PADF.
Collapse
Affiliation(s)
- Yanet Ocampo
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
| | - Daneiva Caro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
- Dentistry Program, Universidad del Sinú-Elías Bechara Zainúm-Seccional Cartagena, Cartagena 130014, Colombia
| | - David Rivera
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
| | - Jenny Castro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia
| | - Indira Pájaro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia
| | - Rubén Salas
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
| | - Luis Franco
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
| |
Collapse
|
2
|
EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Cheyns K, Dusemund B, Mirat M, Mortensen A, Turck D, Wölfle D, Barmaz S, Mech A, Rincon AM, Tard A, Vianello G, Zakidou P, Gundert‐Remy U. Re-evaluation of sucrose esters of fatty acids (E 473) as a food additive in foods for infants below 16 weeks of age and follow-up of its previous evaluations as food additive for uses in foods for all population groups. EFSA J 2023; 21:e07961. [PMID: 37089185 PMCID: PMC10119783 DOI: 10.2903/j.efsa.2023.7961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Sucrose esters of fatty acids (E 473) was re-evaluated in 2004 by the former EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC Panel). In addition, the former EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS Panel) issued scientific opinions on the safety of sucrose esters of fatty acids (E 473) in 2010, 2012 and 2018. As a follow-up to these assessments, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of sucrose esters of fatty acids (E 473) for its uses as food additive in food for infants below 16 weeks of age. In addition, the FAF Panel was requested to address the issues already identified by the EFSA AFC and ANS Panels when used in food for the general population. The process involved the publication of calls for data to allow the interested business operators to provide the requested information to complete the risk assessment. The Panel concluded that the technical data provided by the interested business operators support an amendment of the specifications for sucrose esters of fatty acids (E 473) laid down in Commission Regulation (EU) No 231/2012. According to the available information, E 473 is not used in food categories (FCs) 13.1.1 and 13.1.5.1, including all types of food for infants below 16 weeks of age, and in FC 13.1.5.2. As a consequence, an assessment of the safety for the uses of E 473 as food additive in these FCs and age group was not performed. When the updated exposure estimates considering the provided use levels for some food categories are taken into account the estimates of exposure to sucrose esters of fatty acids (E 473) exceeded the group acceptable daily intake (ADI) of 40 mg/kg body weight (bw) per day for many population groups.
Collapse
|
3
|
Nocetti D, Núñez H, Puente L, Espinosa A, Romero F. Composition and biological effects of goldenberry byproducts: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4335-4346. [PMID: 32198760 DOI: 10.1002/jsfa.10386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
Goldenberry is a wild fruit that has been widely used for centuries, mainly in folk medicine. Most studies of goldenberry have focused on the fruit, but new research has studied its byproducts, which were considered to be waste until recently. The main objective of our study was to systematize the published information regarding the composition of goldenberry byproducts (calyces, leaves, seeds, and pomace) and their effects on biological systems. Goldenberry byproducts contain minerals, amino acids, withanolides, flavonoids, and essential fatty acids, thus representing good sources of these compounds. Some of their major biological effects include anti-inflammatory, antioxidant, antidiabetic, and antiproliferative effects. Information regarding their toxicity is also presented here. To determine the optimal dosage, further safety studies would be recommended to ensure the best health benefits of these compounds. The available evidence has demonstrated the nutritional value of different byproducts of goldenberry, suggesting them to be potential candidates for use in the cosmetic industry, in the preparation of functional foods, and in phytomedicine for the prevention and adjuvant treatment of some diseases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Diego Nocetti
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile
- Departamento de Tecnología Médica, Universidad de Tarapacá, Arica, Chile
| | - Hipólito Núñez
- Departamento de Biología, Universidad de Tarapacá, Arica, Chile
| | - Luis Puente
- Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Ciencia de los Alimentos y Tecnología Química, Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernando Romero
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile
- Centro de Neurociencias y Biología de Péptidos - CEBIOR, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Mora Vargas JA, Orduña Ortega J, Metzker G, Larrahondo JE, Boscolo M. Natural sucrose esters: Perspectives on the chemical and physiological use of an under investigated chemical class of compounds. PHYTOCHEMISTRY 2020; 177:112433. [PMID: 32570051 DOI: 10.1016/j.phytochem.2020.112433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The present review describes the chemistry and physiological properties of the sucrose esters (SEs) obtained from natural or synthetic pathways, with emphasis on those that have aliphatic and phenylpropanoid substituents on their sucrose moiety. Synthesis, extraction and characterization methods for the SEs and NSEs are discussed in terms of synthetic procedures, separation techniques and spectroscopic methods. The physiological properties are discussed taking into account the nature of the substituent groups and their regiochemistry (position and number of substitutions) on the sucrose moiety.
Collapse
Affiliation(s)
- Jorge Andrés Mora Vargas
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil.
| | - Julieth Orduña Ortega
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil; Universidad Santiago de Cali, Facultad de Ciencias Básicas, Campus Pampalinda, Santiago de Cali, Colombia.
| | - Gustavo Metzker
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil.
| | - Jesus Eliecer Larrahondo
- Universidad Santiago de Cali, Facultad de Ciencias Básicas, Campus Pampalinda, Santiago de Cali, Colombia.
| | - Mauricio Boscolo
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
5
|
Effects of sucrose ester structures on liposome-mediated gene delivery. Acta Biomater 2018; 72:278-286. [PMID: 29609051 DOI: 10.1016/j.actbio.2018.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022]
Abstract
Sucrose esters (SEs) have great potential applications in gene delivery because of their low toxicity, excellent biocompatibility, and biodegradability. By using tripeptide-based lipid (CDO) as a model lipid and SEs as helper lipids, a series of liposomes were prepared. The SEs with hydrophilic-lipophilic balance (HLB) values of 1, 6, 11, or 16 and the fatty acids of laurate, stearate, or oleate were used in the liposomes. We investigated the effect of HLB values of SEs and fatty acid types on gene transfection efficiency and toxicity of liposomes. The results showed that transfection efficiencies of the liposomes containing SEs with HLB value of 6 were superior to other liposomes in HeLa, MCF-7, NCI-H460, and A549 tumor cells. For the same HLB value, liposomes of laurate SEs were preferable to transfect cells compared to SEs of stearate and oleate. The liposomes with SEs showed higher cellular uptake than liposome without SEs (LipoCDO). LipoL12-6/Luc-siRNA treatment on tumor-bearing mice exhibited about 60% in vivo gene silencing of luciferase, and LipoL12-6 could mediate IGF-1R siRNA to greatly inhibit tumor growth. Moreover, liposomes with SEs revealed remarkably low toxicity in vitro and in vivo. The illustration of SE structures on gene delivery will promote the use of SEs for clinical trials of liposomes. STATEMENT OF SIGNIFICANCE This article is the first to study the effects of various chain lengths and hydrophilic-lipophilic balance (HLB) of sucrose esters (SEs) on gene transfection efficiency and safety of liposomes for gene delivery. The in vitro delivery of pDNA and siRNA by lipoplexes against HeLa, MCF-7, NCI-H460, and A549 tumor cells showed that the lipoplexes could lead to better transfection and lower cytotoxicity after the addition of SEs. SEs with shorter chain and a median HLB value could provide the liposomes with much higher gene transfection efficiency than others. The in vivo delivery of siRNA to tumor-bearing mice further confirmed that liposome containing laurate SE (LipoL12-6) could be a potential therapeutic vector, as it delivered siRNA to silence nearly 60% of the luciferase in tumors and also greatly inhibited the tumor growth. Therefore, the addition of SEs to liposomes proved to be relatively safe in vitro and in vivo. These preliminary results demonstrated that SEs show great potential for constructing controlled-release systems for gene delivery. The readers will get insights into a series of gene vectors and deepen their understanding about gene delivery.
Collapse
|